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Abstract: The generation of feasible trajectories poses an eminent task in the field of control
design in mechanical systems. The paper demonstrates innovative approach in trajectory
planning for mechanical systems via time-reversal symmetry. It also presents two case studies:
mass-spring-damper and inverted pendulum on the cart. As real systems break the time-reversal
symmetry, the authors of this work propose a unique method in order to overcome this drawback.
It computes a feed-forward reference control signal and state trajectories. The proposed solution
enables compensation for the effects of couplings, which break the time-symmetry by a special
proposed measure. The method suppresses the overall open-loop accumulated error and produces
high-quality favorable control and state trajectories. Furthermore, the existence of the designed
control signal and state trajectories is guaranteed if the equations of the motion have a solution in the
direct flow of time.

Keywords: time-reversal symmetry; trajectory planning; inverted pendulum; mass-spring-damper
model; two-point BvP

1. Introduction

The general framework of this paper is a trajectory planning problem. It is also referred to as
a finite-time transition problem because the main area of interest is a computation of a feed-forward
open-loop control signal capable of performing transition between equilibrium points. In mathematical
nomenclature, solution of such problem corresponds to a two-point boundary value problem (TPBvP).

For a general Hamiltonian dynamical system, a TPBvP problem can be solved using different
iterative techniques. The first set of methods, called shooting methods, bases on choosing values
for all of the dependent variables at one boundary, consistent with boundary conditions [1–3].
Then, iteratively system’s equations are integrated, and the initial guess is modified to minimize
discrepancies between boundaries. The second set of techniques base on relaxation methods [4],
where the differential equations are replaced by finite-difference equations on a mesh of points
that covers the range of the integration. During iterative relaxation, the values on the mesh are
adjusted to minimize differences with the finite-difference equations and with the boundary conditions.
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The main drawback of the above-mentioned methods is excessive computation burden while modeling
non-linear systems. Therefore, the new approaches are studied extensively, e.g., generating functions
technique [5].

This paper introduces a new method of finding a feed-forward open-loop control signal with
the use of time-reversal symmetry applied for mechanical systems under the presence of damping or
friction which, together with the possibility of extension of this approach for other nonlinear dynamic
systems. The method proposed of the authors of this work is a novel approach to TPBvP problem and
has not been applied before.

The paper is organized in the following way: in Section 2, the motivational case study is presented,
where the mass-spring-damper model is described, with its trajectory planning based on time-reversal
symmetry. Then the primary case study, i.e., swing-up of the inverted pendulum on the cart is
given, and the reversibility of this model is explained. Then the methodology of the time-reversal
symmetry applied to the inverted pendulum model, allowing to deal with friction presence is proposed.
In Section 3 the results of the numerical trajectory planning for the swing-up of the inverted pendulum
are gathered. In Section 4 the methodology and obtained research results are discussed. Finally,
concluding remarks are given in Section 5.

Background to the Study

Time-reversal symmetry is a significant feature of a dynamic system. A system is time-reversal
symmetric if it shows an identical behavior independent of the flow of time. A simple explanation
is given in [6]: watching a movie, which shows a movement of an ideal pendulum, an observer is
unable to determine if the movie plays in forward or in backward direction. However, considering
a more realistic physical situation of a swinging pendulum under the presence of a friction, there is
a difference between a forward and a reverse film of this pendulum. The original film shows the
swinging pendulum losing its amplitude until it reaches a steady state corresponding to a lower stable
position. The reversed film shows the pendulum whose amplitude keeps increasing in time. The latter
film clearly clashes with physics as it does not follow the natural laws of motion. It can be said that the
presence of a friction breaks the time-reversal symmetry of the ideal friction-less pendulum. The ideal
pendulum is a non-existing object, whose description can be found in numerous physics books and
is not affected by frictional forces, what enables it to oscillate with an isochronous period. It has
been subject of numerous studies for decades [7–9]. In field of dynamic systems, the first time the
time symmetry was used dates back to 1915 when the restricted three body problem was analyzed
in [10]. Later on, in the 1960s, the topic of time-symmetry was studied by mathematicians [11–15]
followed by others one decade later [16,17]. However the most known problems relate to the fields
of thermodynamics and quantum mechanics, see [18–20]. The first motivation for this paper was
inspired with the following paper: [21], and the most important symmetry-related issues with inverted
pendulum models are discussed in [22,23]. However, the most comprehensive paper on the given
topic is [6], which discusses time-reversal symmetry in physics generally, then for dynamic systems,
tackling various aspects of reversible dynamics and also the extensive study carried out [24] explains
relations between time-reversal systems, differential equations of the systems, conservative and
dissipative behavior and chaos. The objective of the paper can be formulated as follows. There exists
a given mechanical system—an inverted pendulum on the cart moving on linear guide rails, which was
in detail described in inter alia [25]. For such a system it is possible to compute a feed-forward reference
control based on time-reversal symmetry, which generates feasible trajectories. The calculation of the
proposed control signal uses compensation for the couplings, which break the time-symmetry.

