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Abstract: We propose a symmetric method of accurately estimating the number of metro passengers
from an individual image. To this end, we developed a network for metro-passenger counting
called MPCNet, which provides a data-driven and deep learning method of understanding highly
congested scenes and accurately estimating crowds, as well as presenting high-quality density
maps. The proposed MPCNet is composed of two major components: A deep convolutional neural
network (CNN) as the front end, for deep feature extraction; and a multi-column atrous CNN as
the back-end, with atrous spatial pyramid pooling (ASPP) to deliver multi-scale reception fields.
Existing crowd-counting datasets do not adequately cover all the challenging situations considered in
our work. Therefore, we collected specific subway passenger video to compile and label a large new
dataset that includes 346 images with 3475 annotated heads. We conducted extensive experiments
with this and other datasets to verify the effectiveness of the proposed model. Our results demonstrate
the excellent performance of the proposed MPCNet.
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1. Introduction

As an important means for urban public transportation, subways are facing challenges with
regard to rapid route expansions and safety-related problems owing to an increase in passenger
flow. Consequently, there is an urgent demand for secure methods of forecasting passenger flow
using video surveillance. Such methods use computer vision and artificial intelligence to analyze the
content of video sequences, and to track and detect anomalous information. There is considerable
research on passenger flow analysis [1–3]. In works [1,2], regions corresponding to moving objects
are detected using a background difference method. In the work [3], a detection-based strategy is
proposed based on the heads and shoulders of detection targets to detect subway passenger flow.
This method performs well, but it cannot be used to count the number of passengers in a subway car.
Most of the time, passengers in subway cars remain still, yet the background difference method is more
suited to detecting moving targets because of the need to update the background. Sometimes subway
cars are highly crowded, as shown in Figure 1. In such cases, the algorithm proposed in the work [3]
encounters problems of misdetections and false detections. Single-image crowd counting is useful for
traffic management, disaster prevention, and public management. Crowd-counting methods aim to
estimate the number of humans in surveillance videos and photos. Current methods of crowd counting
are developed from detection-based [4–8] approaches to convolutional neural network (CNN)-based
approaches [9–15]. This reduces counting errors caused by occlusion, because CNN-based approaches
only target the human head. Therefore, CNN-based crowd counting methods are suitable for the
counting dense crowds on subways.
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Figure 1. Representative images in our crowd dataset. 
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and a dataset. We designed a novel multi-column atrous CNN that uses ResNet50 [16] pre-trained 
on the ImageNet [17] dataset as the backbone of the network to extract deep features. Previous works 
[10−12] arrange the convolution layers of different convolution kernels into multiple columns to 
extract large-scale information. By contrast, we focus on using atrous spatial pyramid pooling (ASPP) 
[18−20] to extract multi-scale features. Specifically, ASPP probes an incoming convolutional feature 
layer with filters at multiple sampling rates and effective fields of view. This module consists of atrous 
convolution with four different rates in parallel to capture objects and the context in images at 
multiple scales. Unlike methods based on arranging convolution layers into columns, our method 
uses filters with multiple sampling rates to extract information at a larger scale.  

We also developed a new dataset that contains 346 images with 3475 labeled passengers for 
metro passenger analysis. The data was collected from video of Zhengzhou Metro Transportation 
(MT) Line 2, in China. Thus, we refer to it as the Zhengzhou MT dataset. Figure 1 shows 
representative images of our dataset. Compared to existing crowd-counting datasets, our dataset 
offers distinct advantages. To our knowledge, the dataset is the first one designed for counting 
passengers inside a subway car. Furthermore, due to the narrow space in the car, there is considerable 
congestion in the images. 

The contributions of this work can be summarized as follows. First, for the first time, we use a 
CNN-based crowd counting algorithm to count passengers in subway cars. Second, we designed a 
novel multi-scale architecture that extracts deep features and captures multi-scale information in 
images by using a row of atrous convolutions with different atrous rates. Third, we developed a 
dataset comprised of images of the interior of subway cars. The dataset is representative, with realistic 
images of challenging settings and crowded scenes for analysis in the field of intelligent 
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The reminder of the paper is organized as follows. Section 2 presents recent related works. 
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To apply a CNN-based method to counting subway passengers, we developed a methodology and
a dataset. We designed a novel multi-column atrous CNN that uses ResNet50 [16] pre-trained on the
ImageNet [17] dataset as the backbone of the network to extract deep features. Previous works [10–12]
arrange the convolution layers of different convolution kernels into multiple columns to extract
large-scale information. By contrast, we focus on using atrous spatial pyramid pooling (ASPP) [18–20]
to extract multi-scale features. Specifically, ASPP probes an incoming convolutional feature layer
with filters at multiple sampling rates and effective fields of view. This module consists of atrous
convolution with four different rates in parallel to capture objects and the context in images at multiple
scales. Unlike methods based on arranging convolution layers into columns, our method uses filters
with multiple sampling rates to extract information at a larger scale.

