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Abstract: It is well known that dynamical processes on complex networks are influenced by the
degree correlations. A common way to take these into account in a mean-field approach is to consider
the function knn(k) (average nearest neighbors degree). We re-examine the standard choices of
knn for scale-free networks and a new family of functions which is independent from the simple
ansatz knn ∝ kα but still displays a remarkable scale invariance. A rewiring procedure is then
used to explicitely construct synthetic networks using the full correlation P(h|k) from which knn is
derived. We consistently find that the knn functions of concrete synthetic networks deviate from ideal
assortativity or disassortativity at large k. The consequences of this deviation on a diffusion process
(the network Bass diffusion and its peak time) are numerically computed and discussed for some
low-dimensional samples. Finally, we check that although the knn functions of the new family have
an asymptotic behavior for large networks different from previous estimates, they satisfy the general
criterium for the absence of an epidemic threshold.

Keywords: correlated networks; average nearest neighbor degree function; dynamics on top of
complex networks; innovation diffusion

1. Introduction

As is nowadays well known, a large variety of real-world networks display a scale-free
property, see, e.g., in [1–4]. A further feature typically found to be present for example in
social networks is represented by assortative mixing, see, e.g., in [2,5]. This expresses the
tendency of nodes to be connected with nodes which are similar to them. In particular,
degree assortativity—which, at least in the mathematical and physical literature, provides
the most studied example of assortativity—suggests that high degree nodes are prefer-
entially linked to other high degree nodes and low degree nodes to other low degree
nodes. The opposite property, degree disassortativity, according to which hubs are prefer-
entially connected to small-degree nodes, and vice versa, is present in general in biological
and technological networks, see, e.g., in [2,5]. Networks which exhibit assortativity or
disassortativity are said to be correlated.

In this paper, we explore some aspects of different possible mathematical and com-
putational approaches to the treatment of evolutionary systems defined on this kind of
networks. We are ultimately motivated by the interest for the dynamics of phenomena
pertaining to a socio-economic context. An effective formulation of the evolution equations
describing such phenomena cannot neglect the nature of the links among the elements of
the systems at hand. Given that the incorporation of the network of connections can be
achieved with different approaches, it is natural to analyze which are the advantages and
which are prices and costs of each approach.

To fix ideas, we consider here the problem of diffusion of innovations, for which two
of the possible formal frameworks are briefly recalled. Both frameworks are expressed by
systems of differential equations. One of them mimics the heterogeneous mean-field ap-
proach developed and successfully applied by Boguñá, Pastor-Satorras, and Vespignani for
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the investigation of epidemic spreading in complex networks, see, e.g., in [6,7]. It involves
a number of equations equal to the maximum degree n of the nodes in the network. The
other framework relies on the explicit construction of an ensemble of networks; for each
element of the ensemble, a much larger system of N differential equations is studied, N
being the number of nodes in the network. The construction of the ensemble involves a
rewiring procedure: starting from an initial network configuration, links between nodes are
repeatedly detached and reattached in such a way that the degree distribution is preserved.
Various algorithms exist for the generation of arbitrarily two-points correlated networks,
or maximally assortative or maximally disassortative networks, see, e.g., in [8–12], and we
employ here one of them.

Our investigation aims at a comparison of the different approaches outlined above.
The results obtained reveal facets and patterns, which we think worthwhile to illustrate.

As complex networks are in fact ubiquitous (playing an important role in communi-
cations infrastructure, in human and social relations, in protein interactions, in transport
structures, in neural circuits, and much more), the unprecedented data availability and com-
puting power achieved in the last two decades has been fostering a tremendous number of
investigations and works in the field. A wide range of different issues are tackled in these
works, relative, for example, to empirical observations, statistical and structural properties,
modeling and algorithmic construction and, to a lesser extent, to dynamical processes
taking place on top of networks. As a reference for recent contributions, containing in
turn a whole set of further references, we suggest here the two volumes [13]. Yet, in spite
of several advancements and progresses, much remains to be done and understood. In
particular, the main purpose of this paper is to contribute to a better comprehension of
theoretical and foundational aspects concerning assortative scale-free networks and their
role for the mathematical modeling of systems with social interaction. Current work in
this direction objectively displays some research gaps, because on one side quantities like
the correlation coefficient r and the average nearest neighbor degree function knn(k) (see
below the definitions) can be measured for real networks without any ambiguity; on the
other hand, formal models based on a mean-field approach move from strong assumptions
on the form of knn(k) without questioning whether such assumptions can be realized on
assortative scale-free networks at least at the level of construction algorithms. In this
work, we make an effort to bridge the gaps between mean-field and real networks. This is
also clearly relevant in terms of applicability, because if one wants to simulate dynamical
processes or diffusion processes on a certain kind of network, the first technical choice one
encounters is whether to describe the network through the adjacency matrix of the nodes
or the correlation functions of their degrees.

