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Abstract: In the LIC algorithm process, symmetrical streamline tracing is used to symmetrically
convolve the original values of all the primitive values that pass by to obtain the resulting texture.
In this process, streamline tracking and convolution consume a lot of computing resources. To generate
more expressive textures for vector fields with less time consumption, a novel method named random
increment streamline (RIS) is put forward, which can generate streamline textures without convolution
calculations. First, the mesh unit filling preprocessing (MUFP) method is presented to transform
an undressed irregular grid into a special kind of regular grid named a “texture pixel”, and the
point location and interpolation processes of all sampling points in the texture pixels are calculated
before streamline tracking. Second, the random increment streamline method is used to generate
line integral convolution style textures without any convolution calculations, thus greatly reducing
the algorithm’s time consumption. Third, the vector directions at each point in the static vector field
are clearly expressed using the periodic cyclic animation method. Finally, several simplifications of
the RIS algorithm are discussed, which help to achieve a better visual effect with faster speed. The
programming results show that the method is faster and more applicable than the traditional LIC
method and provides clearer expression of the vector field.

Keywords: vector field visualization; line integral convolution; streamline texture; visualization
preprocessing; particle animation

1. Introduction

Common vector field visualization techniques include arrow icons, streamlines, path lines, and
textures [1]. Compared with other techniques, the biggest merit of textures is that they provide a
detailed description of the vector field at the pixel level without losing any valuable information. After
long-term evolution, we can classify current texture algorithms into several basic ideas, namely the
spot noise method [2], the texture synthesis method [3], the image advection method [4], and the line
integral convolution method (LIC) [5]. The LIC method is the most common and important generation
method for vector field textures.

In 1993, Cabral et al. [5] proposed the LIC algorithm for the first time. The basic idea of the LIC
algorithm is to first cover the vector field with random white noise as the original input texture. Then,
starting from a certain primitive value, perform symmetrical tracking in the upstream and downstream
directions of the streamline, and then convolve the original primitive values of all sampling points that
pass by. The result is the output texture of the sampling point value. After all the primitive values
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in the vector field are processed, the complete output texture is obtained. Most of the convolution
kernel functions used in the convolution process are symmetrical, such as box kernel functions,
triangular kernel functions, and Gaussian kernel functions. After years of development, various texture
algorithms based on the LIC algorithm have achieved great success, but still have some shortcomings.
First, these algorithms are slower due to the streamline tracking and convolution operations. Second,
some algorithms [5–7] implement certain cyclic animation methods, which can more clearly describe
the flow direction in the static vector field. For a static vector field, the vector value at each point in the
field does not change with time. If a static texture picture is used for descriptions of the vector value,
it is still unknown whether the vector value travels upstream or downstream along the streamline,
although the motion tangent of the vector at each point can be clearly expressed. Even though the
vector field is static after the application of cyclic animation, the resulting texture is dynamic. The
motion of the particles in the loop animation can clearly indicate the true direction of the particles at
each point, but there are some shortcomings to these “cyclic animation” methods, such as the need
for additional operations and a poor expression ability. Finally, in order to obtain a high-contrast
texture [8], additional computation is required, which further reduces the LIC type algorithm’s speed.

To generate vector field textures with better visual effects at a faster speed, the following work is
completed in this paper.

First, the mesh unit filling preprocessing (MUFP) method is proposed, which improves the Seed
Filling Preprocessing (SFP) method that was proposed in our previous research [9]. The MUFP method
uses a regular grid called a “texture pixel” to replace the original irregular grid and preprocesses all
sampling points, including point location and interpolation processes, before tracing streamlines. This
method significantly accelerates the texture generation.

The second method is called the random increment streamline (RIS) method [10], which can
achieve the same visual effect as the LIC algorithm without convolution operations, fundamentally
improving the speed of the texture production. This paper will further discuss the RIS algorithm and
propose several improvements.

Third, we propose the idea of “periodic circulating animation”, which can better express the
vector direction at every point in the static vector field.

Finally, we propose a simplified RIS method, which can further increase the speed of the algorithm
and directly obtain high-contrast textures without additional computation.

2. Related Work

As mentioned above, texture generation techniques include several main categories.
The earliest category is the spot noise method [2], based on which there are several modified

algorithms, such as the enhanced spot noise [11]. The greatest drawback of these methods is that
they do not consider the correlation of adjacent pixels in the upstream or downstream of the same
streamline, resulting in rough images.

The second category is the texture synthesis method, which Verma et al. [3] first proposed.
Subsequent studies have used techniques, such as “semi-regular textures” [12] and “texture
samples” [13], to improve the expressive force and production speed. The main disadvantage
of this type of method is that it needs to consider the case of streamline dispersion or convergence,
resulting in low efficiency.

