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Abstract: Multivariate statistical methods are widely used in several disciplines of fundamental
sciences. In the present study, the data analysis of the chemical analysis of the sands of Moonlight
Beach in the Kemer region was examined using multivariate statistical methods. This study consists
of three parts. The multivariate statistical analysis tests were described in the first part, then the
pollution indexes were studied in the second part. Finally, the distribution maps of the chemical
analyses and pollution indexes were generated using the obtained data. The heavy metals were
mostly observed in location K1, while they were sorted as follows based on their concentrations:
Mg > Fe > Al > Ti > Sr > Mn > Cr > Ni > Zn > Zr > Cu > Rb. Also, strong positive correlations were
found between Si, Fe, Al, K, Ti, P. According to the results of factor analysis, it was found that four
factors explained 83.5% of the total variance. On the other hand, the coefficient of determination (R2)
was calculated as 63.6% in the regression model. Each unit increase in the value of Ti leads to an
increase of 0.022 units in the value of Si. Potential Ecological Risk Index analysis results (RI < 150)
revealed that the study area had no risk. However, the locations around Moonlight Beach are under
risk in terms of Enrichment Factor and Contamination Factor values. The index values of heavy
metals in the anomaly maps and their densities were found to be successful; and higher densities
were observed based on heavy metal anomalies.
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1. Introduction

Just as a single factor can affect any formation in nature, several factors can also affect it.
Fundamental sciences, particularly multivariate statistical methods, are used to examine, analyze,
and interpret these formations in nature. Scientific studies examining heavy metals content in food,
water, and the soil have gained prominence in terms of the functioning of the ecosystem and the quality
of human life. Therefore, the number of studies on beach sands increased [1–5]. In these studies,
as well as many other studies, statistical evaluations were conducted [6–18].

In this context, the interpretation of beach sand data using the multivariate statistical analysis
comes to the forefront. Therefore, multivariate statistical analyses such as principal component analysis
(PCA), cluster analysis (CA), etc. are used to reveal the relationship between variables and the formation
they affect [19–22]. Besides, the adopted multivariate statistical approach and recent advances in
mathematics show how copulas may represent an efficient tool to investigate the statistical behavior of
dependent variables [23–26].
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Moreover, coastal environmental monitoring studies on the beaches, which are in the coastal
ecosystem and have economic importance, toxic elements in sands, hazard indices of these elements,
and the factors affecting these indices have gained significance. The following indexes were used
in the studies: Geo-accumulation index (I-geo) and Enrichment Factor (EF), Contamination Factor
(CF), Contamination Degree (CD), Pollution Load Index (PLI), Ecological Risk Index (ERI), Potential
Risk Factor (PRF), Potential Ecological Risk Index (PERI), and Potential Contamination Index (PCI).
Also, there are several studies on metal accumulation indices and heavy metal accumulations in beach
sands [27–37].

In the study on coastal sediments in Hurghada (Egypt), Pb and Cd values were found to be
very high (EF > 50), and the researchers mentioned abut anthropogenic anomalies [38]. In the study
conducted on the coast of Linggi estuary (Malaysia), the concentrations of arsenic, lead, and antimony
elements were found to be high; and the authors interpreted natural and anthropogenic pollution
by using correlation matrix and principal component analysis methods [39]. In the study on Nellore
(India) coastal sediments, the order of the risk index of the trace metals were found as follows:
Cd > Pb > Cu > Cr > Zn [40]. In another study conducted in India, heavy metal anomalies were found
in the coastal sediments of Tamil Nadu, and the researchers mentioned natural indicators [41]. On the
other hand, index calculations and statistical analyses were used in the study on Gabes Coast (Tunisia)
beach sands, and it was revealed that Cu, Cd, and Zn were enriched and posed ecological risks [32].
Multivariate statistical methods were conducted on the data to examine heavy metal distribution in the
coastal sands of Shenzhen (China); later, the risk indices were calculated for these heavy metals, as a
result, Cd, and Hg became prominent based on their ecological risk index values [42]. The potential
ecological risk indices of Cu, Pb, Ni, Zn, and Hg elements were found to be high in the study conducted
on the beach sands of Laizhou Bay (China); moreover, it was revealed that their distribution was
compatible with industrial areas [43]. However, no scientific study has been carried out in the study
area or its vicinity.

The present study aims to determine the elements in the beach sands of the world-famous
Moonlight Beach (Kemer, Antalya, Turkey), examine the results of the analysis using multivariate
statistical methods, calculate the hazard indices, and generate density maps according to these anomalies.

2. Materials and Methods

2.1. Study Site, Sampling, Experimental Analysis, Statistical Methods

The study site is the world-famous Moonlight Beach (also known as Ayisigi Beach, Kemer, Antalya,
Turkey) which is located on the southern coast of Turkey. Located in very close to downtown Kemer,
the beach has a length of 350 m and a width of 25 m, and it is a sandy beach without any pebbles
(Figure 1).