The rest of the paper is organized as follows. In Section 2, we recall the methods
usually employed to analyze degree correlation properties. Section 3 is devoted to the
average nearest neighbor degree function knn(k). Aspects of the behavior of this function
are described, based on outputs of simulations relative to networks of various dimensions,
both as obtained in a mean-field framework and for concrete cases. The resulting differ-
ences are outlined and discussed. In particular, five assortative networks families, and
a disassortative one, are considered. In Section 4, the effects of assortative mixing and
of the two different approaches mentioned above on the diffusion dynamics and related
peak times are explored. Section 5 contains remarks on a further indicator, the average
of the average nearest neighbor degree function. It provides as well a couple of relations
involving knn(k) and some moments of the degree distribution which can be useful towards
calculating certain indices of interest in the present context. Finally, in Section 6 we discuss
our results.

These include the detection of an unexpected quasi-invariance property of the graph
shape of the function knn(k) (calculated through the correlation coefficients) with respect
to the network maximal degree; the construction of correlated networks whose function
knn(k) does not behave, as generally expected in the literature, as αkβ for some coefficient α
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and β; and a qualitative agreement between the estimates of diffusion peak times obtained
with the two different methods employed.

2. Measuring Assortative and Disassortative Mixing

We focus here on scale-free complex networks whose degree distribution is given (for
1 ≤ k ≤ n, with n ∈ N) by P(k) = c/kγ for some γ ∈ (2, 3) and some positive constant

c determined by the normalization
n
∑

k=1
P(k) = 1. Two frequently used tools to detect

assortativity or disassortativity are the correlation coefficient r introduced by Newman
in [14] and the average nearest neighbor degree function knn(k) [15]. This function is
defined in terms of the correlation coefficients P(h|k), where P(h|k) denotes for 1 ≤ h, k ≤ n
the conditional probability for a node of degree k to be connected to a node of degree h.
Indeed, it is given by

knn(k) =
n

∑
h=1

hP(h|k) , (1)

with the P(h|k) satisfying for all h, k = i = 1, · · · , n:

P(h|k) ≥ 0 ,
n

∑
h=1

P(h|k) = 1 , (2)

and the “Network Closure Condition”

hP(k|h)P(h) = kP(h|k)P(k) . (3)

If knn(k) is increasing in k, the network is assortative and if knn(k) is decreasing in k,
the network is disassortative. On the other hand, the coefficient r is defined as

r =
1
σ2

q

n−1

∑
k,h=0

kh(ekh − qkqh) , (4)

where the quantity ekh (for k, h = 0, · · · , n− 1) express the probability that a randomly
chosen edge connects nodes with excess degree k and h, the excess degree of a node being
equal to its degree minus one, qk (for k = 0, · · · , n− 1) denotes the distribution of the excess
degrees, qk =

(k+1)P(k+1)
∑n

j=1 jP(j) , and σq denotes the standard deviation of the distribution qk,

σ2
q =

n−1

∑
k=0

k2qk −
( n−1

∑
k=0

kqk

)2

.

The coefficient r takes values in [−1, 1]. If r > 0, the network is assortative, whereas it
is disassortative if r < 0. Networks for which r = 0 are called uncorrelated or neutral.

A relation between the mentioned quantities is established as follows. Let Ekh denote
the number of edges connecting nodes with degree k and h, the only exception being
for edges linking nodes with the same degree which must be counted twice [5,8]. Let
ẽkh = Ekh/(∑n

k,h=1 Ekh). The matrix with elements ẽkh is plainly symmetric and each ẽkh
corresponds, with the mentioned exception, to the fraction of edges linking nodes with
degree k and h. One can easily see that ek,h = ẽk+1,h+1 and

P(h|k) = ẽkh

∑n
j=1 ẽkj

, (5)

for all h, k = i = 1, · · · , n. Conversely,

ẽhk =
P(h|k)kP(k)
∑n

j=1 jP(j)
(6)
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holds true [16].

