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Abstract: The aim of this work is to study a scalar-tensor theory where owing to Palatini’s
variational method the space-time is endowed with a geometrical structure of Weyl integrable
type. The geometrical nature of the scalar field is related to the non-metricity so that the theory is
known as geometrical scalar-tensor. On the framework of Weyl transformations, a non-minimally
coupled scalar-tensor theory on the Jordan frame corresponds to a minimally coupled Einstein–Hilbert
action on the Einstein frame. The scalar potential is selected by the Noether symmetry approach
in order to obtain conserved quantities for the FRW cosmological model. Exact solutions are
obtained and analyzed in the context of the cosmological scenarios consistent with an expanding
universe. A particular case is matched in each frame and the role of scalar field as a dark energy
component is discussed.

Keywords: Noether symmetry; exact solutions; FRW spacetime; scalar field cosmologies

1. Introduction

Although Einstein’s theory of gravity is constantly being supported by current observational
data [1], recent issues such as the accelerated expansion of the Universe and the possible existence of
dark matter, can not be fully explained only based on general relativity. In this sense, there have been
considerable efforts in the development of alternative theories to Einstein’s theory [2]. In particular,
there is a great interest in investigating new possibilities that include changes in the theory of general
relativity [3,4].

Scalar-tensor (ST) theories are among the proposed extensions of Einstein’s theory [5–8].
A geometrical approach to theories with non-minimal coupling is particularly interesting.
According to it, by considering the Palatini variational method a not necessarily Riemannian
compatibility condition between the metric tensor and the affine connection—initially taken as
independent variables—is obtained [9,10]. Furthermore, it was shown that the geometry that naturally
appears when a symmetric affine connection is regarded is the so called integrable Weyl geometry,
where the scalar field takes part together with the metric tensor in the description of the gravitational
field. This brings a geometrical origin for the scalar field present in the theory, which naturally define
the known as geometrical scalar-tensor theories [11,12].

The potential term is obtained through the Noether symmetry approach, which allows making
a choice that leads to a quantity conserved in the model [13–16]. Such a conserved quantity will imply
the existence of a cyclic variable useful to find exact solutions for the field equation. This approach has
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already been used in choosing for models of tensor-scalar theories that could describe the dynamics of
the expanding universe, as dark energy models [17–20].

In the organization of this work the action of the model is presented in Section 2. In Section 3 the
field equations for a spatially flat Friedmann–Robertson–Walker (FRW) are obtained from a point-like
Lagrangian. Noether symmetry approach is considered in the Section 4 to specify the self-interacting
potential of the scalar field. In Section 5 the field equations are integrated and the cosmological
solutions in each frame are fulfilled in the Section 6. The particular case ω = 1/2 is seen in Section 7.
The paper is closed with the conclusions in Section 8.

We will adopt natural units, such that 8πG = h̄ = c = 1. Besides that, we will take the metric
signature (+,−,−,−).

2. The Model and the Weyl Transformations

A well-known scalar-tensor theory called dilaton gravity can be expressed through the
following action

SJF =
∫

d4x
√
−ge−φ

[
R + ωφ,αφ,α − e−φV (φ)

]
, (1)

where φ represents a scalar field, V(φ) its self-interacting potential and ω a dimensionless coupling
constant. Furthermore, R is the Ricci scalar, calculated with the affine connection Γα

µν. We have
represented SJF to write the Action on the Jordan frame.

When Palatini variation is used in non-minimally coupled scalar-tensor theories, as this one, the
affine connection is not the same of the Levi–Civita connection, expressed in terms of the Christoffel
symbols. This is the main difference that arises between the Palatini variation method and the said
metric variation. Considering the affine connection and the metric tensor as independent variables
in the action extremization, the variation with respect to connection yields a relation between affine
connection and the metric tensor that can be written as

∇αgµν = φ,αgµν (2)

widely used in the literature that studies the so-called integrable Weyl manifolds, or non-metricity
geometries [21,22]. That is, as a consequence of Palatini variation, the geometric structure of space-time,
manifested through the affine connection, is given dynamically by the action, instead of being imposed
a priori, as in the case of metric variation. So, the theory is called a geometrical scalar-tensor, because
the scalar field has a geometric origin, related to the non-metricity of the manifold.