Samples were collected from the study site by a random sampling method. The samples were
collected from three different points in each location, 10 m from the sea on the beachside. For each
sample, a total of 3 kg of sand (sediment, sediment) was collected from a depth of approximately 10 cm
using a sterile shovel. The coordinates of the location of each sample were obtained by using a GPS
device. The samples were dehumidified by keeping them at 105 ◦C for 24 h in an oven, and they were
dried to have a constant weight. Then, an agate mortar was used to ground the samples until they got
the mesh size of 200 µm, later, the chemical analyses were carried out by standard methods using XRF.
The oxide values of the samples, which had been subjected to the chemical analyses, were recalculated
using background values; in the end, the element contents of the samples were determined.

Statistical analyses of the data about the heavy metal concentrations of the samples were conducted
using SPSS 23 and Stata 14 software packages. Also, the density maps were prepared using ArcGIS
software. MS Excel was used to calculate index values.

Firstly, descriptive statistics were calculated for the data set of heavy metal concentrations obtained
from the sand samples collected from the beach, then Shapiro-Wilk and Kolmogorov-Smirnov normality
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tests were performed on the data set. The data group was tried to be interpreted by using multivariate
statistical methods. In the present study, correlation analysis, factor analysis, and regression analysis
were used. The spatial distribution of heavy metals along the beach was explained using density maps
of the data set. Then, the pollution indices of the beach sands of Moonlight Beach were determined
using pollution index calculation methods.

Figure 1. Map of the study area.

2.2. Correlation Analysis

The strength and direction of the relationship between two variables are determined using
correlation analysis. This relationship is determined according to the value of the correlation coefficient,
which is between −1 and +1. If the value of the correlation coefficient between two variables is
+1 or −1, it is interpreted that the correlation between the variables is perfect. On the other hand,
if the value of this coefficient approaches zero, the strength of the correlation decreases. The sign
of the coefficient indicates the correlation’s direction. Accordingly, the sign of + shows a positive
correlation, while the sign of − shows a negative correlation. Usually, the following four correlation
measures are calculated: The Pearson’s correlation coefficient (also known as Pearson product-moment
correlation), Spearman’s correlation coefficient, the Point-Biserial correlation coefficient, and Kendall
rank correlation coefficient [44]. These coefficients are used based on the data’s meeting several
statistical assumptions. Since the data set did not show normal distribution, Spearman’s correlation
coefficient was used instead of the Pearson’s correlation coefficient in the present study. The equation
of Spearman’s correlation coefficient is as follows:

ρ = 1−
6
∑

d2
i

n(n2 − 1)
(1)
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where ρ denotes the Spearman’s correlation coefficient, di is the difference between ranks of the
corresponding variables, and n denotes the number of observations.

2.3. Factor Analysis

As a multivariate statistical analysis method, factor analysis is used in several disciplines.
In particular, it is widely used to transform a large number of variables into a small number of
significant variables. In this analysis technique, the maximum common variance is calculated using all
variables, and they are put in a common factor. We can use these new factors extracted in other analyses.
Factor analysis is divided into two methods as exploratory and confirmatory according to its purpose.
Exploratory factor analysis is preferred when a theory will be suggested by finding a factor using the
relationship between variables; on the other hand, confirmatory factor analysis is preferred when the
relationship between variables will be used to test a previously known theory [45,46]. A factor model
can be defined as follows: 

x1 = µ1 + l11F1 + l12F2 + · · ·+ l1mFm + e1

x2 = µ2 + l21F1 + l22F2 + · · ·+ l2mFm + e2
...
xk = µk + lk1F1 + lk2F2 + · · ·+ lkmFm + ek


(2)

where x is a random data matrix, which has k variables and n units, and u is the mean vector of x.
The coefficient of li j denotes the factor loading of the ith variable on the jth factor. It indicates the
factor loadings on the factor. Since F j affects all observed factors, it is referred to as the common factor
(i = 1, . . . , k; j = 1, . . . , m; m < k ) [45,46].

The data set is expected to meet the following assumptions to apply factor analysis: The data set
should have no outliers. Also, there should be more samples than the number of factors, i.e., the sample
size should be sufficient. There should be no multicollinearity between variables. The variables are
not required to have a fixed variance between them. The variables are required to satisfy the linearity
requirement. Finally, the variables are required to satisfy the assumption of multivariate normal
distribution. However, the last assumption is not required when the Principal Component Analysis
method is selected.

2.4. Regression Analysis

Regression analysis is referred to as a statistical modeling method. It is used to predict the
correlation between one or multiple independent variables (explanatory variable) and one dependent
variable (explained variable).

The multiple regression model is defined as follows:

Yi = β0 + β1Xi1 + β2Xi2 + . . .+ β1kXik + ε (3)

In this equation, Yi stands for the ith value of the dependent variable observed, Xi j stands for the
ith value of the jth independent variable, β j stands for jth estimated regression coefficient, ε denotes the
error term (residual), and k stands for the number of independent variables [47].

The regression model in the multiple regression is required to have a proper specification. In other
words, it should be ensured that appropriate independent variables are used in the model. The variables
are required to have a linear relationship. There should be no outlier in the data set. There should be
no correlation between errors and independent variables. The values of dependent and independent
variables should show equal variance. The errors are expected to be distributed close to the normal
distribution. There should be no multicollinearity problem, i.e., high correlation between variables.

The most frequently used methods for estimating the coefficients are the least-squares method
and the maximum likelihood method.
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2.5. Calculation of Contamination Indices

Heavy metal contamination in sediments is determined using the Contamination Factor (CF)
index [48,49].