3. The Function knn in the Mean-Field Approach and for Concrete Networks

Various formulae are available for the definition of assortative or disassortative cor-
relation coefficients P(h|k). In this section, we recall some of them, for which then we
calculate the associated average nearest neighbor degree functions knn(k).

(1) A first formula for the assortative case can be obtained by applying the relation (5)
of Section 2 to the matrix of the ej,k given in [8] as

ea
j,k = 2 qjqk − (qjxk + xjqk − xjxk) . (7)

In particular, we choose here the terms on the right hand side of (7) as

qi =
(i + 1)1−γ

∑n−1
h=0(h + 1)1−γ

and xi =
(i + 1)−γ

∑n−1
h=0(h + 1)−γ

(8)

for i = 0, · · · , n− 1.
(2) A simpler formula, originally proposed in [17] and also employed in [18], is

given by

P(h|k) = (1− β)
hP(h)
〈k〉 + βδhk , (9)

where β, which ranges from 0 to 1, turns out to coincide with the Newman assortativity
coefficient r, whereas δhk denotes the Kronecker symbol.

Three more formulae have been proposed in [16]. Each of them is obtained, as shortly
recalled next, in a few steps which guarantee that the conditions (2) and (3) hold true.

(3) Start by defining for some parameter λ > 0 elements P0(h|k) as

P0(h|k) =
{
|h− k|−λ if h < k
1 if h = k

(10)

and

P0(h|k) = P0(k|h)
h1−γ

k1−γ
if h > k . (11)

Call Ck = ∑n
h=1 P0(h|k) for any k = 1, · · · , n and let Cmax = maxk=1,··· ,n Ck. Then,

redefine the correlation matrix by setting the elements on the diagonal equal to

P1(k|k) = Cmax − Ck, k = 1, · · · , n ,

and leaving the other elements unchanged: P1(h|k) = P0(h|k) for h 6= k. Finally, normalize
the entire matrix by setting

P(h|k) = 1
(Cmax − 1)

P1(h|k), h, k = 1, · · · , n .

(4) Alternatively, start by defining, for µ ∈ (0, 1],

P0(h|k) = 1− µ

N
|h− k| if h ≤ k , (12)

and P0(h|k) with h > k as in (11). Then, proceed as in the previous case so as to have the
normalization ∑n

h=1 P(h|k) = 1.
(5) Last, start by defining, for ν > 0,

P0(h|k) = e− ν
(h−k)2

n2 if h ≤ k (13)
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and P0(h|k) with h > k as in (11). Again, proceed as above to get elements P(h|k) satisfying
also the normalization ∑n

h=1 P(h|k) = 1.
(6) A formula for the disassortative case can be obtained by applying the relation (5)

of Section 2 to the matrix of the ej,k suggested in [8] as

ea
j,k = qjxk + xjqk − xjxk , (14)

where, for example, the terms on the right hand side of (14) are as in (8).
Figures 1–6 display for each of the described network cases the graphs of the function

knn(k) in correspondence to nine different values of the maximum degree: 9, 18, 27, 36, 45,
54, 63, 72, and 81. Of course, we have to fix in each case a particular value of the parameters,
and these are specified in the captions of the figures.

What catches the eye and is especially evident in Figures 4 and 5, is that in each of
the six cases the shape of the graphs of knn(k) exhibit a kind of invariance with respect to
the maximum degree and correspondingly, in view of the criterium of Dorogovtsev and
Mendes [19], with respect to the network dimension (the number of nodes). Furthermore,
the same holds true for higher values of the maximum degree.