It is easy to see, after some algebraic manipulations of Equation (2) that the affine connection
takes the following form

Γα
µν = {α

µν} −
1
2

gαβ
(

gµβφ,ν + gνβφ,µ − gµνφ,β
)

, (3)

where {α
µν} = 1

2 gαβ
(
∂νgµβ + ∂µgνβ − ∂βgµν

)
represent the Christoffel symbols. Both

Equations (2) and (3) are invariant by Weyl transformations

ḡµν = e f gµν (4)

φ̄ = φ + f (5)

where f is a arbitrary scalar function, or a gauge. It is possible choose a f that leads Equation (1) to the
Einstein frame

SEF =
∫

d4x
√
−ḡ [R̄ + ωφ,αφ,α −V (φ)] , (6)

where R̄ = e−φR, because the Ricci tensor is invariant over Weyl transformations, but Ricci scalar is
not. We have seen that the action Equation (1) corresponds the well-known action Equation (6) by
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Weyl transformations. Both theories are extensively studied in the literature, although the relationship
between them is not so approached from the geometric point of view. In addition, both the scalar field
and the scalar potential are entered by hand. In this work we are using the methods mentioned in the
references to justify both the origin of the scalar field and the choice of the scalar potential.

Let us obtain the field equation by performing the variation with respect to gµν

Rµν −
1
2

Rgµν = −T(φ)
µν (7)

where T(φ)
µν is the energy-momentum tensor of the scalar field

T(φ)
µν = ω

(
∂µφ∂νφ− 1

2
φ,αφ,αgµν

)
+

1
2

e−φVgµν. (8)

However, in order to identify the Einstein tensor calculated with the Christoffel symbols and
to define an effective energy–momentum tensor gathering the scalar field terms, we need to express
Equation (7) as follows

R̃µν −
1
2

R̃gµν = −Tµν, (9)

where R̄µν and R̄ are the usual Ricci tensor and Ricci scalar calculated with metric connection, and we
have defined the effective energy–momentum tensor

Tµν
.
= T(φ)

µν − ∇̃µφ,ν −
1
2

φ,µφ,ν − gµν

(
1
4

φ,αφ,α − ∇̃αφ,α
)

, (10)

which by using Equation (8) can be expressed simply as follows

Tµν ≡
(

ω− 1
2

)
φ,µφ,ν − ∇̃µφ,ν −

1
2

gµν

[(
ω +

1
2

)
φ,αφ,α − e−φV − 2∇̃αφ,α

]
. (11)

Furthermore, by performing the variation of the action with respect to the scalar field φ, we obtain
the following field equation,

�̃φ− φ,αφ,α +
e−φ

2ω

dV
dφ

= 0. (12)

3. Pointlike Lagrangian and FRW and Klein-Gordon Equations

We are interested to analyze a homogeneous and isotropic universe described by the spatially flat
Friedmann–Robertson–Walker metric

ds2 = dt2 − a2(t)
[
dx2 + dy2 + dz2

]
. (13)

Besides that, in order to not spoil the homogeneity and isotropicity, we require that φ = φ(t).
Therefore, according to the metric Equation (13) the kinetic term of the scalar field will reduce to

ωgµνφ,µφ,ν = ωφ̇2, (14)

where dot means derivative with respect to coordinate t. In terms of the metric Equation (13) the Ricci
scalar will be expressed by

R = 6
(

ä
a
+

ȧ2

a2

)
+

3
2

(
φ̇2 − 6φ̇

ȧ
a
− 2φ̈

)
. (15)
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In this way, by using Equations (14) and (15) in Equation (1), and that d4x
√−g = a3dtd3x,

we will have

SJF = Vo

∫
dte−φ

[
6
(

a2 ä + aȧ2
)
+

3
2

(
a3φ̇2 − 6a2 ȧφ̇− 2a3φ̈

)
+ ωa3φ̇2 − a3e−φV (φ)

]
, (16)

where we have defined Vo as the 3-volume

Vo
.
=
∫
M

d3x. (17)

The Equation (16) can be integrated by parts to separate terms of total derivative. Thus, by running
this procedure we will get the following reduced action