The Pollution Load Index (PLI), on the other hand, indicates heavy metal concentrations. It is
derived from concentration factors and summarizes the overall heavy metal toxicity level in a given
sample [50,51].

The Enrichment Factor (EF) examines the ratio of a sample’s elemental concentrations to the
elemental concentrations in the surficial Earth’s crust [49]. The thresholds used in examining this ratio
are given in Table 1 [52,53].

Table 1. Indices used in risk and pollution of beach sand samples from Moonlight Beach.

Indices Equation Description Reference

Contamination
Factor (CF) CF = Cmetal/Cbackground

CF < 1: Low contamination
1 ≤ CF < 3: Moderate contamination
3 ≤ CF < 6: High contamination
CF ≥ 6: Very high contamination

[48,49]

Pollution load
index (PLI) PLI = (CF1 ×CF2 × . . .×CFn)

1/n

PLI < 1: No polluted
PLI = 1: Only baseline levels of
pollutans are present
PLI > 1: Polluted

[50,51]

Enrichment
Factor (EF) EF =

(C/Fe)sample

(C/Fe)background

EF < 1: No enrichment
1 ≤ EF < 3: Minor enrichment
3 ≤ EF < 5: Moderate enrichment
5 ≤ EF < 10: Moderately enrichment
10 ≤ EF < 25: High enrichment
25 ≤ EF < 50: Very high enrichment
EF > 50: Exceptionally
high enrichment

[52,53]

Potential
Ecological Risk

Index (RI)

Ef = CFmetalTf
RI =

∑
Ef

RI < 150: Low ecological risk
150 ≤ RI < 300: Moderate
ecological risk
300 ≤ RI < 600 : Ecological risk
RI ≥ 600: Very high ecological risk

[49]

The potential ecological impact of heavy metals in sediments on organisms in marine ecosystems
can be investigated using the Potential Ecological Risk Index (RI) [54]. Potential Ecological Risk Index
(RI) can be calculated by multiplying the result of the Contamination Factor (CF) and the toxicity
coefficient. The total value of each metal calculated gives the potential ecological risk index of that
sample. The following toxicity coefficients are used in the equation: (T f ): Mn = 1, Cr = 2, Ni = 5,
and Zn = 1.

3. Results and Discussion

3.1. Concentration and Descriptive Statistics in Sediment

The coordinates of the locations where 20 beach sand samples were taken and the descriptive
statistical values of 21 elements found in these samples are given in Table 2. The concentration values
of the elements in these samples are also shown in the same table. According to the average values
of the concentrations, the elements are listed in a descending order as follows: Ca > Si > Mg > Fe
> Al > Na> K > Ti > S > Sr > Mn > Cr > Ba > P > Ni > Zn > Zr > Cu > Rb. While determining
the distribution of the variable, the extension of the distribution toward the right or left tail is called
skewness. Skewness is used to determine the degree to which the distribution is symmetrical [55–59].
Skewness value is used to analyze the asymmetrical distribution of elements.
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Table 2. Descriptive statistics of the beach sands of Moonlight Beach and concentrations of elements (%) in the sand.

Coordinate Elements (%)

Sample
Location Latitude Longitude Ca Si Mg Fe Cl Al Na S K Ti Mn Cr Ni P Sr Br Zr Rb Ba Zn Cu

K1 36.598623 30.58785532 24.945 3.472 2.422 2.309 3.054 1.183 1.129 0.142 0.205 0.114 0.060 0.039 0.024 0.009 0.017 0.014 0.005 0 0 0 0
K2 36.598224 30.58682825 29.023 5.104 2.908 1.931 0.054 1.375 0.206 0.040 0.273 0.183 0.057 0.017 0.013 0.029 0.030 0 0.006 0 0 0.004 0
K3 36.597064 30.58608198 34.298 0.750 2.388 0.527 0.286 0.235 0.267 0.041 0.039 0.031 0.017 0 0 0.004 0.028 0 0 0 0 0 0
K4 36.596218 30.58568363 34.094 1.786 2.041 0.837 0.615 0.344 0.519 0.067 0.084 0.054 0.029 0.010 0.017 0.007 0.045 0 0 0 0.036 0 0
K5 36.595734 30.58451393 33.827 3.071 2.070 0.979 0.482 0.431 0.423 0.053 0.115 0.073 0.025 0.023 0 0.009 0.032 0.003 0 0 0 0 0
K6 36.59562 30.58333271 34.479 2.059 1.950 0.663 0.245 0.310 0.218 0.042 0.074 0.056 0.023 0.008 0 0.005 0.038 0 0 0 0 0 0
K7 36.595598 30.58266279 33.149 3.255 1.961 0.884 0.938 0.457 0.771 0.082 0.123 0.059 0.033 0.025 0.014 0.008 0.047 0.004 0 0 0 0 0
K8 36.595633 30.581734 34.440 3.334 2.151 0.883 0.514 0.413 0.441 0.052 0.100 0.066 0.033 0.029 0 0.007 0.034 0 0 0 0 0 0
K9 36.595629 30.58067228 28.498 1.996 1.705 0.936 0.411 0.391 0.376 0.049 0.084 0.071 0.027 0.013 0 0.070 0.034 0 0 0 0.037 0 0