The third category is the Image based flow visualization (IBFV) [4] method. In the following
research, Jarke [14] et al. applied the IBFV algorithm to a curved grid. Sun Changhui [15] et al.
replaced white noise with particles. This method still requires convolutions and sometimes requires
data filtering, and so it is also slow. This method has two other disadvantages: it is not suitable for
describing a static vector field, and it easily causes visual confusion.

The last category is the LIC method, which is also the most common and important method for
generating vector field textures. Cabral et al. [5] first presented this method. The basic idea of the
LIC is to use white noise to cover the entire vector field, then trace the streamline and carry out the
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convolution of the streamline in the plus or minus direction at each sampling point to acquire the
output gray value of this point. The convolution operation enables the spatial correlation between
adjacent pixels along the streamline direction to be established, while in the vertical streamline direction
there is no spatial correlation due to the use of random white noise. This difference can indicate the
direction of the flow field. There have been many improvements to the LIC algorithm, among which
the Fast Line Integral Convolution (FLIC) [6] algorithm is the most important improvement; the FLIC
algorithm increases the speed of the texture generation by an order of magnitude.

Jobard and Lefer [7] proposed a new data structure called the “motion map”, which can be
used to draw clear cyclic animations and display the directional information of a steady vector field.
The authors of [8] presented the Enhanced Line Integral Convolution (ELIC) method to increase
the texture contrast, in which white noise was convolved twice for the purpose of improving the
contrast. At the same time, the time consumption was inevitably increased. Wegenkittl et al. proposed
two algorithms, Oriented Line Integral Convolution (OLIC) [16] and Fast Oriented Line Integral
Convolution (FOLIC) [17], which use dense short streamlines to simulate the LIC effect. In essence,
these two algorithms are no longer texture algorithms, rather they generate “pseudo textures”. The
advantage of this method is that the computation amount is lower than that of the LIC algorithm, but
the disadvantage is that it cannot provide pixel-level flow field details. Another paper presented an
improved LIC algorithm [18] that provides the rules for determining the integration step size and
interpolation mode according to the vector speed size and the angle between the two vectors. The
Unsteady Flow Line Integral Convolution (UFLIC) algorithm was proposed in [19], which follows the
traces to realize the visualization of unsteady flow fields.

Interrante [20] and others proposed the volume LIC algorithm to solve the problem of LIC
implementation in three-dimensional space. The subsequent series of three-dimensional LIC algorithms
can be said to be based on this development. Zhou [21] and others proposed an improved 3D texture
algorithm (Enhanced 3D LIC), which performs high-pass filtering on the convolution texture to enhance
the contrast, and only displays the area of interest or user features to avoid self-occlusion. Lu [22]
and others proposed an enhanced texture advection algorithm, which uses the noise of adjacent
sampling points in a three-dimensional vector field to calculate the pseudo gradient and uses the
maximum gradient of the pseudo gradient to calculate the texture of adjacent streamlines in order to
improve the contrast. In [23], in order to avoid the problem of self-occlusion caused by excessively
dense three-dimensional textures, a self-adjusting sparse texture method was proposed to improve
the visualization effect. In [24], in order to solve the problem of 3D texture self-occlusion, use of the
Halton sequence was proposed to control the distribution of sparse white noise points and remove
high-frequency regions by Gaussian filtering to generate sparse 3D textures. In order to further increase
the speed, the GPU acceleration algorithm was proposed.

In [25], in order to solve the problem of the low contrast of ordinary LIC textures, where in some
cases the color is too concentrated due to uneven changes in the vector field values, improvements in
texture enhancement and color enhancement were proposed. In [26], human visual perception theory
was introduced into the OLIC algorithm [16] and a particle appearance more suitable for the human
eye observation was proposed to improve the visualization effect. In [27], based on the OLIC algorithm,
an improved algorithm based on multifrequency sparse noise was proposed. In [28], in order to better
express the direction and intensity of the vector field based on the FLIC algorithm, an improved LIC
algorithm based on nonlinear gradient color mapping was proposed. In order to improve the speed of
the texture generation in [29], parallelization technology was introduced into the FLIC algorithm.

Table 1 summarizes the characteristics of some classic LIC-type texture algorithms. They all have
certain disadvantages. As mentioned above, the existing methods of texture generation have problems,
such as slow speed, poor visual effects, and poor applicability. Several new methods are discussed
below that can significantly improve the speed of texture generation and provide better visuals and
greater applicability.
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Table 1. Summary of commonly used line integral convolution (LIC) method texture algorithms.

Algorithms Speed
Was the Cyclic

Animation
Provided?