SJF = Vo

∫
dt
{

e−φ

[(
ω− 3

2

)
a3φ̇2 + 6

(
a2 ȧφ̇− aȧ2

)
− a3e−φV (φ)

]
+

d
dt

[
e−φa2 (6ȧ− 3aφ̇)

]}
. (18)

Thus, after neglecting surface terms, we obtain the pointlike Lagrangian

LJF
.
= e−φ

[(
ω− 3

2

)
a3φ̇2 + 6

(
a2 ȧφ̇− aȧ2

)
− a3e−φV (φ)

]
. (19)

From the Euler–Lagrange equation for a applied to Equation (19),

d
dt

(
∂L
∂ȧ

)
− ∂L

∂a
= 0 (20)

we obtain the acceleration equation
ä
a
= −1

6
(
ρφ + 3pφ

)
(21)

where H .
= ȧ

a is the Hubble parameter. By imposing that the energy function associated with
Equation (19) vanishes,

EL ≡
∂L
∂ȧ

ȧ +
∂L
∂φ̇

φ̇−L = 0 (22)

we have the Friedmann equation,

H2 =
1
3

ρφ (23)

In Equations (21) and (23) the energy density and pressure of the scalar field read

ρφ =
1
2

(
ω− 3

2

)
φ̇2 +

1
2

e−φV + 3Hφ̇ (24)

pφ =
1
2

(
ω +

1
2

)
φ̇2 − 1

2
e−φV − 2Hφ̇− φ̈ (25)

in accordance to the energy-momentum tensor in Equation (11). It is useful remember that ρ ≡ T00

and p ≡ − 1
3 (T − T00) when we use a comoving frame Uµδ0

µ and, futhermore, we can remember
the identity ∇̃αVα ≡ 1√−g ∂α(

√−gVα). Now, from the Euler–Lagrange equation for φ applied to
Equation (19),

d
dt

(
∂L
∂φ̇

)
− ∂L

∂φ
= 0, (26)

we get the Klein–Gordon equation as follows

φ̈ + 3Hφ̇− φ̇2 +
e−φ

2ω

dV
dφ

= 0, (27)
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in accordance to the scalar field equation in Equation (12).

4. Noether Symmetry

In this section we shall apply the Noether symmetry approach in order to constraint the function
of the self-interaction potential. We begin by considering the infinitesimal generator of symmetry

X = α
∂

∂a
+ β

∂

∂φ
+

(
ȧ

∂α

∂a
+ φ̇

∂α

∂φ

)
∂

∂ȧ
+

(
ȧ

∂β

∂a
+ φ̇

∂β

∂φ

)
∂

∂φ̇
. (28)

Here α and β depend only on the scale function a and on the scalar field φ. The condition for the
existence of a Noether symmetry for the point-like Lagrangian is

LXL ≡ XL = 0. (29)

This condition implies a vanishing Lie derivative of the Lagrangian with respect to the vector
field X [20]. The symmetry condition Equation (29) with respect to the vector field Equation (28) when
applied to Equation (19), leads to the system of coupled partial differential equations

(3α− 2aβ)V (φ) + aβV′ (φ) = 0, (30)

α + 2a
∂α

∂a
− a

(
β + a

∂β

∂a

)
= 0, (31)

aβ−
(

2α + a
∂α

∂a
+ a

∂β

∂a

)
+ 2

∂α

∂φ
− 1

3

(
ω− 3

2

)
a2 ∂β

∂a
= 0, (32)(

ω− 3
2

)(
2a

∂β

∂φ
− aβ + 3α

)
+ 6

∂α

∂φ
= 0. (33)

Equation (30) can be written as (
3α

2a β
− 1
)
= f (φ) (34)

where we have defined f (φ) .
= − V′(φ)

2V(φ)
. The differentiation of the left-hand side of the above equation

with respect to a leads to the following differential equation

1
α

∂α

∂a
− 1

β

∂β

∂a
=

1
a

, (35)

whose solution is
α = a βg(φ) (36)

where g(φ) is arbitrary function. From Equation (31) together with Equation (36) we have

g(φ) =
β + a ∂α

∂a

3β + 2a ∂α
∂a

. (37)

The differentiation of the above equation with respect to a leads to the following differential
equation