One can wonder here whether this invariant-type behavior is a consequence of
the scale-free character of the degree distribution. Notice that if, for example, P(k) ∼
k4 exp(−k) (a case in which the degree distribution does not have the scale-free property)
and the P(h|k) are chosen as in 3) above with λ = 1, no invariance as in the Figures 1–6 is
found. This fact is illustrated in the Figure 7.
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Figure 1. The nine panels display the graph of the function knn(k) for the cases of maximal degree
n = 9, 18, 27, 36, 45, 54, 63, 72, 81 for networks whose correlation matrices P(h|k) are described in (1)
(a recipe for assortative networks from the work in [8] by Newman). Here, γ = 2.5. Notice the
quasi-invariance of the shape with respect to the maximal degree.
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Figure 2. The nine panels display the graph of the function knn(k) for the cases of maximal degree
n = 9, 18, 27, 36, 45, 54, 63, 72, 81 for networks whose correlation matrices P(h|k) are described in (2)
(a recipe for assortative networks from the work in [17] by Vázquez et Al and the work in [18] by
Nevokee et Al). Here, γ = 2.5 and β = 0.5. Moreover, here we have the quasi-invariance (actually,
the invariance) of the shape with respect to the maximal degree.
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Figure 3. The nine panels display the graph of the function knn(k) for the cases of maximal degree
n = 9, 18, 27, 36, 45, 54, 63, 72, 81 for networks whose correlation matrices P(h|k) are described in
(3) (a recipe for assortative networks from the work in [16]). Here, γ = 2.5 and λ = 1. Notice the
quasi-invariance of the shape with respect to the maximal degree.
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Figure 4. The nine panels display the graph of the function knn(k) for the cases of maximal degree
n = 9, 18, 27, 36, 45, 54, 63, 72, 81 for networks whose correlation matrices P(h|k) are described in
(4) (a recipe for assortative networks from the work in [16]). Here, γ = 2.5 and µ = 1. Notice the
quasi-invariance of the shape with respect to the maximal degree.
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Figure 5. The nine panels display the graph of the function knn(k) for the cases of maximal degree
n = 9, 18, 27, 36, 45, 54, 63, 72, 81 for networks whose correlation matrices P(h|k) are described in
(5) (a recipe for assortative networks from the work in [16]). Here, γ = 2.5 and ν = 1. Notice the
quasi-invariance of the shape with respect to the maximal degree.
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Figure 6. The nine panels display the graph of the function knn(k) for the cases of maximal degree
n = 9, 18, 27, 36, 45, 54, 63, 72, 81 for networks whose correlation matrices P(h|k) are described in (6)
(a recipe for disassortative networks from the work in [8] by Newman). Here, γ = 2.5. Notice the
quasi-invariance of the shape with respect to the maximal degree.
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Figure 7. The nine panels display the graph of the function knn(k) for the cases of maximal degree
n = 9, 18, 27, 36, 45, 54, 63, 72, 81 for networks with P(k) = k4e−k (non scale-free) and correlation
matrices P(h|k) as in 3) with λ = 1.

The situation is different when one constructs, employing a rewiring procedure as
mentioned in the Introduction, concrete networks tentatively having a prescribed matrix
P(h|k) and then plots the averaged functions knn(k) for an ensemble of them. Observing
that, thanks to the formulae (5) and (6) above, such a construction can be achieved through
the generation of networks having a prescribed matrix ek,h, we here recall that an algorithm
specifically aimed at this (more precisely, aimed at generating networks displaying on
average a target matrix ek,h) is described, for example, in [8]. We employed this algorithm
to generate the networks from which we obtained, through the procedure described below,
the averaged knn(k) displayed in the Figure 8.
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Figure 8. Each of the six panels displays the graph of an averaged function knn(k) obtained according to the procedure for
the construction of an average of concrete networks. The panels (a–f) are, respectively, relative to networks related to the
points (1), (2), (3), (4), (5), (6) of Section 3.

The details of the procedure we employed to generate the graphs of the knn(k) dis-
played in the Figure 8 are described next.

We fixed the maximum degree n = 9 and the exponent of the power-law γ = 2.5.
Then, for each of the six cases introduced above we carried out the following steps. We
randomly took as “step zero-networks” 30 synthetic networks with degree distribution
“close” to a “true” power-law distribution with these parameter values (the degree dis-
tribution of concrete scale-free assortative networks cannot display an exact power-law
behavior, because in such networks only a few hubs can be present; for a discussion on the
construction of a discretized degree distribution see, e.g., in [12]). On any such network
we let 50.000 steps of a (Newman) rewiring run (the number 50.000 being suitable for a
stabilization of the assortativity coefficient). We chose 30 “snapshot” networks out of the
set of each rewired network more precisely, the networks obtained in correspondence of the
steps 50.000− j ∗ 100 with j = 0, 1, 2, · · · , 29) and for these we constructed the matrices ek,h.