Two
Dimensions/Three

Dimensions

With or Without
Enhanced

Contrast Function

Line Integral Convolution
(LIC) [5] Very slow Yes Two dimensions Without

Fast Line Integral
Convolution (FLIC) [6] Much faster Yes Two dimensions Without

Motion Map [7] Slow Yes Two dimensions Without

Enhanced Line Integral
Convolution (ELIC) [8] Slow No Two dimensions With

Unsteady Flow Line
Integral Convolution

(UFLIC) [19]
Slow Yes Two dimensions Without

Volume Line Integral
Convolution [20] Slow No Three dimensions Without

Enhanced 3D Line Integral
Convolution [21] Slow Yes Three dimensions With

3. Mesh Unit Filling Preprocessing Method

Current visualization studies are generally based on unstructured grids [30] and common
unstructured grid generation algorithms, including the Delaunay method [31] and the advancing
front method [32]. An irregular grid has many advantages in finite element calculations, such as
better coverage of the physical field and strong adaptability. However, for visualization technology, an
irregular mesh brings a great deal of trouble.

The first disadvantage of using irregular grids for streamline and pathline tracing is that the
time consumption for the point positioning and interpolation calculations is larger than for regular
grids. Streamline and pathline integrals often adopt the fourth-order Runge–Kutta (RK4) method [33],
as follows: 

pi+1= pi + c1/6 + c2/3 + c3/3 + c4/6

c1= sv(pi)

c2= sv(pi + c1/2)

c3= sv(pi + c2/2)

c4= sv(pi + c3)

(1)

where pi is the coordinate of current point i and pi+1 is the coordinate of the next point, which is the step
length for streamline tracing; v(p) is the vector value of p point, and c1 to c4 are four process parameters.

On the basis of Equation (1), each step of the integration requires four sampling points, and so the
point location and interpolation operations for all sampling points are very frequent.

The serial numbers of irregular grid units in the generation process are independent of their
coordinate positions, and the two adjacent grid units do not necessarily have continuous serial numbers.
In regular grids, each grid unit has exactly the same shape, and the unit’s serial number has a strict
relationship with the coordinate position. If the streamline is tracked in a regular grid, based on the
coordinates of the sampling point, we can directly know which regular grid cell the sampling point
is in. In addition, regular grid cells have a uniform appearance and the interpolation operations are
much simpler.

The second disadvantage of using irregular grids for streamline or pathline tracing is that the
computation of many point location and interpolation operations is repeated, which also seriously
affects the texture generation speed. For example, with a triangular irregular mesh, the area coordinate
method is generally used for point positioning and interpolation. Two adjacent sampling points that
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are adjacent in the same streamline or two sampling points in two adjacent streamlines are likely to be
in the same triangular grid, and their area coordinate calculations are likely to contain repeating parts.

To solve the above problems, first an irregular grid can be transformed into a regular grid, and
then the point location and interpolation operations can be extracted from the streamline integral
process to be completed in advance to avoid repetition.

3.1. Texture Pixel

Based on the previously mentioned discussions, we propose a kind of regular grid named the
texture pixel grid. A texture pixel is a small square with fixed side lengths that are parallel to the
coordinate axis. All texture pixels combined together can cover the vector field without repetition and
omission. Essentially, all texture pixels form a regular grid.

We set the left bottom coordinate of the texture pixel as (x, y) and the square side length of the
texture pixel as a. Then, the current texture pixel’s mathematical definition is as follows:

[x, x + a), [y, y + a) (2)

Before we calculate the texture, we point position and interpolate the vertex in the lower left
corner of each texture pixel. After all texture pixels are processed in this way, the original irregular
grid is transformed into a regular grid that is composed of all texture pixels. Then, in the process of
texture generation, the point location and interpolation of each sampling point are no longer conducted
according to the original irregular grid unit, but rather are conducted according to the texture pixel,
which greatly improves the algorithm’s speed.

The interpolation of the internal sampling points of each texture pixel should use bilinear
interpolation [34], as follows:

v =
1
a2


(x1 + a− x)(y1 + a− y)v1

+(x− x1)(y1 + a− y)v2

+(x− x1)(y− y1)v3

+(x1 + a− x)(y− y1)v4


(

x1 ≤ x < x1 + a
y1 ≤ y < y1 + a

)
(3)

where a is the edge length of the texture pixel, (x, y) is the coordinate of the sampling point, and v is the
physical field value of the sampling point. Here, (xi, yi) are the coordinates of the four vertices in the
counterclockwise direction of the texture pixel starting from the lower left corner, and vi is the physical
field value of these four vertices.

In practical applications, the shape of a physical field is often not a regular rectangle. At this time,
we first need to find a minimum rectangle that can cover the whole physical field, and then according
to the edge length of the texture pixel that is set by the user, the minimum rectangle is divided into
several rows and columns of small squares. Then, all texture pixels are obtained. To facilitate the
subsequent table look-up, the texture pixel’s serial number corresponds directly to its coordinates. We
can calculate the serial number of a texture pixel according to

SN =
y− ymin

a
∗ lx +

x− xmin
a

∗ ly (4)

where SN is the ordinal of a texture pixel; x and y are the horizontal and vertical coordinates of the
vertex at the bottom left corner of the texture pixel, respectively; xmin and ymin are the horizontal and
vertical coordinates of the bottom left corner of the smallest rectangle that can cover the physical field,
respectively; lx and ly are the horizontal and vertical resolutions of the final regular grid, respectively;
and a is the side length of one texture pixel. Below we discuss how to generate a regular grid made of
texture pixels.
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3.2. Mesh Unit Filling Preprocessing Method

The core function of the mesh unit filling preprocessing method is to transform the original
irregular grid into a regular grid that is composed of texture pixels and to complete the point positioning
and interpolation calculations for all vertices of all texture pixels. Based on the order in which this
transformation is accomplished, the efficiency is quite different.