β

(
a

∂2β

∂a2 +
∂β

∂a

)
− a

(
∂β

∂a

)2
= 0, (38)

whose solution is
β = h(φ)an, (39)
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where h(φ) is an arbitrary function and n is not specified, it can assumed some value which will
depend on the two remaining equations. Inserting Equation (39) into Equation (37) we have that

g(φ) =
1 + n
3 + 2n

(40)

is a constant. The Equations (32) and (33) admit the solution

dh
dφ

= 0, (41)

only if n = 0, this implies that

α =
1
3

aβ0, (42)

where β0 is a constant, and Equation (30) reduces to

V′(φ)
V(φ)

= 1 (43)

whose the solution is
V(φ) = 2Λeφ (44)

where Λ is a constant. Because that, the action Equation (1) could take the following form

SJF =
∫

d4x
√
−ge−φ (R + ωφ,αφ,α − 2Λ) . (45)

while in the Einstein frame the action Equation (6) becomes

SEF =
∫

d4x
√
−ḡ
(

R̄ + ωφ,αφ,α − 2Λeφ
)

(46)

By the way, corresponding to the above solution a conserved quantity associated to the
Noether symmetry is

Σ0
.
= α

∂L
∂ȧ

+ β
∂L
∂φ̇

. (47)

Therefore, by using Equations (19) and (42) in Equation (47), we obtain

Σ0 = 2β0a2e−φ

[
ȧ +

(
ω− 1

2

)
aφ̇

]
. (48)

In the next section, we shall look for analytical solutions.

5. Solutions of the Field Equations

For the solutions of the field equations we rewrite the point-like Lagrangian Equation (19) in
terms of another variables. This is done in order to make easier the integration of the field equations.
The knowledge of a Noether symmetry connected to V implies that there exists in the configuration
space a coordinate transformation where one coordinate is cyclic. The following system of differential
equations is related to the coordinate transformation

α
∂u
∂a

+ β
∂u
∂φ

= 0, (49)

α
∂z
∂a

+ β
∂z
∂φ

= 1. (50)
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where u = u(a, φ) and z = z(a, φ) are the new variables linked to the old ones, a and φ. In this
transformation z is the cyclic coordinate. It is worth to remember that due to Equations (42) and (44),
we have

α =
1
3

β0a, β = β0 and V = 2Λeφ.

Thus, the system of differential equations above takes the form

a
3

∂u
∂a

+
∂u
∂φ

= 0, (51)

a
3

∂z
∂a

+
∂z
∂φ

=
1
β0

, (52)

whose solutions are given below

u = a3e−φ and z =
3
β0

ln(a). (53)

It is also useful to have expressions for ȧ and φ̇,

a ≡ eβ0z/3, ȧ ≡ 1
3

β0żeβ0z/3, H ≡ 1
3

β0ż and φ̇ ≡ β0ż− u̇
u

.

By taking into account these transformations, we get the following expression to Equation (19)

L = k1u̇ż + k2uż2 + k3
u̇2

u
− 2uΛ. (54)

where we have defined the parameters

k1
.
= −2β0

(
ω− 1

2

)
, k2

.
= β2

0

(
ω− 1

6

)
and k3

.
=

(
ω− 3

2

)
. (55)

The field equations in the new variables are obtained from the Euler-Lagrange equations
associated with the Lagrangian and read

k1u̇ + 2k2uż = Σ0 (56)

2k3
ü
u
+ k1z̈− k2ż2 − k3

u̇2

u2 + 2Λ = 0 (57)

where Σ0 is the constant of motion Equation (48) rewritten in the new variables. This agrees with
the fact that z been a cyclic coordinate, implying that the momentum canonically conjugate to the z
is conserved

pz
.
=

∂L
∂ż

=⇒ pz = k1u̇ + 2k2uż ≡ Σ0. (58)

Therefore,

dpz

dt
= 0, (59)

dpu

dt
= k2ż2 − k3

u̇2

u2 − 2Λ. (60)

Another equation follows from the energy function associated with the Lagrangian Equation (54)

k3
u̇2

u2 + k1
u̇
u

ż + k2ż2 + 2Λ = 0, (61)
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It is easy to observe that the above equation is equivalent to the Friedmann equation in the former
variables. Note that Equations (56), (57) and (61) compose a system of three differential equations for
u and z which are only two dynamical variables. To obtain the solutions of these equations, we shall
isolate ż from Equation (56),