K10 36.596112 30.57913712 34.953 4.403 1.687 1.054 0.088 0.499 0.156 0.043 0.131 0.095 0.040 0.030 0 0.011 0.058 0 0 0 0 0.003 0
K11 36.595759 30.57817575 33.919 4.777 1.919 0.989 0.266 0.507 0.343 0.054 0.114 0.065 0.012 0.025 0 0.010 0.055 0 0 0 0 0.005 0
K12 36.596175 30.5769109 33.272 4.734 1.891 1.148 0.526 0.598 0.539 0.065 0.127 0.076 0.026 0.020 0.017 0.012 0.042 0 0 0 0.038 0 0
K13 36.596633 30.57640476 34.059 2.556 2.282 0.644 0.454 0.324 0.426 0.051 0.075 0.036 0.012 0.020 0.007 0.006 0.031 0 0.005 0.003 0.000 0 0
K14 36.596898 30.57615056 32.727 5.574 0.509 1.266 0 1.985 0.031 0.010 0.283 0.193 0.021 0.019 0.013 0.031 0.020 0 0 0.003 0.037 0.005 0
K15 36.597109 30.57588688 30.329 3.784 2.086 0.730 0.361 0.457 0.382 0.044 0.107 0.061 0.019 0.022 0.006 0.009 0.028 0 0 0 0.037 0.003 0
K16 36.597518 30.57559466 29.190 5.267 1.547 1.019 0.187 0.565 0.246 0.048 0.149 0.099 0.038 0.024 0.010 0.011 0.038 0 0 0.002 0.047 0.003 0
K17 36.597955 30.57534626 33.679 3.554 2.179 0.872 0.351 0.507 0.348 0.060 0.108 0.076 0.030 0.019 0.007 0.010 0.048 0 0 0.002 0 0 0.010
K18 36.598287 30.57529115 35.585 2.590 1.678 1.101 0.076 0.439 0.120 0.041 0.102 0.108 0.034 0.026 0 0.010 0.061 0 0 0 0.045 0.006 0
K19 36.598895 30.5750709 34.509 2.792 1.995 1.054 0.141 0.477 0.184 0.051 0.115 0.089 0.055 0.028 0 0.013 0.051 0 0 0 0 0 0
K20 36.599562 30.57505003 30.882 4.793 1.719 1.366 0.337 0.665 0.348 0.059 0.175 0.109 0.059 0.030 0 0.014 0.049 0 0 0 0.038 0.002 0

Maxsimum 35.585 5.574 2.908 2.309 3.054 1.985 1.129 0.142 0.283 0.193 0.060 0.039 0.024 0.070 0.061 0.014 0.006 0.003 0.047 0.006 0.010
Minimum 24.945 0.750 0.509 0.527 0 0.235 0.031 0.010 0.039 0.031 0.012 0 0 0.004 0.017 0 0 0 0 0 0
Mean 32.493 3.483 1.954 1.060 0.469 0.608 0.374 0.055 0.129 0.086 0.032 0.021 0.006 0.014 0.039 0.001 0.001 0 0.016 0.002 0
Median 33.753 3.403 1.978 0.984 0.344 0.467 0.348 0.051 0.115 0.074 0.029 0.023 0.003 0.010 0.038 0 0 0 0 0 0
Standard Deviation 2.764 1.319 0.463 0.421 0.648 0.425 0.244 0.025 0.062 0.042 0.015 0.009 0.008 0.015 0.012 0.003 0.002 0.001 0.020 0.002 0.002
Kurtosis 1.412 −0.678 4.828 3.784 14.827 5.491 4.067 8.392 1.803 2.173 −0.438 0.801 −0.470 11.178 −0.763 13.629 3.038 2.341 −1.858 −0.461 20.000
Skewness −1.375 −0.181 −1.204 1.805 3.652 2.348 1.671 2.248 1.406 1.444 0.704 −0.583 0.830 3.179 0.053 3.585 2.160 1.914 0.499 0.976 4.472
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If skewness = 0, the series is distributed symmetrically. The series becomes asymmetrical in line
with the difference of the skewness value from zero. The series is right-skewed (positive) when the
skewness > 0, and the series is left-skewed (negative) when the skewness < 0, which means it is not
symmetrical. In the case of the right-skewed data, usually, the arithmetic mean will be greater than the
mode and median values. On the other hand, the arithmetic mean is usually smaller than the mode
and median values in the case of the left-skewed data [55]. In the present study, the elements of Ca, Si,
Mg, and Cr have left-skewed curves while the other elements have right-skewed curves. The elements
with a right-skewed curve tend to have higher values compared to other elements.

The kurtosis, on the other hand, is used to determine the height of the distribution of the same
variables [55–59]. If the kurtosis value equals to 3, the curve has a mesocortical shape. In this case,
there is no kurtosis in the curve, and there is a symmetrical distribution. A leptokurtic curve is seen
when kurtosis > 3, which means that the curve is asymmetrical and the probability of extreme values is
high. On the other hand, a platykurtic curve is formed when kurtosis < 3, which means that the curve
is asymmetrical, and the data is flatter, “less peaked”, and spread over a wider area compared to the
normal distribution [55]. In the present study, the elements with a kurtosis value less than 3 are found
to be Ca, Si, K, Ti, Mn, Cr, Ni, Sr, Pb, Ba, Zn, and they have asymmetric curves. These elements have
platykurtic curves. On the other hand, other elements are asymmetric and have leptokurtic curves.