2. Materials and Methods

This paper focuses on two case studies, which fall under the field of classical mechanics systems
(mass-spring-damper, inverted pendulum) as described together with other similar problems in [26].
The process of trajectory generation is documented in this paper through a case study of a single
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inverted pendulum on the cart moving on linear guide rails, starting with an introductory example of
a mass-spring-damper model. Presence of friction or damping is the main reason for the breaking of
the time-reversal symmetry in mechanical systems and this problem was deeply studied in [27].

2.1. Motivational Case Study: Mass-Spring-Damper Model

This part of the paper presents the main idea of the proposed solution’s application based on
a basic example of a linear system. It clearly shows how and why the time-reversal symmetry
is broken and shows the necessary steps of computation of a feed-forward open-loop control
signal while considering a damping presence. The mass-spring-damper model is described by the
following equation.

m · ÿ(t) + b · ẏ(t) + k · y(t) = F(t). (1)

where F(t) [N] stands for an external force representing input to the dynamic system; m [kg] is a mass;
b [N·s·m−1] is a damping coefficient; k [N·m−1] is a spring stiffness; y(t) is the output of the dynamic
system (position of the mass), ẏ(t), ÿ(t) are first and second derivative of y(t) respectively (velocity
and acceleration). Assuming no external force, the mass-spring-damper model can be described by the
following 2nd order ordinary differential equation

m · ÿ(t) + b · ẏ(t) + k · y(t) = 0. (2)

Reversing the flow of time by introducing a new variable ϑ = T − t representing the reverse time,
the reversal movement can be described by

m · ÿ(ϑ) + b · ẏ(ϑ) + k · y(ϑ) = 0. (3)

Then a time-reversal motion yi(t) = y(ϑ), t ∈ [0, T] can be introduced. Because ẏi(t) = −ẏ(ϑ)
and ÿi(t) = ÿ(ϑ), then the following applies

m · ÿi(t)− b · ẏi(t) + k · yi(t) = 0. (4)

Thus yi(t) can be a solution of Equation (2) if and only if b = 0 and violates the symmetry
principle for other values. In other words, time-reversal symmetry is not valid for Equation (2) unless
no damping is present.

2.1.1. State-Space Description of Mass-Spring-Damper Model

For the demonstration purposes the capabilities of the proposed method for planning the trajectory
for the mass-spring-damper model, the following state-space description of Equation (2) will be used:{

ẋ1(t) = x2(t)
ẋ2(t) = 1

m · u(t)−
b
m · x2(t)− k

m · x1(t)
(5)

where x1(t) [m]—mass position; x2(t) [m·s−1]—velocity; u(t) [N]—force.
The mass position is chosen as the output, y(t) ≡ x1(t). The state-space scheme of the model is

then expressed by Figure 1. The following values of the parameters are used throughout this initial
case study: m = 1, b = 0.5, k = 10, x2(0) = 0, x1(0) = 0, T = 1. The problem is defined as trajectory
planning so that the system reaches predefined final state x2(T) = 0, x1(T) = 1. Note that the only
one state x1(t) ≡ y(t) will be considered throughout further explanation.
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Figure 1. State-space scheme of the mass-spring-damper model.