ż =
Σ0 − k1u̇

2k2u
(62)

and to substitute ż in Equation (57),(
k3 −

k2
1

4k2

)
u̇2 + 2Λu2 +

Σ2
0

4k2
= 0. (63)

We can write the equation above in the following canonical form

u̇2 + λu2 + σ = 0 (64)

where we have defined the parameters λ and σ as

λ
.
=

8Λk2(
4k2k3 − k2

1
) ≡ Λ

2ω
(1− 6ω) (65)

σ
.
=

Σ2
0(

4k2k3 − k2
1
) ≡ − 3Σ2

0
8β2

0ω
, (66)

which we used the definitions in Equation (55). The ODE Equation (64) allows the solution given below

u(t) = ±
√
−σ

λ
sin
[√

λ (t± C1)
]

, (67)

where C1 is arbitrary constant of integration. We shall take C1 = 0. In order to get z(t) by integrating
Equation (62), we will handle the cases for each λ 6= 0 sign.

5.1. Case λ < 0:

This case can be considered if

λ < 0 =⇒


Λ > 0 and ω ∈ {(−∞, 0) ∪ (1/6, ∞)}

or

Λ < 0 and ω ∈ (0, 1/6)

Therefore, in this case, Equation (67) becomes,

u(t) = ± Σ0

2β0

√
3
|2ωλ| sinh

(√
|λ|t

)
. (68)

By considering the equation above in Equation (62), we may obtain

ż =
Λ

ωλβ0

[
(3− 6ω)

2

√
|λ| coth

(√
|λ|t

)
∓
√

6|ωλ|csch
(√
|λ|t

)]
, (69)

which can be integrated in t,

z(t) =
Λ

ωλβ0

{
(3− 6ω)

2
ln
[

sinh
(√
|λ|t

)]
±
√

6|ω| ln
[

coth

(√
|λ|
2

t

)]}
. (70)
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In terms of the original variables a(t) and φ(t), we have

a(t) = exp

{
Λ

3ωλ

[
(3− 6ω)

2
ln
[

sinh
(√
|λ|t

)]
±
√

6|ω| ln
[

coth

(√
|λ|
2

t

)]]}
(71)

and,

φ(t) =
Λ

ωλ

{
ln
[

sinh
(√
|λ|t

)]
±
√

6|ω| ln
[

coth

(√
|λ|
2

t

)]}
. (72)

5.2. Case λ > 0:

This case can be considered if

λ > 0 =⇒


Λ > 0 and ω ∈ (0, 1/6)

or

Λ < 0 and ω ∈ {(−∞, 0) ∪ (1/6, ∞)}

Therefore, in this case, Equation (67) becomes,

u(t) = ± Σ0

2β0

√
3

2ωλ
sin
(√

λt
)

. (73)

By considering the equation above in Equation (62), we may obtain

ż =
Λ

ωλβ0

[
(3− 6ω)

2

√
λ cot

(√
|λ|t

)
∓
√

6|ωλ| csc
(√
|λ|t

)
,
]

(74)

which can be integrated in t,

z(t) =
Λ

ωλβ0

{
(3− 6ω)

2
ln
[

sin
(√
|λ|t

)]
±
√

6|ω| ln
[

cot

(√
|λ|
2

t

)]}
. (75)

In terms of the original variables a(t) and φ(t), we have

a(t) = exp

{
Λ

3ωλ

[
(3− 6ω)

2
ln
[

sin
(√
|λ|t

)]
±
√

6|ω| ln
[

cot

(√
|λ|
2

t

)]]}
(76)

and,

φ(t) =
Λ

ωλ

{
ln
[

sin
(√
|λ|t

)]
±
√

6|ω| ln
[

cot

(√
|λ|
2

t

)]}
. (77)

In a nutshell, we have this set of solutions,

a(±)λ<0 = exp

{
Λ

3ωλ

[
(3− 6ω)

2
ln
[

sinh
(√
|λ|t

)]
±
√

6|ω| ln
[

coth

(√
|λ|
2

t

)]]}
(78)