The Shapiro-Wilk and Kolmogorov-Smirnov normality tests were conducted to examine whether
the data consisting of the element concentrations in the beach sand samples had a normal distribution
(Table 3). The hypotheses below were tested for these normality tests:

Hypothesis 1 (H1). The data fit the normal distribution.

Hypothesis 2 (H2). The data do not fit the normal distribution.

Table 3. Normality Tests.

Kolmogorov-Smirnov Shapiro-Wilk

Statistic Sig. Statistic Sig.

Ca 0.244 0.003 0.834 0.003
Si 0.129 0.200 * 0.969 0.724 **

Mg 0.176 0.108 * 0.881 0.018
Fe 0.216 0.015 0.824 0.002
Al 0.310 0.000 0.678 0.000
Na 0.191 0.054 * 0.867 0.011
S 0.224 0.010 0.752 0.000
K 0.239 0.004 0.850 0.005
Ti 0.187 0.064 * 0.858 0.007

Mn 0.172 0.122 * 0.906 0.054 *
Cr 0.145 0.200 * 0.966 0.677 *
Ni 0.299 0.000 0.810 0.001
P 0.355 0.000 0.575 0.000
Sr 0.102 0.200 * 0.975 0.857 *
Zr 0.508 0.000 0.448 0.000
Rb 0.480 0.000 0.533 0.000
Ba 0.385 0.000 0.683 0.000
Zn 0.367 0.000 0.739 0.000
Cu 0.538 0.000 0.236 0.000

* Significant at the 0.05 level (2-tailed). ** Significant at the 0.01 level (2-tailed).

H1 hypotheses were accepted when the significant (sig.) value of the Z statistics was greater than
0.05, while H1 hypotheses were rejected for other values. According to the results of hypothesis tests,
Si, Mg, Na, Ti, Mn, Cr, and Sr were found to show normal distribution, while other data did not fit the
normal distribution.
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3.2. Correlation Analysis

The correlation coefficients determined based on the results of chemical analyses of beach sands
were presented in Table 4. The correlation coefficient was calculated using Spearman’s rank-order
correlation. The following elements were found to have strong positive correlations (0.01 level) with
the other elements mentioned: Si with Fe, Al, K, Ti, and P; Fe with Al, K, Ti, Mn, and P; Al with K, Ti,
P; Na with S; K with Ti, Mn, and P; Ti with Mn and P. On the other hand, high negative correlations
(0.01 level) were found between Mg and Ba and between Na and Zn. There is a negative correlation
(0.05 level) relationship between Ca and Si, Al, K, Ni. However, the following elements were found
to have a negative correlation (0.05 level) with the other elements mentioned: Ca with Si, Al, K,
and Ni; Mg with P, Sr, Ba, and Zn; S with Zn; Sr with Zr. Metals showing a high positive correlation
were interpreted to be of similar origin [56–59]. These metals were found to be associated with Si.
However, the elements with negative correlations were thought to have different origins. Moreover,
Ca constitutes a different origin group from Si.

3.3. Factor Analysis

The Kaiser-Meyer-Olkin (KMO) test statistic was used to examine the suitability of the data of
the Moonlight Beach coastline for factor analysis. Since the test statistic was found to be 0.52 > 0.5,
the data set was considered suitable for factor analysis. Moreover, the test statistics for Bartlett’s Test of
Sphericity was found to be 301.027 and the significant value was calculated as 0.000. Since p < 0.01,
the null hypothesis was rejected, which meant that the correlation matrix was not equal to the identity
matrix. Therefore, the dataset was also found to be suitable for factor analysis according to Bartlett’s
Test of Sphericity (Table 5).

Since all of the data did not fit the normal distribution, factor loadings were studied using the
Principal Component Analysis. It was thought that the components showing a strong correlation
indicated the source that provided the strength of the correlation between those components [60,61].

The proportional changes for each analyzed element are given in Table 6. The elements which
had the initial value 1 did not lose much significance at the end of the dimension reduction operation
through factor analysis. These values were found to be close to 1 (Table 6).

The levels of explained variance based on the factor analysis are given in Table 7. According to
the factor analysis, four factors were obtained for 14 elements. With the value of 30.584%, the first
factor has the highest explanatory power. The other four factors obtained explains 83.540% of the
total variance. Since the level of explained variance is high (close to 1), the obtained factors have high
explanatory power.

Principal component analysis (PCA) has a key role in statistical analysis [9,15,20,62]. It was used to
determine the differences between beach sand samples based on the variables. A Rotated Component
Matrix was obtained to see factor loadings more clearly. In the present study, four principal components
were determined using the SPSS 23 software package. According to the Rotated Component Matrix,
the elements of Al, K, Ti, Si, and Mg constituted Factor 1 (Table 8). Similarly, Na, S, Ni, Ca, and Sr
constituted Factor 2, while Mn, Cr, and Fe constituted Factor 3. Finally, the element of P constituted
Factor 4.