2.1.2. Trajectory Planning for Mass-Spring-Damper Model

Computation of a feed-forward open-loop control signal can be demonstrated in a simulation
experiment according to the design procedure described in the following consecutive steps. This design
procedure can be used in general for any linear time-invariant (LTI) system. Extension to the nonlinear
system via case study is described in the next section of this paper.

• Obtaining a response to initial conditions x2(0), x1(0) whose values correspond to the predefined
final state x2(T) = 0, x1(T) = 1 are supposed to reach at time t = T by application of so far
unknown control signal u(t) brought to the input of the system according to Figure 2. Note that
the input u(t) is absent at the moment. Resulting waveform is depicted in Figure 3.

• As the output signal shown in Figure 3 is too oscillatory to represent a good candidate for
a trajectory, the scheme depicted in Figure 2 is modified by adding an artificial damping to the
system and stores the signal referred to as uaux(t) is provided, where uaux(t) = −2.5 · x2(t).
The value of the damping parameter was adjusted to keep the stability of the system and obtain
the sufficient system’s response in time and frequency domains. This modified scheme is depicted
in Figure 4 and its simulation leads to the waveform shown in Figure 5 which is now considered
as an appropriate candidate for a state trajectory.

• The compensating damping is illustrated with the Figure 4 through an output drawn from x2(t)
to be stored in uaux(t). This system is then simplified as presented with Figure 6 and continues to
maintain time reversal symmetry. The simulation result from systems described in Figures 4 and 6
give out identical waveform as shown in Figure 5.

Figure 2. Simulation experiment: obtaining a response to initial conditions.
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Figure 3. Simulation experiment: a response to initial conditions according to Figure 2.

Figure 4. Simulation experiment: Adding an artificial damping to the system and storing signal uaux(t).
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Figure 5. Simulation experiment: output y(t) of the system in accordance with the Figures 4 and 6.
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Figure 6. Simulation experiment: damping compensation by signal uaux(t).

• Reversing the time flow of the control signal uaux(t) depicted in Figure 6 in time presented in
Figure 7 into urev(t) using the relation urev(t) = uaux(ϑ) = uaux(T − t). The initial conditions
applied in Figure 7 will correspond to the final values reached in previous phase at the time
t = T. Supposing adequate time range, in this case the values will be very close to zero, x2(0) = 0,
x1(0) = ε ≈ 0, respectively. Resulting waveform is depicted in Figure 8.

Figure 7. Simulation experiment: application of time-reversing control signal urev (t).
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Figure 8. Simulation experiment: output y(t) of the system according to Figure 7.

• Going back to the original model described in Figure 1. The effect of damping will be eliminated
by subtracting the damping term from control signal urev(t) which results in a control signal
urevF(t) which is stored for further use as shown in Figure 9, where urevF(t) = urev(t)− 0.5 · x2(t).



Symmetry 2020, 12, 792 7 of 19

Figure 9. Simulation experiment: elimination of damping effect.

• Application of the control signal urevF(t) to the original system enables conclusion that the outputs
from the simulation models in presented in Figures 7, 8, 10 and 11 are identical. These outputs are
equivalent to time-inversion of the output shown in Figure 5.

Figure 10. Simulation experiment: application of the computed control signal urevF(t) to the
original system.
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Figure 11. The output signal y(t) according to Figure 10.

Reference control signal urevF(t) and corresponding reference output y(t) ≡ x1(t) have been
obtained according to Figure 10 and shown in Figures 11 and 12. This waveform fulfills predefined
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requirements defined at the beginning of the chapter. The reference control signal and reference state
trajectories have been found and tested via simulation.
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Figure 12. The waveform of control signal urevF(t).

2.2. Primary Case Study: Swing-Up of the Inverted Pendulum on the Cart

The scheme of the setup with the description of system variables and parameters used in this
primary case study is given in Figure 13.