φ
(±)
λ<0 =

Λ
ωλ

{
ln
[

sinh
(√
|λ|t

)]
±
√

6|ω| ln
[

coth

(√
|λ|
2

t

)]}
, (79)

a(±)λ>0 = exp

{
Λ

3ωλ

[
(3− 6ω)

2
ln
[

sin
(√
|λ|t

)]
±
√

6|ω| ln
[

cot

(√
|λ|
2

t

)]]}
, (80)

φ
(±)
λ>0 =

Λ
ωλ

{
ln
[

sin
(√
|λ|t

)]
±
√

6|ω| ln
[

cot

(√
|λ|
2

t

)]}
. (81)
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Besides that, we can write a(φ) simply how,

a(φ) = exp
[
−
(

ω− 1
2

)
φ

]
(82)

6. Cosmological Solutions in Each Frame

In this section we shall give the expressions for the scale factor, Hubble and deceleration
parameters in the Jordan and Einstein frames. The solutions for λ > 0 in the Jordan frame give
oscillatory behaviors which are not interested in the cosmological sense so that we shall neglect them
in this section.

6.1. Jordan Frame

On the basis of the solutions for the scale factor in the Jordan frame below

a(±)λ<0 = exp

{
Λ

3ωλ

[
(3− 6ω)

2
ln
[

sinh
(√
|λ|t

)]
±
√

6|ω| ln
[

coth

(√
|λ|
2

t

)]]}
, (83)

we can obtain the following Hubble parameter

H(∓)
λ<0 =

Λ
√

λ

3ωλ

[
(3− 6ω)

2
coth

(√
|λ|t

)
∓
√

6|ω|csch
(√
|λ|t

)]
. (84)

Furthermore by considering the definition of the deceleration parameter

q .
= − aä

ȧ2 ≡ −
(

Ḣ
H2 + 1

)
, (85)

its expression becomes

q(∓)λ<0 =
3ωλ

Λ

[
(3−6ω)

2 ∓
√

6ω cosh
(√
|λ|t

)]
csch2

(√
|λ|t

)
[
(3−6ω)

2 coth
(√
|λ|t

)
∓
√

6|ω|csch
(√
|λ|t

)]2 − 1. (86)

6.2. Einstein Frame

In the Einstein frame the scale factor is obtained through the Weyl transformation

ā = ae−φ/2, (87)

which implies

ā(∓)λ<0 = exp

{
− 2ω

(1− 6ω)
ln
[

sinh
(√
|λ|t

)]
∓ 2ω

(1− 6ω)
√

6ω
ln

[
coth

(√
|λ|
2

t

)]}
. (88)

From the knowledge of the scale factor the Hubble and deceleration parameters can be
obtained, yielding

H̄(±)
λ<0 =

csch
(√
|λ|t

)
(1− 6ω)

[
±
√

2
3
|λω| − 2ω

√
|λ| cosh

(√
|λ|t

)]
, (89)

q̄(∓)λ<0 =
(1− 6ω)

2ω

[
±
√

6ω cosh
(√
|λ|t

)
− 6ω

]
[
1∓
√

6ω cosh
(√
|λ|t

)]2 − 1 (90)
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Here it is important to remember that the correspondence between the scale factors in
both frames are

a(+)
Jordan ⇐⇒ ā(−)Einstein, a(−)Jordan ⇐⇒ ā(+)

Einstein. (91)

7. A Particular Case: ω = 1/2

We would like to analyze the solutions in the case where ω = 1/2, since it is a very common case
in the literature, a minimally coupled scalar-tensor theory in the Einstein frame.

To begin with, let us write below the solutions for the scale factor Equation (83), Hubble parameter
Equation (84) and deceleration parameter Equation (86) in the Jordan frame, with ω = 1/2:

a(∓)λ<0 =

[
coth

(√
Λ
2

t

)]∓ 1√
3

(92)

H(±)
λ<0 = ±

√
2Λ
3

csch
(√

2Λt
)

(93)

q(±)λ<0 = ±
√

3 cosh
(√

2Λt
)
− 1. (94)

In the Einstein frame the corresponding set of expressions which follows from Equations (88)–(90)
for ω = 1/2 reads

ā(±)λ<0 =
[
sinh

(√
2Λt

)] 1
2 ·
[

coth

(√
Λ
2

t

)]± 1
2
√

3

, (95)