We also developed a new dataset that contains 346 images with 3475 labeled passengers for metro
passenger analysis. The data was collected from video of Zhengzhou Metro Transportation (MT) Line
2, in China. Thus, we refer to it as the Zhengzhou MT dataset. Figure 1 shows representative images of
our dataset. Compared to existing crowd-counting datasets, our dataset offers distinct advantages.
To our knowledge, the dataset is the first one designed for counting passengers inside a subway car.
Furthermore, due to the narrow space in the car, there is considerable congestion in the images.

The contributions of this work can be summarized as follows. First, for the first time, we use
a CNN-based crowd counting algorithm to count passengers in subway cars. Second, we designed
a novel multi-scale architecture that extracts deep features and captures multi-scale information in
images by using a row of atrous convolutions with different atrous rates. Third, we developed a dataset
comprised of images of the interior of subway cars. The dataset is representative, with realistic images
of challenging settings and crowded scenes for analysis in the field of intelligent transportation.

The reminder of the paper is organized as follows. Section 2 presents recent related works. Section 3
provides details of our proposed metro-passenger counting network (MPCNet). Experimental results
are given and discussed in Section 4. Finally, Section 5 concludes the paper.

2. Related Work

A myriad of techniques in computer vision have been proposed to deal with task of crowd
counting. They can be roughly categorized into traditional methods and CNN-based methods.

2.1. Traditional Methods

Most earlier research [4–8] focus on detection-based methods, which consider a crowd as a group
of detected individual pedestrians with a simple detection and summing process. Unfortunately,
these detection-based methods are limited by occlusions and background clutter in crowded scenes.
Since detection-based methods cannot be adapted to highly congested scenes, other methods [21,22]
employ regression to learn the relations among extracted features from cropped image patches, and
then calculate the number of particular objects. Idrees et al. [23] designed a model that fuses features
extracted with Fourier analysis, head detection, and scale-invariant feature transform (SIFT) [24]
interest-points-based counting in local patches. When executing a regression-based solution; however,
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spatial information in images of crowds is ignored. This can lead to inaccurate results in local regions.
In works [25,26], a solution to this problem is proposed, with linear mapping between the features and
object density maps in a local region.

2.2. CNN-Based Methods

CNN-based methods exploit density maps, owing to their success at classification and
recognition [17,27]. A comprehensive survey of CNN-based counting approaches is given in the
work [28]. Wang et al. [9] modified AlexNet [17] to predict counts directly. In the work [10], a simple
but effective multi-column convolutional neural network (MCNN) is proposed that tackles large-scale
variation in crowded scenes. Similarly, Onoro and Sastre [11] proposed a multi-scale model, called
Hydra CNN, to extract features at different scales. Cao et al. [12] proposed an encoder–decoder network,
called SANet, which employs scaled aggregation modules in an encoder. Their method improves
the representation ability and scale diversity of features. Sam et al. [13] proposed Switching-CNN,
which utilizes VGG-16 [29] as a density-level classifier to assign different regressors for particular input
patches. Li et al. [14] proposed CSRNet [16] by combining VGG-16 [29] and dilated convolution layers
to aggregate multi-scale contextual information. Recently, Wang [15] designed SFCN to encode spatial
contextual information based on VGG-16 [29] or ResNet-101 [16].

Based on the research above, we found that by combining deep learning, CNN-based solutions are
better able to perform this task, and indeed outperform traditional methods. In particular, networks
based on AlexNet, VGG, and ResNet show excellent performance. Thus, we propose a network with
ResNet as the front end.

3. Proposed Method

The fundamental idea for the proposed method is to deploy a multi-column atrous CNN to capture
high-level features with larger receptive fields, and to generate high-quality density maps. In this
section, we first describe the ASPP module in detail and introduce the architecture of the proposed
method. Then, we present the corresponding training details. Finally, we describe the method for
generating the ground truth.