Regarding methods used for the point location and interpolation of a sample point,
the walk-through method [35] is a mature method, but this method is not highly efficient. The scan
line seed fill method is used in [36], which can preprocess all grid cells at one time. The basic idea of
this method is to take a certain texture pixel as the seed point, point locate and interpolate all texture
pixels to the left and right successively, and stop when both sides meet the grid boundary, at which
time a horizontal scanning line segment is formed. The next step is to recursively scan the two top and
bottom adjacent scan lines. At the end of the recursion, all texture pixels are preprocessed. The reason
for the recursion is that the original grid may be a multiple-connected domain.

The Seed Filling Preprocessing (SFP) [9] method that was proposed in our previous work improves
the scan line seed fill method, in which the preprocessing of the vector field is no longer completed
at once, but one independent grid unit is processed at a time. Within each grid cell, we still use the
recursive idea to preprocess all texture pixels. When all the mesh cells are processed, the whole mesh
is converted into many texture pixels. This improves the speed because the grids that are adjacent can
be neglected.

The analysis shows that recursion is not optimal for triangular grid cells (and other types of grid
cells). First, because the interior of a triangular grid unit is definitely a simply connected domain,
no recursion is required. Second, when the number of recursive layers is large, the efficiency of the
recursive algorithm decreases sharply. Therefore, in mesh unit filling preprocessing, we replace the
recursive idea with the general cyclic idea and further improve the pretreatment efficiency.

The complete program flow chart of the mesh unit filling preprocessing method is shown in
Figure 1. The top part of Figure 1 shows the whole course of the mesh unit filling preprocessing, and
the essential idea is to handle each mesh unit on the basis of the unit number. The lower part describes
the processing in a mesh unit, which is basically a cyclic process.
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Figure 1. Program flow chart of the mesh unit filling preprocessing (MUFP) method.

Figure 2 shows an example of a texture in an irregular triangular grid. The amount of texture pixels
is 533 × 800 = 426,400, while the amount of mesh units is 2740. When we adopted the walk-through
algorithm, the time consumption of calculation all texture pixels was 15.426 s, the SFP method took
3.869 s, and the MUFP method took 3.520 s. Obviously, the time efficiency of the MUFP algorithm is
much better than the walk-through and SFP methods.
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Figure 2. An example of a texture in an irregular triangular grid.

To better compare the performance of the three algorithms, we use the physical field in Figure 2 to
set different grid cell numbers and texture pixel resolutions. Then, the walk-through, SFP, and MUFP
methods are used to complete the point location and interpolation of all texture pixels. The time that is
taken is shown in Table 2.

Table 2. Time performance of three preprocessing algorithms.

Grid Unit Number Texture Pixel
Number Walk-Through

Seed Filling
Preprocessing

(SFP)

Mesh Unit Filling
Preprocessing

(MUFP)

11,056 1,705,600 6374.198 15.249 14.122
11,056 426,400 326.71 3.772 3.57
11,056 106,400 155.639 0.928 0.878
11,056 26,600 124.338 0.234 0.229
2740 1,705,600 322.923 16.743 14.108
2740 426,400 15.426 3.869 3.52
2740 106,400 7.271 0.952 0.872
2740 26,600 6.055 0.237 0.226
720 1,705,600 150.001 17.216 14.102
720 426,400 7.223 3.944 3.46
720 106,400 3.436 1.083 0.869
720 26,600 2.837 0.368 0.217
176 1,705,600 68.843 18.386 14.074
176 426,400 3.428 4.075 3.43
176 106,400 1.622 1.126 0.864
176 26,600 1.345 0.394 0.208

As can be clearly seen from Table 2, compared with the walk-through method, the time efficiency
of the MUFP method is significantly improved, especially when the number of grid cells and the
number of texture pixels increase simultaneously. Meanwhile, the time efficiency of the walk-through
method is too low to be tolerated. In addition, it can also be seen from Table 2 that the time consumption
of the MUFP method has a weak relationship with the number of grid cells, and it mainly increases in
direct proportion with the increase of the texture pixels.