In each of the 30 cases, we then constructed a new matrix e[j]k,h (for j ∈ {1, · · · , 30}) as the
average of the 30 “snapshot” matrices just obtained; through the Formula (5) we generated
the correlation matrix P[j](h|k) corresponding to this e[j]k,h and we employed networks gen-
erated in this way as networks on top of which to study the diffusion problem described in
Section 4. We also calculated the average e∗k,h of 30 matrices e[j]k,h with j ∈ {1, · · · , 30} and,
using (5), we generated the correlation matrix P∗(h|k) corresponding to this e∗k,h as well as
its associated knn(k). The panels in Figure 8 clearly show that when concrete networks are
constructed, even in the assortative case the function knn(k) is not always increasing. This
behavior, related to what is known in the literature as structural cut-off [5], is evidently due
to the fact that in a network with a power-like decreasing degree distribution hubs cannot
find many other hubs to which link. This finding is also compatible with the results one
gets when calculating the assortativity coefficient r. The values of r for the six Markovian
networks with n = 9, P(k) = c/k2.5, and the P(h|k) as described at the points (1)–(6) in
Section 3 are given in the first line in Table 1. In contrast, in the second line of the table
one has, for each of the cases (1)–(6), the value obtained as average of the assortativity
coefficients of the networks corresponding to the thirty matrices e[j]k,h (with j ∈ {1, · · · , 30})
generated by the rewiring.
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Table 1. In the first line, the values of r are given for six Markovian networks as in the points (1)–(6)
of Section 3 (with P(k) = c/k2.5 and n = 9). In the second line, for each of the cases (1)–(6), the
averaged value is given of the assortativity coefficients of the networks corresponding to the thirty

matrices e[j]k,h (with j ∈ {1, · · · , 30}) generated by a rewiring.

Assortativity Coefficient r net 1 net 2 net 3 net 4 net 5 net 6

in the mean-field approach 0.20 0.50 0.75 0.67 0.61 −0.20
as an average for concrete networks 0.15 0.11 0.32 0.30 0.30 −0.13

with standard error of the mean 0.01 0.01 0.02 0.02 0.02 0.01

4. The Peak Time in Innovation Diffusion Dynamics

In this section, we explore the effects of assortativity in different approaches within
the context of an application. Specifically, we deal with the innovation diffusion process
and we consider two different frameworks designed to incorporate into the classic Bass
model [20] a structure of complex networks accounting for social interactions.

We start considering networks with maximum degree n, degree distribution P(k) = c/kγ

where γ ∈ (2, 3) and c is the constant providing the normalization of P, and correlation
coefficients P(h|k) as in the six cases described in Section 3. The ratio to also consider a
disassortative sample of networks is that in the innovation diffusion context also interaction
and collaboration of firms can be of interest and firm networks can display disassortative
mixing [16]. Recalling that the main ingredients of the process, namely, the innovation and
the imitation attitude, can be quantified, respectively, through two parameters p and q,
we formulate (see also in [16]) the first framework as the system of n nonlinear ordinary
differential equations

d
dt

xj(t) = [1− xj(t)]

[
p + jq

n

∑
h=1

P(h|j) xh(t)

]
for j = 1, · · · , n . (15)

Each of these equations describes the variation in time of the fraction xj(t) of potential
adopters (for example, individuals or firms, depending on the specific context concerned)
who have j links and at the time t have adopted the innovation (In each link class the
number of potential adopters is fixed.). Accordingly, the potential adopters corresponding
to nodes with degree j are regarded as all “behaving” in a same way. This corresponds to a
heterogeneous mean-field scenario.

A different approach consists in generating concrete networks as suggested in Section 3,
writing for each network a system of evolution equations for the state of each node of
the network, numerically solving the equations, calculating the peak time and taking an
average out of several such times. The equation system on a concrete network can be
derived by a first moment closure (see in this connection [21,22]) and takes the form

d
dt

Xi(t) = (1− Xi(t))

[
p + q

N

∑
j=1

AijXj(t)

]
for i = 1, · · · , N , (16)

where N and Aij respectively denote the number of network nodes and the elements of
the adjacency matrix. The variable Xi with i = 1, · · · , N has to be understood as the
expectation 〈ξi〉 of the non-adoption (ξi = 0) or adoption (ξi = 1) state of node i over many
stochastic evolutions of the system.