The eigenvalue is an important measure for observing the number of components determined in
factor analysis [21,55,62]. According to eigenvalues, the breakpoint formed by the values in the plot
causes the curve to have a new slope due to a significant change in the variance 4; thus, the curve turns
into an approximately flat line after point 6 (Figure 2). It was found to be compatible with four factors
previously determined and became an important indicator for following the change of these factors.
Since the breakpoints in the curve are not sharp, it is interpreted that the number of variables affecting
the study area might be high.
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Table 4. Correlation coefficients between the elements in the beach sand samples.

Ca Si Mg Fe Al Na S K Ti Mn Cr Ni P Sr Zr Rb Ba Zn Cu

Ca 1.000
Si −0.445 * 1.000

Mg −0.101 −0.295 1.000
Fe −0.347 0.647 ** −0.302 1.000
Al −0.529 * 0.888 ** −0.194 0.842 ** 1.000
Na −0.337 −0.226 0.432 −0.203 −0.159 1.000
S −0.203 −0.077 0.232 0.005 0.069 0.827 ** 1.000
K −0.481 * 0.838 ** −0.229 0.865 ** 0.938 ** −0.140 0.060 1.000
Ti −0.344 0.690 ** −0.323 0.925 ** 0.849 ** −0.392 −0.192 0.844 ** 1.000

Mn −0.160 0.267 −0.028 0.658 ** 0.483 * −0.057 0.157 0.566 ** 0.663 ** 1.000
Cr 0.071 0.361 −0.168 0.516 * 0.384 0.071 0.289 0.468* 0.441 0.553 * 1.000
Ni −0.522 * 0.270 0.209 0.240 0.432 0.457 * 0.380 0.422 0.168 0.128 −0.133 1.000
P −0.435 0.596 ** −0.482 * 0.710 ** 0.705 ** −0.396 −0.203 0.642 ** 0.762 ** 0.403 0.149 0.052 1.000
Sr 0.540 * −0.026 −0.466 * 0.096 −0.029 −0.257 0.170 −0.048 0.021 0.242 0.320 −0.377 0.151 1.000
Zr −0.375 0.092 0.600 ** 0.271 0.244 0.181 0.015 0.244 0.223 0.234 0.051 0.460 * −0.024 −0.474 * 1.000
Rb −0.172 0.312 −0.161 −0.083 0.222 −0.214 −0.174 0.151 0.144 −0.238 −0.172 0.285 0.140 −0.240 0.119 1.000
Ba −0.265 0.305 −0.660 ** 0.304 0.271 −0.138 −0.151 0.212 0.356 0.082 −0.006 0.148 0.467 * 0.084 −0.328 0.188 1.000
Zn −0.033 0.619 ** −0.480 * 0.475 * 0.487 * −0.651 ** −0.549 * 0.447 * 0.536 * 0.083 0.240 −0.113 0.452 * 0.194 −0.012 0.143 0.408 1.000
Cu −0.020 0.060 0.219 −0.179 0.139 −0.020 0.219 −0.060 0.020 0.020 −0.179 0.064 0.060 0.179 −0.096 0.370 −0.180 −0.180 1.000

* Correlation is significant at the 0.05 level (2-tailed). ** Correlation is significant at the 0.01 level (2-tailed).
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Table 5. The results of the Kaiser-Meyer-Olkin Test and Bartlett’s Test of Sphericity.

Kaiser-Meyer-Olkin Measure of Sampling Adequacy 0.529

Bartlett’s Test of Sphericity Approx. Chi-Square 301.027
Sig. 0.000

Table 6. Communalities.

Initial Extraction

Ca 1.000 0.826
Si 1.000 0.770

Mg 1.000 0.540
Fe 1.000 0.931
Al 1.000 0.943
Na 1.000 0.907
S 1.000 0.936
K 1.000 0.965
Ti 1.000 0.943

Mn 1.000 0.830
Cr 1.000 0.767
Ni 1.000 0.800
P 1.000 0.752
Sr 1.000 0.786

Extraction Method: Principal Component Analysis.

Table 7. Total Variance Explained.

Component
Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings

Total % of Variance Cumulative % Total % of Variance Cumulative % Total % of Variance Cumulative %

1 5.567 39.766 39.766 5.567 39.766 39.766 4.282 30.584 30.584
2 3.220 23.002 62.769 3.220 23.002 62.769 3.421 24.434 55.018
3 1.795 12.825 75.593 1.795 12.825 75.593 2.271 16.223 71.242
4 1.112 7.946 83.540 1.112 7.946 83.540 1.722 12.298 83.540

Extraction Method: Principal Component Analysis.

Table 8. Rotated Component Matrix.