An interesting phenomenon is that with the same texture pixel resolution, the time consumption
of the SFP algorithm decreases as the amount of mesh units increases. This is mainly because the
area of each grid unit decreases as the amount of grid units increases, resulting in an increase in the
number of texture pixels in each grid cell. The SFP algorithm has to perform more recursive operations,
meaning the time consumption increases. In conclusion, the MUFP method is significantly better than
the walk-through and SFP methods when preprocessing irregular grids.
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4. Random Increment Streamline Method

4.1. Basic Idea

The traditional LIC [5] method uses white noise as the input image to overlay the entire vector
field. To calculate the output texture gray value of a sampling point, the LIC algorithm traces the
streamline for a distance upstream and downstream based on the value of the vector field at that
sampling point. Then, the input gray values of all points that the short streamline segment passes
through are convolved to determine the output pixel gray value of this sampling point. The process
can be described as

F′(x, y) =

∑L
i=0 F(bPic)hi +

∑L′
i=0 F(bP′ic)h′i∑L

i=0 hi +
∑L′

i=0 h′i
(5)

where F′(x, y) is the final output texture primitive value at the point (x, y), F(bPic) is the input primitive
value at point Pi passed by the streamline tracking, hi is the weight point at the time of convolution, L
is the number of streamline tracking steps in the forward direction, and L′ is the number of streamline
tracking steps in the reverse direction.

In general, the number of tracking steps in the two directions of the streamline is the same. In other
words, L and L′ are equal in Equation (5). In addition, we calculate the weight of each sampling point
by the convolution kernel function k, then Equation (5) can be simplified into the following formula:

T(x0) =
L∑

i=−L

k(xi)I(xi) (6)

where T(x0) is the output texture gray value of the sampling point x0, I(xi) is the input gray value of
the point xi, L is the tracing length of one side, and k(xi) is the convolution kernel function.

According to Equation (6), the convolution calculations of two adjacent sampling points on the
same streamline are very similar, with only one factor difference. Relative to sampling point xm, the
convolution calculation of xm+1 no longer contains the factor xm−L, but rather it contains an extra factor
xm−1−L. Based on this idea, the FLIC [6] algorithm uses faster calculation to improve the algorithm
speed, as follows:

T(xm+1) = T(xm) + k(xi)[I(xm+1+L) − I(xm−L)] (7)

where xm is a sampling point on the streamline whose gray value has been calculated, and xm+1 is the
next adjacent sampling point on the streamline. Please note that the letters used in Equation (7) and
the literature [6] are slightly different in order to ensure consistency in the discussion in this article.

In our previous work, we proposed the RIS [10] algorithm, which can obtain textures that are
similar to the LIC algorithm without convolution. In the RIS algorithm, two important formulas are
used, as follows:

T(x) = AND(127.5,
5418.75
2L + 1

) (8)

T(xm+1) = T(xm) + UD(
−255

2L + 1
,
+255
2L + 1

) (9)

We use Equation (8) to calculate the gray value of each streamline’s seed-point, where L is the step
length for unilateral convolution. Because RIS does not actually execute the convolution, L is simply a
parameter to control the output image’s effect. The asymptotic normal distribution (AND) function
returns a random floating point number. In the AND function, 127.5 is the mathematical expectation,
while the second parameter is the variance. By using Equation (9), we can acquire the output gray
value of the streamline’s subsequent pixels. For uniform distribution (UD), the two parameters of
the function are upper and lower bounds, while the return value of the function is a random number
that complies with UD distribution. Equation (8) is equivalent to Equation (6), and Equation (9) is
equivalent to Equation (7). The specific proof process is as follows.
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To prove that these formulas are equal, two facts need to be clarified. First, all LIC methods use
white noise as the input texture, i.e., I(xi) − U[0, 255]. Second, in various LIC methods, the convolution
kernel function k(xi) has different forms, but in the FLIC method, only the box kernel function was
used. Our RIS method also uses the box kernel function only.

Let’s prove that Equation (8) is equivalent to Equation (6).
Prove:
Since I(xi) ∼ U[0, 255],
hence, E(I(xi)) =

0+255
2 = 127.5 and

D(I(xi)) =
(255−0)2

12 ≈ 5418.75.
Since in Equation (2) k(xi) is constant, k(xi) =

1
2L+1 .

Hence, T(x) = 1
2L+1

∑L
i=−L I(xi).

That is, T(x) is the sample mean of (2L + 1) independent and uniformly distributed random
variables I(xi).

Hence, from the central-limit theorem, T(x) obeys an asymptotic normal distribution; that is,

E(T(x)) = E(I(xi)) = 127.5 and D(T(x)) ==
D(I(xi))

2L+1 ≈
5418.75
2L+1 .

Hence, Equation (2) is equivalent to T(x) = AND(127.5, 5418.75
2L+1 ),

thereby completing the proof.
Next, we will prove that Equation (9) is equivalent to Equation (7).
Proof:
Since in Equation (3) I(xm+1+L) and I(xm−L) are both white noise,
hence, I(xm+1+L) ∼ U[0, 255] and I(xm−L) ∼ U[0, 255]
and they are independent of each other.
Hence, [I(xm+1+L) − I(xm−L)] ∼ U[−255,+255].
Furthermore, since k(xi) =

1
2L+1 ,

hence,
k(xi) [I(xm+1+L) − I(xm−L)] ∼ U[ −255

2L+1 , +255
2L+1 ].