H̄(∓)
λ<0 = csch

(√
2Λt

) [√Λ
2

cosh
(√

2Λt
)
∓
√

Λ
6

]
, (96)

q̄(∓)λ<0 =

[
6∓ 2

√
3 cosh

(√
2Λt

)]
[
1∓
√

3 cosh
(√

2Λt
)]2 − 1. (97)

Jordan Frame vs. Einstein Frame

Here we shall analyze the solutions which are compatible with an expanding universe from the
expressions given above for the case of ω = 1/2. For the Jordan frame only the solution for the scale
factor a(−)λ<0 implies an expanding universe. On the other hand, in the Einstein frame both solutions for
the scale factor are possible solutions for an expanding universe. We shall analyze here the scale factor
ā(+)

λ<0 in the Einstein frame since it corresponds to the scale factor a(−)λ<0 in the Jordan frame.

In Figure 1 the scale factors in the Jordan frame a(−)λ<0and in the Einstein frame ā(+)
λ<0 are plotted as

functions of time
√

Λt. We infer from this figure that in the Einstein frame the scale factor increases
with time, while in the Jordan frame it grows but for large time values the scale factor tends to constant
value of a stationary universe. This behavior can be understood by analysing the scale factor velocity
ȧ(t)/

√
Λ as function of time

√
Λt in Figure 2. We see that the scale factor velocity in the Jordan frame

decreases with time and goes to zero at large time values. The scalar factor velocity in the Einstein
frame initially decreases with time but from a certain time further it grows.
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Jordan frame

Einstein frame

0 1 2 3 4
Λ t0

1

2

3

4
a( t )

Figure 1. Scale factors a(−)λ<0 and ā(+)
λ<0 as functions of time

√
Λt.

Jordan frame

Einstein frame

0 1 2 3 4
Λ t0

1

2

3

4

a
.
( t )

Λ

Figure 2. Scale factor velocities ȧ(−)λ<0/
√

Λ and ˙̄a(+)
λ<0/

√
Λ as functions of time

√
Λt.

Figure 3 shows the behavior of the deceleration parameter q(t) as function of time
√

Λt in
both frames. We conclude from this figure that in the Jordan frame the deceleration parameter has
a positive sign, which may be interpreted as a matter dominated era. In the Einstein frame the behavior
of the deceleration parameter is different from that of the Jordan frame. At the begin the deceleration
parameter has positive sign and evolves to a negative sign. Here it may be interpreted to an exit of
a matter dominated period to a dark energy era.
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Jordan frame

Einstein frame

0.5 1.0 1.5
Λ t

- 2

- 1

0

1

2

3

4
q ( t )

Figure 3. Deceleration parameters q(+)
λ<0 and q̄(−)λ<0 as functions of time

√
Λt.

It is clear that in this work we introduced only one constituent which is the scalar field. In order
to have a better insight of the cosmological behavior one should add a matter constituent. This will be
the subject of a next investigation.

8. Conclusions

In this work we analyzed a model with a scalar field minimally coupled to gravity. We started
with the action in the Einstein frame and obtained the action in the Jordan frame through the use of the
Weyl transformations. The field equations in the Jordan frame were obtained from the Palatini variation
method. By restricting to a spatially flat Friedman–Robertson–Walker metric the point-like Lagrangian
and the equations of Friedmann acceleration and Klein–Gordon were obtained. The Noether symmetry
method was used to determine the self-interaction potential of the scalar field. From the solution
of the field equations the scale factor, the Hubble and deceleration parameters were obtained in the
Jordan frame and the corresponding ones in the Einstein frame were determined by the use of Weyl
transformations. The cosmological solutions were obtained in case where the coupling constant of the
scalar field ω = 1/2 which corresponds to a the case of a minimally coupled scalar field in the Einstein
frame. It was show that in the Jordan frame the scalar factor grows with time but tends to a constant
value at large times, i.e., evolving into a stationary universe. Furthermore, its deceleration parameter
has a positive sign, which may be interpreted as a matter dominated era. In the Einstein frame the
scale factor grows with time and the deceleration parameter evolves from a positive sign to a negative
one, which may be interpreted as a transition from a matter dominated period to a dark energy era.
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