Component

1 2 3 4

Al 0.921 0.158 −0.006 0.265
K 0.912 0.143 0.232 0.242
Ti 0.870 −0.089 0.258 0.334
Si 0.818 −0.082 0.278 −0.131

Mg −0.512 0.460 0.224 0.121
Na −0.172 0.912 0.168 −0.135
S −0.178 0.847 0.413 −0.128

Ni 0.458 0.761 −0.090 −0.055
Ca −0.278 −0.616 −0.220 −0.567
Sr −0.274 −0.561 0.490 −0.395

Mn 0.222 0.209 0.820 0.254
Cr 0.328 0.174 0.736 −0.295
Fe 0.555 0.474 0.559 0.294
P 0.157 −0.172 −0.035 0.835

3.4. Regression Analysis

The dependent variable to be explained by regression analysis is Si, while the independent
variables selected to explain this variable are Sr, Mn, Mg, Na, Cr, and Ti. The R2 value, the coefficient
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of determination of the regression model, was found to be 63.6%. These independent variables explain
63.6% of the dependent variable. The value of the variance inflation factor (VIF) was examined in
terms of multicollinearity assumption; and the maximum VIF value was found to be 2.916 (<10),
which was an acceptable value. There was no multicollinearity problem. The Durbin-Watson statistic
was determined to be 1.597. According to the ANOVA table, the significant value was calculated as
0.021. According to these results, the feature and number of data used in the statistical analysis were
found to be sufficient (Table 9). Examining the ANOVA table of the model, it is seen that the F test
value is 3.790 and the significant value is 0.021 (<0.05). According to these figures, the model was
found to be statistically significant.

According to the values of the regression coefficients in the model, the effects of two elements
on the Si value were found to be statistically significant. One unit increase in the Ti value results in
an increase of 0.022 units in the Si value. On the other hand, one unit increase in Cr value causes a
0.069 unit increase in Si value.

The significance values of the t statistics for the constant-coefficient and the elements of Mg, Na, Mn,
and Sr were found to be higher than 0.05. Therefore, they were not found to be statistically significant.

3.5. Metal Concentrations and Distribution in Baech

Depending on the characteristics of the locations, some heavy metals may accumulate at the
locations [6,7,19,21,34,52–55,61]. The distribution maps of these deposits are important in terms of
showing the differences and similarities of the elements and heavy metals’ general distribution on
the site [11,34]. In this context, distribution maps of the heavy metal concentrations of Al, Fe, P, Ti,
which were the metals representing the first factor, in the beach sand samples from Moonlight Beach
were prepared (Figure 3). According to these maps, the beach sand samples of Moonlight Beach
were found to have very low values in terms of heavy metal anomalies. It is evident that the beach,
where anthropogenic activities are intense, are surrounded by heavy metals.

Figure 2. Scree plot of the principal components.
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Table 9. Results of the regression model designed for the dependent variable of Si.

Model
Summary R R Square Adjusted

R Square
Std. Error of the

Estimate

Change Statistics
Durbin-WatsonR Square

Change F Change df1 df2 Sig. F
Change

0.798 a 0.636 0.468 0.961617579534837 0.636 3.790 6 13 0.021 1.597

Model ANOVA Sum of Squares df Mean
Square F Sig.

Regression 21.030 6 3.505 3.790 0.021 b

Residual 12.021 13 0.925
Total 33.051 19

Coefficients a

Model

Unstandardized
Coefficients

Standardized
Coefficients t Sig.

Correlations Collinearity
Statistics

B Std. Error Beta Zero-order Partial Part Tolerance VIF

(Constant) 0.419 1.920 0.218 0.831
Mg 0.073 0.619 0.026 0.118 0.908 −0.340 0.033 0.020 0.592 1.689
Na 0.002 1.374 0 0.002 0.999 −0.137 0 0 0.432 2.314
Ti 23.495 9.021 0.744 2.605 0.022 0.671 0.586 0.436 0.343 2.916

Mn −32.358 23.717 −0.369 −1.364 0.196 0.275 −0.354 −0.228 0.382 2.619
Cr 70.171 35.435 0.473 1.980 0.069 0.518 0.481 0.331 0.490 2.040
Sr 11.617 24.093 0.108 0.482 0.638 0.020 0.133 0.081 0.561 1.784

a Dependent Variable: Si. b Predictors: (Constant), Sr. Mn. Mg. Na. Cr. Ti.
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Figure 3. Distribution map of several metals by their concentration level.

3.6. Results of Index

Various “index” calculations were used to determine the toxicity risk of the beach and to calculate
the quality of the beach sand [37,48,49]. These calculated values were compared with the national
Maximum Permissible Concentration (MPC) [61]. The following indices were used in an integrated
manner: Pollution Load Index (PLI), Potential Ecological Risk Index (RI), Contamination Factor (CF),
and Enrichment Factor (EF). Fe was considered to be the “conservative element” in the calculation of
Enrichment Factor (EF) (Tables 10 and 11).

Table 10. Index calculations for beach sand samples.

Turkey’s MPC
Contamination Factor Enrichment Factor Potential Ecological Risk index Risk

Mean Min Max Mean Min Max Mean Min Max Mean Min Max

Mn - - - - 5.03 1.63 6.40 3.61 1.32 6.68
Cr 100 2.139 0 3.866 4.74 0 6.40 12.22 0 22.09
Ni 30-75 0.844 0 3.154 2.22 0 6.20 9.90 0 36.96
Cu 50–140 0.035 0 0.690 0.22 0 4.39 - - -
Zn 150–300 0.028 0 0.207 1.79 0 6.40 0.94 0 3.82
RI 26.67 1.93 65.73

Considering the distribution of Potential Ecological Risk index values of beach sand samples from
Moonlight Beach, location K1 stands out with a value of 65.73, which is the highest value. However,
this value is well below the threshold value (RI < 150) (Table 1). However, according to PLI, all of
the locations with a value of less than 1, except for the locations of K3, K13, and K2, were found to
be polluted (PLI > 1: Polluted). On the other hand, CF and EF values were found to be 0 (zero) in
location K2. However, in other locations, they were greater than 1 (one). The national Maximum
Permissible Concentration (MPC) values for heavy metal concentrations have been determined on a
national scale, [61,63]. The distribution map of the Potential Ecological Risk Index (RI) values of the
study area is shown in Figure 4. The values of all of the locations were found to have lower than the
national Maximum Permissible Concentration (MPC) values [61].
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Table 11. Index values of locations.