That is, Equation (2) is equivalent to T(xm+1) = T(xm) + UD( −255
2L+1 , +255

2L+1 ),
According to the foregoing proof, Equation (8) can calculate the gray value of each streamline’s

seed point and Equation (9) can calculate gray values of follow-up points along the streamline. Finally,
we get a texture very akin to LIC. The UD function in Equation (9) can be directly obtained by using
the random function in the programming language. According to the mathematical definition of an
asymptotic normal distribution, we need to generate m different random numbers with a uniform
distribution within the range of 0–255 and then average these numbers to obtain the AND function’s
result. In programming, we find that when m = 12, the resulting image is very analogous to the
LIC image.

Figure 3 shows the procedure flow chart of the RIS method. The basic processes for RIS and FLIC
is similar, with three important improvements. Firstly, the MUFP algorithm is used to complete the
localization and interpolation of all texture pixels in advance. Secondly, Equation (8) instead of white
noise is used to calculate the pixel values of the seed point of each streamline. Third, Equation (9) is
used to calculate the gray value of the follow-up sample points along the streamline. Through these
improvements, RIS has a much higher time efficiency than FLIC.
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Figure 3. Program flow of the random increment streamline (RIS) method.

Similar to the LIC algorithm, in the RIS algorithm, several streamlines may cross the same texture
pixel. Only retain the gray value of the first or the last streamline should be retained, or the gray values
of multiple streamlines can be accumulated and then normalized at a later stage.

We can use Equation (10) to get the color texture, where the color value can express the size of the
vector field.

Tout = (1− t) ∗ TLIC + t ∗ Tmag (10)

In Equation (10), Tout is the colored texture, TLIC is the original texture obtained by the RIS
method, Tmag is the contour graph drawn in line with the vector field modulus value, and t is the
mixed parameter. The larger the t, the higher influence the contour graph is. The smaller the t, the
more obvious the original texture is.

Figures 4–6 show the textures that are obtained by using the LIC, FLIC, and RIS algorithms for the
same group of data. All of the above three algorithms adopt the MUFP method for point positioning
and interpolation and the RK4 method for streamline tracking. Figure 4 is generated by the LIC,
Figure 5 by the FLIC, and Figure 6 by the RIS. The gray textures are on the top and color textures are
on the bottom. It can be seen that the resulting textures are very similar.
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4.2. Periodic Circulating Animation

The textures that are generated according to the above method form a static pattern, and so only
the size and direction information of the vector field can be described, not the directional information
of the particle motion. The LIC algorithm and its derivative algorithm propose a variety of circulating
animation methods to compensate for this defect. The purpose of these methods is to move the pixels
downstream along the streamline, thus using animation to describe the directional information of the
particle. These methods include periodic motion filters [5], the convolution kernel function in the LIC,
the frame blending method in the FLIC [16], and the motion map method [7]. The main feature of
the motion map method is that the color values of all pixel points on the streamline are no longer
calculated using convolutions, but rather that they are assigned by directly selecting a certain color
from a precalculated “color table” according to certain rules. This form of circular animation has high
definition, but it poses two problems. First, because adjacent streamlines are assigned according to
the color in the same color table, a certain correlation can be introduced in the direction of vertical
streamlines, and distortions may occur in some cases. Second, the color values of pixels on the
streamline are assigned using the color table, which is irrelevant to the actual vector information at the
point, and sometimes misleads users.

Therefore, in the RIS, we adopted a simpler and more efficient way to implement circulating
animation, which is called the periodic circulating animation method, the steps of which are as follows.

Step 1: Divide each streamline in the RIS texture into several segments of the same length, with
no less than 3 segments.

Step 2: The N-frame texture image is formed. In the i-th frame, the i-th texture pixel in each
streamline segment is replaced by a special particle.

Step 3: The N-frame animation is played in a loop, and the whole animation reflects the vector
motion direction at each pixel.

For the visual effect, the special particles in step 2 should have special colors. For example, for
gray textures, a red pixel should be used, and for color textures, a black pixel should be used.

When the animation is played, all stream segments will release special particles at the same time,
which will cause obvious aliasing artifacts. To solve this distortion problem, we generate a random
number m within the range of 0-(len-1) for each stream segment and then loop the current stream
segment to frame m in advance. The initial states of the different streamline segments are no longer the
same, thus solving the aliasing artifacts problem.
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Figure 7 shows a frame in the periodic animation of the RIS color texture, in which some pure
black particles are used instead of the original color pixels.
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5. Simplified RIS Algorithm

Using the above Equations (8) and (9), we can obtain a texture that is very similar to the visual
effect from the LIC. After analysis, we find that we can further reduce the time costs of the algorithm
without reducing the texture effects and can produce some special visual effects. We use

T(x) = UD(127.5− r, 127.5 + r) (11)

instead of Equation (8) to assign random gray values to the seed points of each new streamline, where
the function UD has the same meaning as in Equation (8) above, and r is a control parameter.