A nonlinear differential equation describing the movement of the inverted pendulum on the
cart is adopted from [28]. The model of inverted pendulum in this paper assumes a homogeneous
cylindrical rod of the length L [m] and thus l = |MP| = 1

2 · L where |MP| represents the distance from
the pivot P to the center of the mass M. The model of an inverted pendulum on the cart is described
by the differential equation as follows

ϕ̈(t)− 3
4
· g

l
· sin ϕ(t) + b · ϕ̇(t) = 3

4
· 1

l
· u(t) · cos ϕ(t), (6)

where ϕ(t) [rad]—angular position of the rod with respect to vertical axis; u(t) [m·s−2]—acceleration
(control signal); g [m·s−2]—gravity constant; b [s−1]—a shear friction coefficient.

Figure 13. Situation scheme of the system.
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Time-Reversal Symmetry (Reversibility) of the System

At the beginning of the analysis a friction-less motion of the pendulum is assumed, thus b = 0.
Let ϕ(t), t ∈ [0, T] be a solution of (6) for a chosen fixed u(t) ≡ 0, i.e. following equation holds well

ϕ̈(t)− 3
4
· g

l
· sin ϕ(t) = 0 (7)

Now it is considered to have time-reversal motion described by

ϕi(t) = ϕ(T − t), t ∈ [0, T] (8)

The following equations will be used for further analysis:

ϕ̇i(t) =
d
dt

ϕ(T − t) = −ϕ̇(T − t), (9)

ϕ̈i(t) =
d
dt
[−ϕ̇(T − t)] = ϕ̈(T − t), (10)

sin ϕi(t) = sin ϕ(T − t). (11)

Let reverse time be referred as ϑ = T − t, ϑ ∈ [0, T]. By substituting this term into
Equations (10) and (11) the following equations can be obtained

ϕ̈(ϑ)− 3
4
· g

l
· sin ϕ(ϑ) = 0, (12)

ϕ̈i(t)−
3
4
· g

l
· sin ϕi(t) = 0. (13)

Equations (12) and (13) represent the reverse time and the direct time, respectively.
Therefore ϕi(t), t ∈ [0, T], is also a solution of Equation (6) for the control signal u(t) = 0 and

b = 0. In other words, ideal inverted pendulum without friction is a time-reversal symmetry system.
It is obvious that due to the negative sign in Equation (9) this time-reversal symmetry would be broken
in presence of friction, same holds in Equation (4).

2.3. Methodology: Time-Reversal Symmetry Applied to the Inverted Pendulum Model

This section describes the proposed method of modification of the model of the inverted
pendulum, which helps to deal with friction presence.

A free swing-down motion of the pendulum with a small shear friction from upright position
towards a low standstill position is too oscillatory to be considered as reference state trajectory for
the swing-up motion. Therefore, supposing u(t) ≡ 0, Equation (6) is extended with a new artificially
added term f (ϕ) · ϕ̇(t) representing time-varying shear friction, thus considering modified version of
Equation (6) in following form

ϕ̈(t)− 3
4
· g

l
· sin ϕ(t)− b · ϕ̇(t) + f (ϕ) · ϕ̇(t) = 0. (14)

Note that a negative sign applied for a friction coefficient is a crucial measure to be applied to
handle the time-reversal symmetry under the presence of friction.

Let ϕ(t) be a solution of (14) for initial conditions given by the following equation

ϕ(0) = ε > 0, ϕ̇(0) = 0, (15)

where ε is a small positive real number and moreover it is supposed to be ϕ(T) .
= π, T is a settling time

for function ϕ(t). In other words, time needed for settling the motion of the pendulum. The stability of
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a lower steady position according to Equation (14) is assumed. Then the time reversible function was
considered, ϕi(t) = ϕ(T − t), t ∈ [0, T] and the control signal u(t), t ∈ [0, T] was searched for, so that
ϕi(t) was a solution of the following equation

ϕ̈i(t)−
3
4
· g

l
· sin ϕi(t) + b · ϕ̇i(t)−

3
4
· 1

l
u(t) · cos ϕi(t)

.
= 0 (16)

or, in other words, for ϑ = T − t, the following equation holds

ϕ̈(ϑ)− 3
4
· g

l
· sin ϕ(ϑ)− b · ϕ(ϑ)− 3

4
· 1

l
u(t) · cos ϕ(ϑ) = 0. (17)