3.1. ASPP Module

One of the critical components of our design is the ASPP module. As can be shown in Figure 2,
the ASPP consists of a 1 × 1 convolution and three 3 × 3 atrous convolutions, where the rate = (6,12,18).
An atrous [30] convolution can be defined as follows:

Y(l, w) =
L∑

i=1

w∑
j=1

x(l + r× i, w + r× j) f (i, j). (1)

where Y(l,w) is the output of the atrous convolution from input x(l,w) and a filter f (i,j), L and W denote
the length and width, respectively, and r is the dilation rate. When r = 1, an atrous convolution
becomes a normal convolution. The ASPP has been applied to segmentation tasks, demonstrating a
significant improvement of accuracy [18–20], and it is effective at extracting multi-scale contextual
information. Although multi-column CNNs [10–12] are widely used for extracting multi-scale
contextual information, they also dramatically increase the number of parameters, owing to a larger
convolution kernel. The ASPP can extract multi-scale contextual information with atrous convolution,
adaptively modifying a filter’s field of view by changing the rate value. With atrous convolution,
a small-sized kernel with a k × k filter is enlarged to k + (k − 1) (r − 1) with dilated value r. Thus,
it can flexibly aggregate the multi-scale contextual information. This characteristic enlarges the
receptive field without increasing the number of parameters or the amount of computation. (Note:
expanding the convolution kernel size can indeed make larger receptive fields, but doing so introduces
more operations).
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The resulting features from all of the ASPP branches are then concatenated and passed through 
another 1 × 1 convolution with 128 channels, before the 1 × 1 convolution with one channel. Finally, 
bilinear interpolation is performed at a factor of 8 as the last layer of our MPCNet. This ensures that 

Figure 2. Atrous spatial pyramid pooling (ASPP). Employing a high atrous rate enlarges the model’s
field of view, enabling object encoding at multiple scales. The effective fields of view are shown in
different colors.

3.2. MPCNet Architecture

Following the work [15], we selected ResNet50 as the front end of MPCNet as shown in Figure 3,
owing to its excellent high-resolution feature-extraction capability and its flexible architecture, which
can easily concatenate the back end to generate density maps. However, atrous convolution requires a
large number of high-resolution feature maps. Therefore, it is necessary to extract advanced features
through ResNet before performing atrous convolution. To do so, we reserve the first three residual
modules in ResNet50 and build the proposed MPCNet with multi-column atrous convolutional layers.
In this front-end network, there are 1024 output channels. If we were to continue to stack more residual
modules, then more output channels would be needed, increasing the required training time for the
network. The size of feature maps is reduced by 8 times in ResNet50, and there is no down sampling
in other processes. The parameter stride before the third residual module of ResNet50 has adopted the
default value (the stride of 7 × 7 Conv and max pooling is 2, the stride of the first residual module
is 1, the stride of the second residual module is 2). The size of feature maps has been reduced by
8 times. If they are reduced again, it will lead to a large amount of information loss. In order to extract
more detailed information and obtain high-resolution feature maps, we changed the stride of the third
residual module from 2 to 1.
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The resulting features from all of the ASPP branches are then concatenated and passed through
another 1 × 1 convolution with 128 channels, before the 1 × 1 convolution with one channel. Finally,
bilinear interpolation is performed at a factor of 8 as the last layer of our MPCNet. This ensures that the
output shares the same resolution as the input image. Notably, our network uses a fully convolutional
network. It can accept images of any size, without the risk of distortion.

3.3. Training Details

We trained the proposed MPCNet in an end-to-end manner. Weighted parameters for ResNet50
pre-trained on ImageNet were used to initialize the feature-extraction CNN. The Adam optimizer [31]
with a learning rate of 10−5 was used to train the model. The Euclidean distance was used to measure the
difference between the ground truth and the estimated density map, similar to other works [10,11,14].
The loss function is defined as follows:

L(θ) =
1

2N

N∑
i=1

‖F(Xi;θ) − Fi‖
2
2. (2)

where θ is a set of learnable parameters in the proposed MPCNet, N is the number of training imag, Xi
is the input image, Fi is the ground-truth density map generated by MPCNet parameterized with θ for
the sample Xi, and L is the loss between the ground-truth density map and the estimated density map.