To further increase the speed, we use

T(xm+1) = T(xm) (12)

instead of Equation (9) to calculate the gray value of the streamline’s follow-up sample points. This
means that all pixel points on the same streamline have the same gray value without any change. We
call this algorithm using Equations (11) and (12) the simplified RIS (SRIS) algorithm.

According to the above discussion, we know that the asymptotic normal distribution function
needs to calculate 12 independent random numbers with a uniform distribution, while the uniform
distribution function only needs to perform the calculation once, which obviously reduces the time
consumption. If Equation (12) is used instead of Equation (9), the color calculation of the subsequent
sampling points of the streamline are simply cancelled, which will obviously improve the speed of
the algorithm.

The other advantage of using Equation (11) instead of Equation (8) is that we can easily achieve
high contrast without increasing the computation by just adjusting the parameter r. Figure 8a shows
the texture that is drawn using Equations (8) and (9), which is very similar to the traditional LIC
algorithm. The following three pictures are drawn with Equations (11) and (9), and the parameter r is
set to 30, 50, and 90. It can be seen that due to the increasing difference in the gray values of the seed
points of different streamlines, the final texture has high contrast.
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The textures that are generated by the SRIS with Equations (11) and (12) are shown in Figure 9.
It can be seen that there is no loss in the description of the vector field direction or size information.
Furthermore, to some extent, the description of the directional information becomes clearer, and the
time costs of the RIS algorithm are greatly reduced.
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Furthermore, we adjust the parameter r to improve the contrast of the texture image, which
achieves a similar high-contrast texture effect to that in [8]. As shown in Figure 10, we can obtain a
clearer vector field expression without any additional operations.

It should be noted that when using Equation (12), since all the streamlines in the texture have a
fixed color, aliasing artifacts may occur. The reason why aliasing of the artifacts does not occur in the
LIC algorithm is that the gray values of each streamline in the LIC algorithm constantly and randomly
change, while the gray values of each streamline in the SRIS algorithm are always fixed, thus resulting
in aliasing artifacts. If this distortion needs to be avoided, Equation (9) can be reused to avoid aliasing
artifacts, as in Figure 8.
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6. Results and Discussion

According to the above ideas, we completed the program, with the experimental results verifying
that the algorithm is effective.

Figure 11 shows a set of textures drawn according to artificial concentric circle vector field data.
Figure 11a is drawn using the LIC algorithm, Figure 11b is drawn using the FLIC algorithm, and
Figure 11c is drawn using the RIS algorithm. The one-sided convolution length L is the parameter L
in Equation (8), which is set to 10. You can see that the appearance of the RIS texture is basically the
same as the traditional LIC algorithm. In order to further verify the effect of the RIS algorithm, the
parameters for L in Equation (8) are set to 5 and 20, respectively, and Figure 11d,e are obtained. Short
texture and long texture effects are achieved. Figure 11f is the RIS texture obtained using Equation (10).
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algorithm, L = 10 (b) is drawn using the FLIC algorithm, L = 10 (c) is drawn using the RIS algorithm, 
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Figure 12 shows a set of textures drawn based on an artificial saddle-shaped vector field data. 
The algorithm and parameters used for specific rendering are exactly the same as those in Figure 11. 

Figure 11. A set of textures for concentric circles in vector field data. (a) is drawn using the LIC
algorithm, L = 10 (b) is drawn using the FLIC algorithm, L = 10 (c) is drawn using the RIS algorithm,
L = 10 (d) is drawn using the RIS algorithm, L = 5 (e) is drawn using the RIS algorithm, L = 20 (f) is the
color texture which be drawn using the RIS algorithm, L = 10.
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Figure 12 shows a set of textures drawn based on an artificial saddle-shaped vector field data.
The algorithm and parameters used for specific rendering are exactly the same as those in Figure 11.Symmetry 2019, 11, x FOR PEER REVIEW 18 of 22 
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We used the other two groups of wind field data to draw two sets of textures, as shown in 
Figures 14 and 15. 

Figure 12. A set of textures for saddle-shaped vector field data. (a) is drawn using the LIC algorithm,
L = 10 (b) is drawn using the FLIC algorithm, L = 10 (c) is drawn using the RIS algorithm, L = 10 (d) is
drawn using the RIS algorithm, L = 5 (e) is drawn using the RIS algorithm, L = 20 (f) is the color texture
which be drawn using the RIS algorithm, L = 10.