Taken into account that ϕ(ϑ) is a solution of Equation (14) for ϑ in [0, T], therefore ϕi(t) is a
solution of Equation (16) if

− 3
4
· 1

l
u(t) · cos ϕ(ϑ) = f [ϕ(ϑ)] · ϕ̇(ϑ). (18)

Therefore, the following equation applies

u(t) = − f [ϕ(T − t)] · ϕ̇(T − t)
cos[ϕ(T − t)]

· 4
3
· l. (19)

From Equation (19) it is obvious that denominator might reach the zero value in certain moment.
In order to ensure finite amplitudes for the control signal u(t) in such case, a reasonable function f (◦)
choice in Equation (19) for its argument (◦) is provided for trigonometric terms to cancel each other
out in the form

f (◦) = cos(◦) · g(◦). (20)

Using Equation (20) and its substitution into Equation (19) leads to

ũ(t) =
− cos[ϕ(T − t)] · g[ϕ(T − t)] · ϕ̇(T − t)

cos[ϕ(T − t)]
· 4

3
· l (21)

and thus to
u(t) = −g[ϕ(T − t)] · ϕ̇(T − t) · 4

3
· l (22)

for t ∈ [0, T].
The final step of calculation of the control signal depends on the form of g(◦) in Equation (22).

Further sub sections introduce two basic approaches to determine this function: an expert choice and
calculation based on optimal control numerical algorithms.

2.3.1. Expert Choice of g(◦) Function

This approach is suitable for simple cases where there is only one friction or damping coefficient,
such as having one joint in the single inverted pendulum.

An example of a verified expert choice of g(◦) for its argument (◦) in Equation (22) is provided in
accordance with

g(◦) = K · (◦) · cos(◦), (23)

where K is a constant parameter, K ∈ R+.
Figure 14 shows how a numerical solution ϕ(t) of Equation (14) is obtained considering f (ϕ)

according to Equations (20) and (23).
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Figure 14. Simulation experiment: numerical solution ϕ(t).

Time-reversal symmetry function ϕ(T − t) is then used for computation of the reference control
signal u(t) according to

u(t) = −K · ϕ(T − t) · cos[ϕ(T − t)] · ϕ̇(T − t) · 4
3
· l. (24)

Figure 15 shows how the found reference signal is applied for the inverted pendulum system in
order to perform the swing-up from a lower stable position to the upright unstable position, see the
initial values of the integrator, indicating its initial state.

Figure 15. Simulation experiment: application of the reference control signal u(t) to perform the
swing-up.

2.3.2. Calculation of g(◦) Function Based on Numerical Optimization Procedure

This approach extends the use of the proposed methodology for systems with one or more friction
or damping terms, for example for double or triple inverted pendulums, or robotic systems with more
arms. The explanation in this section will be provided for a single inverted pendulum.

The candidate function g(◦) may be expressed in many different forms. The shaping of this
candidate function makes it possible to achieve the desired properties of the control and state
trajectories. As an example, it may be naturally desired to achieve zero final values of cart position x3

and its speed x4.
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The basic idea of using optimization procedure is to consider a finite number of individual free
parameters, which define the candidate function g(◦). These parameters are pre-tuned by optimization
algorithm with the use of certain cost function (see block gOPT in Figure 16). Note that the tuning is
performed off-line as a separate process and that the values are used in the block scheme depicted in
Figure 16.

Figure 16. Simulation experiment: numerical solution ϕ(t).

The control and state trajectories are penalized during iterations of the procedure, and a minimum
of the cost function is found. The cost function may reflect various requirements placed on properties
of control and state trajectories, including constraints.

Here we present two different forms of the candidate function g(◦): trigonometric series and
polynomial function.