3.4. Ground-Truth Generation

In this section, we describe the method of converting an image labeled with people’s heads to
a density map. Supposing there is a head annotation at pixel xi in a labeled image of a crowd, we
represent it as a delta function δ(x− xi) and describe its distribution with a Gaussian kernel [26] Gσ,
such that the density map with N heads is derived as follows:

F(x) =
N∑

i=1

δ(x− xi) ∗Gσ(x). (3)

The above method is generally applicable to sparse scenes. Following the method of generating
density maps in the work [10], we use geometry-adaptive kernels to tackle highly congested scenes.
Thus, we generate a density map via geometry-adaptive kernels:

F(x) =
N∑

i=1

δ(x− xi) ∗Gσi(x), σi = βdl. (4)

where σi depends on the average distance di between the head and its nearest k neighbors. In the
experiment, we followed the configuration in the work [10], where β = 0.3 and k = 3. The sum of all
pixel values gives the crowd count of the input image. Here, C denotes the crowd count, defined as
follows:

C =
L∑

l=1

W∑
w=1

Zl,w. (5)

where L and W are the length and width of the density map, respectively, and zl,w is the pixel at (l,w) in
the generated density map.

4. Experiments and Results

In this section, we introduce our dataset, and we describe two standard datasets for crowd
counting. Then, the evaluation metrics are introduced. Finally, we presents the experiment results to
answer our research problems.
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4.1. Datasets

Existing crowd-counting datasets are not designed specifically for public transportation systems,
even though crowd counting is important in the field of intelligent transportation. Therefore, we
collected new data and compiled a new dataset, called Zhengzhou MT(Metro Transportation), where
the number of heads in an image varies between 1 and 20. We show crowd histograms of the images in
our dataset in Figure 4. All images were taken from the Zhengzhou MT, in China. The size of each
image is 576 × 704 pixels. The time span of the dataset is from 7:00 am to 9:00 pm, when congestion is
variable. Therefore this dataset is similar to other datasets used in practical applications. Accordingly,
the Zhengzhou MT dataset can be considered a valuable and representative dataset. For our evaluation,
we used 288 images from the dataset for training and 58 images for testing. The details are listed in
Table 1.
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Table 1. Statistics of the two crowd-counting datasets and the Zhengzhou MT dataset.

Datasets
Number of

Images
Average

Resolution
Count Statistics

Total Min Ave Max

SHHB [10] 716 768 × 1024 88,488 9 123 578
Smartcity [32] 50 1920 × 1080 369 1 7 14

Zhengzhou MT 346 576 × 704 3475 1 10 20

The ShanghaiTech Part B dataset was introduced by Zhang et al. [10], and it contains 716 annotated
images of sparse scenes taken from the streets of Shanghai, comprising a total of 88,488 people.
These images were divided into training and test datasets, with 400 images in the training set and 316
images in the test set. With reference to the work [10], we fixed the size of the Gaussian kernel to 15,
where σ = 3, to generate density maps of this dataset.

The SmartCity dataset [32] contains 50 images collected from ten city scenes, including office
entrances, sidewalks, atriums, and shopping malls. The dataset has few pedestrians in the images and
consists of both outdoor and indoor scenes. We used this dataset to test the generalizability of the
proposed method for sparsely crowded scenes. With reference to the work [32], we used geometrically
adaptive kernels to generate the density maps of the Smartcity dataset.
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4.2. Evaluation Metrics

In accordance with previous research [10,12,14], we used the mean absolute error (MAE) and the
mean squared error (MSE) to evaluate the proposed method:

MAE =
1
N

N∑
1

∣∣∣Zi − Ẑi
∣∣∣, MSE =

√√√
1
N

N∑
1

(Zi − Ẑi)
2. (6)

where N is the number of test images, ẑi is the actual number of people in the i-th image, and zi is the
estimated number of people in the i-th image. The MAE indicates the accuracy of the estimate, and the
MSE indicates the robustness of the estimate. Because the MSE is sensitive to outliers, its value will be
high if the model performs poorly on some samples.

4.3. Experimental Results and Comparison

The implementation of our method is based on the Pytorch [33] framework. Our experiments
were performed on an NVIDIA RTX2080Ti GPU with a batch size of 1. Extensive experiments were
performed on a variety of datasets to endorse the validity of results.