Figure 13 shows the RIS texture (Figure 13a) and SRIS texture (Figure 13b,c) of a set of wind field
data. It can be seen that the gray texture of SRIS can more clearly describe the directional distribution
of the wind speeds than the RIS texture. In the color texture, different colors can be used to express the
modulus of the wind speed, such that the wind speed can be directly expressed.
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We used the other two groups of wind field data to draw two sets of textures, as shown in Figures 14
and 15.Symmetry 2019, 11, x FOR PEER REVIEW 19 of 22 
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SRIS texture (c) the color SRIS texture.
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Figure 15. A set of textures for the third set of wind field data. (a) the gray RIS texture (b) the gray
SRIS texture (c) the color SRIS texture.

In this part, a defect of the SRIS algorithm is discussed. In some cases, the gray texture generated
by the SRIS algorithm will produce more obvious artifacts, such as in Figures 9, 10, 13b, 14b and
15b. It is found in the analysis that when some adjacent streamlines occur along the X-axis or Y-axis
direction of the screen, a vertical or horizontal line segment appears at the same time in these adjacent
streamlines. Artifacts are generated in the perpendicular direction. The reason why such artifacts do
not occur in the RIS algorithm is that the gray level on the streamline in the RIS algorithm changes
constantly and randomly, and this change offsets the effect of the artifact. Unfortunately, the nature of
this algorithm cannot remove this artifact because only one gray level is used on the SRIS streamline,
but color textures can be used to cover this artifact. For example, in the colored textures in Figures 13c,
14c and 15c, such artifacts can hardly be found.

For comparison, we use the LIC, FLIC, RIS, and SRIS algorithms to draw the same texture. All of
the algorithms adopt the MUFP method for preprocessing and the RK4 method for tracking. The time
consumption of the four color textures that are generated by the four algorithms is shown in Table 3. It
can be seen from Table 3 that the time efficiencies of the RIS and SRIS algorithms are much faster than
those of the LIC and FLIC methods.
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Table 3. Performance comparison of the three algorithms.

Figure 9 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15

Grid units 46 5000 5000 7440 45,552 7938
Texture Pixels 310,400 160,000 160,000 154,800 149,600 160,000

Mesh Unit Filling
Preprocessing 2.516 1.201 1.202 1.292 1.259 1.318

Line Integral
Convolution 4.915 3.526 3.527 3.523 3.474 3.528

Fast Line Integral
Convolution 0.552 0.312 0.313 0.316 0.311 0.318

Random
Increment
Streamline

0.351 0.192 0.192 0.191 0.187 0.193

Simplified
Random

Increment
Streamline

0.344 0.186 0.187 0.187 0.183 0.188

It can be seen from the above results that the RIS and SRIS methods can greatly improve the
texture generating speed and have stronger adaptability and more expressiveness. When we use the
SRIS to calculate the texture, the time consumption is greatly reduced and the resulting long streamline
texture also provides a better vector field direction expression. Furthermore, we can simply adjust
the parameter r in Equation (11) without any extra computation, obtaining a texture pattern with
higher contrast.

Finally, the differences between RIS algorithms and traditional LIC texture algorithms are
summarized, along with an explanation of why RIS algorithms are faster than FLIC algorithms.
In the LIC algorithm, the output texture value of each sampling point is tracked L steps in the
upstream and downstream directions according to the vector field value at that point, and then the
original white noise of the 2L + 1 sampling points that were passed through is input into gray degree
values that are weighted and averaged. In this calculation process, there are two time-consuming
processes—streamline tracking and weighted averaging. In the FLIC algorithm, the reason why the
speed can be increased by an order of magnitude is because the FLIC algorithm simplifies the weighted
average process. In the original LIC, in order to calculate the average value, we have to perform 2L + 1
summation operation. In the FLIC algorithm, the sum of the adjacent previous points is subtracted
from the gray value of the most remote sampling point upstream of the streamline, along with the
gray value of the most remote sampling point downstream of the streamline. The sum of the current
points essentially simplifies the 2L + 1 summation operation into one subtraction operation and one
addition operation, which greatly saves time. The AND function used in Equation (8) and the UD
used in Equation (9) in the RIS algorithm are calculated in advance at the very beginning of the
algorithm. In the process of actual tracking on the streamline, Equation (7) can be accomplished by
simply reading the table. The operation of Equation (8) requires only one additional operation based
on the meter reading. This fundamentally reduces the amount of calculations, meaning it is faster
than the FLIC algorithm. The MUFP method is used to transform an irregular grid into a regular grid,
while interpolation of the most time-consuming sampling vector field values in the streamline tracking
process is completed in advance. This greatly increases the speed of the streamline tracking. Therefore,
the RIS algorithm greatly simplifies two of the most time-consuming operations in the traditional LIC
algorithm, which effectively improves the texture generation speed.

In future work, we will continue to improve the RIS algorithm so that it can be applied in more
scenarios, including alterable velocity texture and textures in three dimensions. We will also study the
application of textures in tensor field visualization [37].
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