In case of trigonometric candidate function we tested different numbers of harmonic components.
Here we give a documentation of the obtained results using two components. The reason of using
harmonic waves reflect the original expert choice and also requirements on properties such as a negative
value around ϕ ≈ 0, a positive value around ϕ ≈ π. Furthermore, harmonic waves are close to the
natural character of the pendulum and its oscillations. The candidate function is expressed as

g(◦) = A0 + A1 · cos (ω1 · ◦+ ϑ1) + A2 · cos (ω2 · ◦+ ϑ2) (25)

containing individual seven parameters: A0, A1, A2, ω1, ω2, ϑ1, ϑ2.
In case of polynomial candidate function, it can be expressed according to

g(◦) = A0 + A1 · ◦+ A2 · ◦2 + A3 · ◦3 + A4 · ◦4 (26)

containing the following individual five parameters: A0, A1, A2, A3, A4.
The cost function used to determine how free parameters of g(◦) are tuned within gOPT block

presented in Figure 16 in accordance with Equation (25) or with Equation (26) can be presented in
form of

J = Wc · Jc + W1 · Jx1 + W2 · Jx2 + W3 · Jx3 + W4 · Jx4 + Wu · Ju (27)

where Wc, W1, W2, W3, W4, Wu are individual weighting coefficients for the components of the cost
function and where

• Term Jc penalizes violation of basic constraints placed on state trajectories and control;
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• Term Jx1 penalizes error between actual trajectory x1 and predefined state trajectory x1re f ;
• The other terms Jx2 , Jx3 , Jx4 penalize error of actual trajectories and predefined zero values at the

final point of time interval;
• The last term Ju is a stabilizing term assuring a converging solution, it represents

energy minimization.

The control signal u(t) is then computed via Equation (22) considering g(◦) in the form of
Equation (25) or Equation (26). It uses a numerical solution ϕ(t) as presented in Figure 16.

3. Results for Primary Case Study

The presented case study documented the design of a control signal capable of the swing-up of the
inverted pendulum on the cart. This kind of problem can be also considered as a special case of optimal
control, with a cost function containing the Mayer term only, not the Lagrange term representing
an integral path penalty. Therefore from a mathematical point of view, it is a TPBvP problem. Thus the
resulting reference control signal and reference states are not optimal in terms of minimizing either
time, fuel/energy, or any other respect. The time interval [0, T] over which the problem is solved,
is chosen by an expert.

Note that the mathematical model used in this case consisted of a nonlinear differential equation
containing two states representing the position of the pendulum and its speed. As the input signal
represents a cart acceleration, the position and speed of the cart can be easily computed by a single or
a double integrating as expressed as

v(t) =
∫ t

0
u(τ)dτ (28)

s(t) =
∫ t

0
v(τ)dτ (29)

Below documented time wave-forms use notation corresponding to the full state nonlinear model
of the inverted pendulum on the cart according to

ẋ1(t) = x2(t)
ẋ2(t) =

3g
4l · sin x1(t) + 3

4·l · u(t) · cos x1(t)− b · x2(t)
ẋ3(t) = x4(t)
ẋ4(t) = u(t)

(30)

corresponding to x1(t) ≡ ϕ(t), x2(t) ≡ ϕ̇(t), x3(t) ≡ s(t), x4(t) ≡ v(t) (compare to Figure 15 and
Equations (28) and (29)).

The documentation of the results is divided into the sections, which correspond to the particular
determination of g(◦) function in (22). Firstly there is a description of the results obtained via expert
choice followed by the ones supported by the numerical optimization procedure.

3.1. Results Based on Expert Choice of g(◦) Function

Time-varying function describing coefficient of shear friction f (ϕ) given by Equation (20) depends
on pendulum angle. Reasonable choice of function g(ϕ) in technical sense is such that for ϕ ∈ [0, π

2 ]

friction is “negative” (in linguistic sense), i.e., movement of the pendulum rod is accelerated and for
ϕ ∈ [π

2 , π] the friction is “positive” (in linguistic sense), i.e., pendulum movement is slowed down.
These requirements may be followed by g(ϕ) in the form of Equation (23). However this choice is not
optimal in any technical sense.

For documentation of particular results, the following values of the parameters were used: g = 10,
l = 0.15, b = 0.07, K = 2, T = 6. The computed reference control signal u(t) used for the swing-up of
the inverted pendulum on the cart found by the time-symmetry approach is shown in Figure 17.