Sample RI PLI Cr (CF) Cr (EF)

K1 65.73 1.213 3.86573 4.98
K2 39.69 0.892 1.717342 3.58
K3 1.93 0.000 0 0.00
K4 35.16 1.211 0.951038 6.20
K5 15.93 1.232 2.305754 5.79
K6 7.07 0.944 0.793672 5.46
K7 38.84 1.453 2.469962 4.93
K8 20.36 1.308 2.928376 5.45
K9 10.43 1.069 1.306822 6.10
K10 23.62 1.320 3.037848 5.38
K11 18.74 1.262 2.538382 4.98
K12 40.88 1.456 1.977338 4.90
K13 23.50 0.750 2.032074 5.07
K14 36.61 1.354 1.943128 1.63
K15 25.52 1.146 2.196282 4.07
K16 34.97 1.332 2.367332 4.61
K17 24.41 1.034 1.902076 4.39
K18 22.51 1.272 2.620486 6.40
K19 22.23 1.295 2.812062 5.63
K20 25.24 1.318 3.017322 5.24

Figure 4. Distribution map of the Potential Ecological Risk Index (RI) values for the study area.

4. Conclusions

According to the data obtained from the chemical analyses of the chemical contents of the samples
taken from the study area and the findings obtained from the statistical analyses and distribution maps
of these data can be listed as follows:

The elemental contents of the beach sand samples collected from Moonlight Beach are ordered
according to their abundance as follows: Ca > Si > Mg > Fe > Al > Na > K > Ti > S > Sr > Mn > Cr >

Ba > P > Ni > Zn > Zr > Cu > Rb. Location K1 draws attention in terms of having the highest heavy
metal anomaly (Fe, Cl, Al, Mn, Cr, Ni, Br). Location K18 has the richest Ca content while the location
K14 has the richest Si content.

According to the results of the Shapiro-Wilk and Kolmogorov-Smirnov normality tests, the contents
of all the other elements except for Si, Mg, Na, Ti, Mn, Cr, and Sr are not normally distributed. Therefore,
factor loadings of the data were calculated using Principal Component Analysis.
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Heavy metals with a strong positive correlation (0.01 level) with Si are ordered as Fe, Al, K, Ti,
P. This relationship suggests that these metals are of similar origin. On the other hand, Ca shows a
different correlation behavior from Si and heavy metals strongly correlated with Si.

The results of the Kaiser-Meyer-Olkin (KMO) test (0.52 > 0.5) revealed that the data set was
suitable for factor analysis. According to the results of Bartlett’s Test of Sphericity (301.027; significant
0.000; p < 0.01; the null hypothesis is rejected; the correlation matrix is not equal to the identity matrix),
the data set was found to be suitable for factor analysis.

According to the results of Principal Component Analysis, by which four factors were extracted
from 14 heavy metals, 83.540% of the total variance is explained by these factors. According to
eigenvalues, the breaking point causes a significant change in variance 4. This case was found to be
consistent with PCA. The first factor explains 30.584% of the total variance. The first factor, which was
determined by Rotated Component Matrix, consists of the elements of Al, K, Ti, Si, and Mg, and they
are consistent with the elements that show a strong correlation.

The value of the coefficient of determination (R2) of the regression model was calculated as
63.6%. The highest value of the variance inflation factor (VIF) was calculated as 2.916 (<10), and the
Durbin-Watson coefficient was determined as 1.597. According to the ANOVA table, the F test value
was 3.790, and the significant value was 0.021 (<0.05). It was found that there was no multicollinearity
problem, the data were sufficient, and the regression model was significant. According to the coefficients
of the regression model, one unit increase in the value of Ti causes a 0.022 unit increase in the value
of Si.

According to distribution maps of heavy metal anomalies, location K3 has the minimum anomaly.
In particular, Moonlight Beach has no problem with its beach sands in terms of heavy metal anomalies.
However, the promontory part on the west of the beach, the creek on the east of the beach, and the
parking area of the boats show heavy metal anomalies. Heavy metal entry to the beach in these areas
should be prevented.

The Potential Ecological Risk Index (RI) analysis conducted for the study area revealed that the
risk index was RI < 150. In this case, the entire study area was found to have no potential ecological risk.

The heavy metal analyses stated in the manuscript can be repeated for certain periods. In the case
of detecting heavy metal increases in the area, emergency action plans can be prepared. The coast
can be protected by sharing this data with local governments. Moreover, the procedure can be
repeated to eliminate the risk of increasing heavy metal values. Also, measures can be taken to avoid
anthropogenic pollution.
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