4.3.1. Results on the Zhengzhou MT Dataset

We compared our method to state-of-the-art methods. To effectively assess the performance of
our method, we implemented two recent crowd-counting algorithms [10,14] capable of extracting
multi-scale features. The MCNN [10] is a multi-column CNN that uses several CNN branches with
different receptive fields to extract multi-scale features. CSRNet [14] deploys the first ten layers from
VGG-16 as the front end and arranges single column atrous convolution layers as the back end to
enlarge the receptive fields. Detailed results of the comparison are given in Table 2. The results
indicate that the proposed MPCNet outperforms MCNN but not CSRNet. Specifically, the proposed
method had an MAE of 0.1 higher and an MSE of 0.2 higher than CSRNet. Figure 5 shows the density
map results obtained from the three methods. Rows 1 and 2 show test images and ground-truth
images, respectively. Rows 3 to 5 show density maps generated from MPCNet, CSRNet, and MCNN,
respectively. The proposed method was highly accurate when the subway cars were crowded.
In addition, it produced density maps of higher quality than the other two methods. The distribution
of passengers in a subway car can be accurately obtained from these high-quality density maps.
Consequently, administrators can improve the service quality of the subway system.

We also compared four levels of congestion. We designed an experiment to verify the robustness
of the proposed algorithm, MCNN, and CSRNet under four congestion levels. Such an evaluation
is of great significance to practical applications. Specifically, we selected some images from the test
set of Zhengzhou MT and split them into four groups in ascending order according to the crowd
counts to simulate scenes with four levels of congestion in a subway car. From the plots in Figure 6,
we can see that the three algorithms performed well with the first two levels of congestion, owing to
the small number of people. However, with an increase in the number of people, the subway became
crowded, and occlusions between people were more serious. This compromised the accuracy of all
three algorithms. In general; however, our algorithm performed comparably well relative to the two
state-of-the-art algorithms.

Table 2. Performance of different methods on the Zhengzhou Metro Transportation (MT) dataset.

Method MAE MSE

MCNN [10] 1.9 2.3
CSRNet [14] 1.6 2.0

MPCNet (ours) 1.7 2.2
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Figure 6. Comparison of our method (MPCNet) to MCNN and CSRNet on the Zhengzhou MT dataset.
We selected some samples from our test images and split them into four groups, based on the number
of people. The absolute count in the vertical axis is the average crowd number in the images from
each group.

4.3.2. Results on the ShanghaiTech Part B Dataset

We performed an ablation study on the ShanghaiTech Part B dataset. One of the important features
of our method is the ASPP [18–20] module. Therefore, it is necessary to compare the performance of
the method with and without the ASPP module. We removed the ASPP module from MPCNet and
tested it on the ShanghaiTech part B, because it contains scenes with varying scales. In addition, we
performed an ablation study to analyze the three configurations of ASPP. This evaluation was designed
to demonstrate the necessity of using the ASPP module. By using the ASPP module, the performance
on this dataset improved, with an MAE/MSE of 0.1/1.4 lower than without the ASPP module. However,
the different atrous rates of the ASPP affected the performance. We show these four architectures and
the evaluation results in Table 3. The architecture with the atrous convolution rate (1,6,12,18) was the
most accurate. Therefore, we used this architecture for the proposed MPCNet.

To visualize the ability of the ASPP model, we show density maps generated from the four different
architectures in Figure 7. The first row shows test images, and the second row shows ground-truth
images. Rows 3 to 6, respectively, show density maps generated from the four architectures in Table 3.
As this figure shows, the architectures without the ASPP module tended to overestimate the count,
owing to the interference of the background with the crowds. When the ASPP module was added, this
interference was eliminated. These results demonstrate the need for the ASPP module.
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Next, we compared our MPCNet with existing state-of-the-art methods on the ShanghaiTech Part
B. The results are shown in Table 4. Zhang et al. [9] first used a CNN for density map generation, and
their network outputs both density maps and counts. Based on MCNN [10], Sam et al. [13] added a
switch classifier to assign a regressor to an image, improving the performance compared to the MCNN.
Sindagi et al. [34] proposed a variation to the MCNN as a density map estimator, combining global
and local contextual information with multi-scale features. Adversarial loss is utilized to generate
high-quality density maps and significant improvements. In the work [35], multi-task learning is
applied to combined features learned from different tasks. Their results on the ShanghaiTech Part
B dataset are close to the results in the work [34]. Liu et al. [36] proposed a novel crowd-counting
method that uses a large number of unlabeled crowd imagery in a learning-to-rank framework.
The self-supervised task improved the results significantly compared to a network trained only on
annotated data. Li et al. [14] arranged cascading dilated convolution layers as the back end of the
CSRNet to enlarge the receptive fields. However, a single-column dilated convolution model does not
work well with MPCNet, which uses a multi-column dilated convolution network. The MAE of the
proposed MPCNet was 0.9 lower than the CSRNet on the ShanghaiTech Part B dataset. However, our
method was not the best among the existing methods. In the work [12], an approach arranges general
convolutions into multiple columns and it also incorporates multi-scale contextual information directly
into an end-to-end trainable crowd-counting pipeline. Their algorithm outperformed state-of-the-art
crowd-counting methods. Figure 8 shows the density map results obtained from the three methods.
Rows 1 and 2 show test images and ground-truth images, respectively. Rows 3 to 5 show density maps
generated from MPCNet, CSRNet, and MCNN, respectively. We can find that the accuracy of our
method is higher and the density map generated is clearer.