The obtained corresponding reference states x1(t), x2(t), x3(t) and x4(t) are depicted in Figure 18.
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Figure 17. Reference control input signal u(t).

Figure 18. Reference trajectories: x1(t), x2(t), x3(t), x4(t).

From a technical point of view, the reference control signal and reference states represent open-loop
control. These signals can be used in the feedback control structure of two degrees of freedom (2-DOF)
type as described in [29] where the trajectory planning problem has been solved via the formulation of
this problem as boundary value problem (BvP) with free parameters.

The feedback stabilization along the planned reference trajectory designed according to the
proposed approach can be effectively implemented with the use of a time-varying LQR controller
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computed over a finite horizon. In other words, both the swing-up and stabilization in an upright
position are performed within a closed-loop and by a single state feedback controller. The principle
and functionality of such a closed-loop solution have been verified both in simulation and in practical
operation with a real physical model, see [30] where the completely different method of trajectory
planning has been applied, using numerical tools based on collocation methods.

The method of time-symmetry for trajectory planning proposed in this paper is unique authors’
work based on explicit mathematical background and on their professional experience.

The character of both reference control signal and reference states strongly depends on two
crucial parameters: length of the time interval represented by the parameter T and expert-determined
parameter K.

One of the main features of the proposed solution regarding the swing-up of the inverted
pendulum is that the cart does not go back to its original (zero) position as seen in the above Figure 18.

Although it reaches up to almost one-meter deflection (x3—position of the cart) at the final time
according to simulation in open-loop, there can be several ways how to cope with this effect. Firstly,
for a time it is possible to “ground” (set to zero) reference state x3(t) a bit earlier where the deflection
is not so high and beyond the physical limit, letting the control error be compensated by feedback
control in the closed-loop. Normally, for t > T, all the reference states, including x3, are set to zero.
However, regarding x3(t), it can also be kept in the last position. Secondly, the reference control and
reference states can be used as a very good and precise initial guess of a newly formulated BvP problem
that would handle all four state variables, and prescribe zero values at the final time for all states.
This scenario was also tested successfully.

Third, adjusting of parameter K reduces this effect significantly. Generally, the lower the K value is,
the more oscillatory the control signal and all reference states are, but the maximal amplitude of x3(T)
rapidly goes to zero. For example, reducing K = 2 to K = 1, resp. K = 0.5, causes x3(T) = 0.4 resp.
x3(T) = 0.05 which are within usual physical limits (approximately 0.8− 1 m in case of typical single
inverted pendulum models available on the market).

3.2. Results Based on the Numerical Optimization Procedure for g(◦) Function

To prove effectiveness of numerical optimization procedure applied for g(◦) function, we
introduce the waveforms of control signal u(t) depicted in Figure 19, pendulum angle x1(t) and cart
position x3(t) in Figure 20 both for trigonometric candidate (dashed line) and polynomial candidate
(solid line).
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Figure 19. Reference control input signal u(t).
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Figure 20. Reference trajectories: x1(t), x3(t).

The results in this section use the same parameters of the controlled system as in the previous
section. The optimized parameters for g(◦) for trigonometric candidate according to Equation (25) are
as follows:

• A0 = 0.5107;
• A1 = −1.1854;
• ω1 = 1.3606;
• ϑ1 = 4.6795;
• A2 = −1.7894;
• ω2 = 1.8575;
• ϑ2 = 4.0269.

For polynomial candidate in accordance with Equation (26) the following optimized parameters
were obtained:

• A0 = 0.2469;
• A1 = −2.9825;
• A2 = −0.1663;
• A3 = 1.3260;
• A4 = −0.2716.

Unlike in Figure 18, waveform x3(t) in Figure 20 shows that the cart moves back to original zero
position as it was required. The combination of the proposed explicit methodology and numerical
optimization preserves good quality of control signal and state trajectories, and also respects custom
constraints placed on these signals.

4. Discussion

The proposed solution has been compared to a few different methods, obtained by third-party
products aimed at solving of the optimal control problems, particularly in OptimTraj [31], ACADO [32],
and PyTrajectory [33].