Table 3. Comparison of architectures on the ShanghaiTech Part B dataset.

Architecture MAE MSE

Without ASPP model 11.3 20.8
Atrous rate values (1,4,8,12) 11.2 19.4
Atrous rate values (1,6,12,18) 9.7 16.0

Atrous rate values (1,10,20,30) 11.2 20.1

Table 4. Estimation errors on the ShanghaiTech dataset.

Method MAE MSE

Zhang et al. [9] 32.0 49.8
MCNN [10] 26.4 41.3

Switching-CNN [13] 21.6 33.4
CP-CNN [34] 20.1 30.1

Cascaded-MTL [35] 20.0 31.1
Liu et al. [36] 13.7 21.4
CSRNet [14] 10.6 16.0

MPCNet (ours) 9.7 16.0
SANet [12] 8.4 13.6
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4.3.3. Results on the Smartcity Dataset

To demonstrate that our method can perform counting tasks on extremely dense crowds alongside
tasks on relative sparse scenes, we compared our MPCNet with previous state-of-the-art methods on
the Smartcity dataset. We also tried to test CSRNet and MCNN on this dataset. For a fair comparison,
we trained MPCNet, CSRNet, and MCNN on the ShanghaiTech Part B dataset and tested it on Smartcity.
We compared our method to the other four methods, and the results are shown in Table 5. Our method
achieved the lowest MAE (the highest accuracy) among the methods. Specifically, the MAE of the
proposed method was 7% lower than that of SaCNN. Samples of the test cases can be found in Figure 9
which shows the density map results obtained from the three methods. Rows 1 and 2 show test images
and ground-truth images, respectively. Rows 3 to 5 show density maps generated from MPCNet,
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CSRNet, and MCNN, respectively. We can find that density maps generated by our method are more
similar to the crowd distributions in the real images.
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Table 5. Estimation errors on the Smartcity dataset.

Method MAE MSE

MCNN [10] 52.6 59.1
Zhang et al. [9] 40.0 46.2
Sam et al. [13] 23.4 25.2

SaCNN(w/o cl) [32] 17.8 23.4
CSRNet [14] 8.8 35.7
SaCNN [32] 8.6 11.6

MPCNet (ours) 4.3 4.9

5. Conclusions

In this paper, we proposed a method of counting metro passengers, called MPCNet. The proposed
method automatically estimates density maps and the number of passengers in images of crowded
scenes. We used multi-column atrous convolutional layers to aggregate the multi-scale contextual
information in the congested scenes. By exploiting these layers, MPCNet expands the receptive
field without losing resolution. To evaluate the effectiveness of the proposed method in the field of
intelligent transportation, we collected and labeled a new dataset, called Zhengzhou MT, consisting of
346 images and 3475 annotated people. To our knowledge, this is the first dataset with annotated heads
designed for counting metro passengers. Extensive experiments with the new dataset and standard
crowd-counting datasets demonstrate the efficiency and effectiveness of the proposed method.

Although our model can extract the multi-scale contextual information in the congested scenes,
we hope our model can be more flexible to adapt to the changes of scene scale. Therefore, our future
work will still focus on the multi-scale topic in crowd counting, and further explore how to extract more
effective multi-scale features of adaptive scene scale changes. Moreover, in order to apply our method
to practical engineering, we will also explore the relationship between the number of passengers in the
car and the degree of passenger congestion.
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