Different configurations of optimal control problems have been tried, including consideration
of Lagrange term in a cost function. Although the originally proposed solution does not consider
any constraints on particular states or any kind of Lagrange path penalization, it may be supported
by a numerical optimization procedure as documented within the text. Choice of the three above
mentioned software packages for comparison purposes was based on authors’ professional experience.
The first one—OptimTraj is a very popular Matlab-based solution (library) usually applied for solving
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trajectory optimization problems, as it enables finding optimal trajectory for a dynamical system.
The set trajectory enables the minimization of some cost function. The second tool applied for
comparison purposes was ACADO, which is entirely developed in C++. Those two tools provide
almost similar results, which allows the assumption that their results are reliable. Thus using them for
comparison purposes is rational. The last tool method is PyTrajectory, which is applied for trajectories
design for states transitions in non-linear systems, to which group inverted pendulum belongs.
The very interesting fact about PyTrajectory is that it does not allow time step below 10 ms. With this
period, the computed reference trajectories can be considered as worst-case yet the time-varying
state controller enables to deal with such situation in an appropriate way. The comparison was
done in a qualitative technical sense and it is beyond the scope of this paper. A strict quantitative
comparison with the mentioned software tools using some performance index would require the
identical formulation of the optimization task, which is impossible due to the unique character of the
proposed methodology and due to the kind of formulation these tools use. The computed solution
shows very favorable features in terms of the character of the waveforms and also of the maximal
amplitudes of the reference control signal, which is usually an issue when other numerical software
tools mentioned above are used. The main reason for this good quality is that the found solution is
based on a natural motion of the pendulum, obtained by experiment considering a free uncontrolled
swing-down. Note that all waveforms shown in Figures 18 and 20 were obtained by open-loop
simulation using particular control signal u(t). It can be seen that there is no deflection between the
prescribed and simulated values at the final time. This zero or negligible deflection is practically
impossible to achieve when using a different approach to trajectory planning. Although BvP is solved
successfully with a given precision, a numerical model-based simulation using the reference control
signal as the input is a different question. The main reason for this phenomenon is that the system
is highly nonlinear and unstable. Thus the open-loop experiments usually suffer from deflections
between computed states and simulated states already in the simulation phase. It usually manifests
as a significant non-zero error in the final time point t = T as the error has a cumulative character
over time. Thorough literature study performed by the authors of this work prove that no similar
solutions have been applied so far and that the obtained results were satisfactory and improved the
area of the study.

5. Conclusions

Above Figures 18 and 20 were obtained by open-loop simulation using particular control signal
u(t), t = T. The general idea presented in this paper can be used in the problem of trajectory planning,
particularly in so-called finite-time transition problems where the system must be transferred from
a given initial state to another in the finite time, see [34].

Apart from a basic motivational case study of the linear mass-spring-damper model, the paper
also presents an integral thorough approach of efficient trajectory planning applied for a single inverted
pendulum, which is nonlinear, unstable, non-minimum phase and underactuated system. Plans for
future work in particular cover applications for double or possibly triple pendulums. However,
it is also planned to create general methodology, which would allow implementing this approach in
any mechanical system described by analytical equations of motion under the presence of damping
or friction.

Through analysis of mathematical background related to the proposed in this paper solution
allowed to conclude that the existence of the designed control signal and state trajectories is guaranteed
if the equations of the motion have a solution in the direct flow of time.

Further Research Plans

As it was discussed in this paper proposed method could be applied for the purposes of trajectory
planning and solving of the TPBvP. Plans for future work cover also potential applications for
double and possibly triple pendulums. Further research plans include the development of general
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methodology, which would allow implementing the approach presented in this work in any mechanical
system described by analytical equations of motion under the presence of damping or friction. Thus the
authors of this work would like to pursue this research topic in the near future. Further research
will include the implementation of more advanced smoothing filters for the purpose of pendulums’
trajectories improvement. Some of the initial studies based on single inverted pendulums have been
already carried out and in detail and presented in [25]. Another interesting topic would be the
development of reference trajectories for the efficient fractional controller for single-, double- and
triple-pendulums, which may have a positive effect on the systems’ stabilisation [35,36].
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