An important time in the diffusion process of an innovation is the so-called peak time
which is the moment when the adoption rate assumes its maximum value. In connection
with the six cases defined in Section 3, we calculated the peak time both in a mean-field
approach and for an ensemble of concrete networks, constructed through the procedure
outlined in the same section.

To carry out the numerical simulations, we chose p = p∗ and q = q∗/M, where the
parameters p∗ = 0.03 and q∗ = 0.4 are as in the original Bass paper [20], and the constant
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M =
n
∑

h=1
hP(h) provides a proper adjustment for the imitation coefficient on networks.

Furthermore, we fixed n = 9 and γ = 2.5. For each of the six Markovian networks with
correlation matrices described in the points (1)–(6) of Section 3, we computed numerical
solutions of the Equation (15). Then, we also performed the second procedure described
above, which involves numerically solving an ensemble of equation systems (16). With
regard to this approach, we took in each case (1)–(6) the average peak time out of a set
of peak times relative to 30 networks. The values we found are reported in the Table 2.
There are of course differences between the peak times obtained through one and the other
approach, but qualitatively one finds rather similar results. In particular, for almost each
pair of networks the ordering relation between the values of their peak time as computed
via one and the other approach is the same. Moreover, when looking at the plots, see,
e.g., Figure 9, which display the time evolution of the functions x′(t) = ∑n

j=1
d
dt xj(t) and

X′ = ∑N
i=1

d
dt Xi(t), derivatives of the “cumulative” solutions of the systems (15) and (16),

respectively, one notices a reasonable agreement.

Table 2. The values are here reported of the peak time for six networks with correlation matrices
as in the points (1)–(6) of Section 3. The values in the first line are evaluated within a mean-field
approach, those in the second line are obtained as averages of peak times over concrete networks.

Peak Time Evaluated net 1 net 2 net 3 net 4 net 5 net 6

in the mean-field approach 4.68 4.61 4.45 4.30 4.23 5.03
as an average for concrete networks 4.28 4.28 3.94 3.93 4.00 4.68

with standard error of the mean 0.04 0.03 0.04 0.04 0.03 0.03
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Figure 9. The panels (a–f), respectively, refer to networks related to the points (1)–(6) of Section 3. Each of them displays the
evolution in time of the functions x′(t) = ∑n

j=1
d
dt xj(t) and X′(t) = ∑N

i=1
d
dt Xi(t), derivatives of the “cumulative” solutions

of the systems (15) and (16), respectively. More precisely, in each panel the blue graph represents the numerical solution of
system (15) for networks with correlation matrices P(h|k) as in Section 3 and the yellow graph represents the solution of
system (16) on top of a concrete network of the same family. The values of t in correspondence of which the two graphs
exhibit a maximum are the peak times.

5. Further Remarks on the Function knn and Its Average

As is also apparent from Section 3, the range of correlation matrix families is rather
wide, and the functions knn corresponding to these families can be quite different from
each other.
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In this regard, we observe that in [6,7], which deal with epidemic spreading in
complex networks and, in particular, with the existence or non-existence of an epidemic
threshold, an average of the average nearest neighbor degree function knn(k),

Kn =
n

∑
k=1

P(k)knn(k) , (17)

is also introduced, whose properties are then explored (In [6] and [7] a different notation
from that one adopted here is used to indicate the average in (17)). Notably, in the
assortative case, the ansatz is there considered that knn(k) ∝ kβ for some positive β. It
is then shown that Kn tends to infinity as n → ∞. This property does not seem to be
satisfied in general, namely, for all assortative families, by the relative Kn. For instance,
for the exponential family (5) of Section 3 one can numerically check that the dependence
of Kn on n in correspondence to various values of the exponent γ occurring in the degree
distribution is as displayed in the left panel of the Figure 10. At least for certain values of γ
the value of Kn is not increasing and does not look at all as tending to infinity as n→ ∞.
However, of course, as well shown in Figure 5, the function knn(k) for the exponential
family (5) does not grow as kβ. It has nonetheless to be emphasized that also for this family
the crucial property towards the determination of the absence of epidemic threshold [6,7],
namely the growing character of

min
k

F(n, k) = min
k

n

∑
h=1

hP(h|k)knn(h) (18)

as a function of n is satisfied, see the right panel of Figure 10.
In connection with the innovation diffusion problem, one may wonder whether some

correlation exists between the values of Kn and the peak times. Let us take for example
networks with degree distribution P(k) ∝ 1/kγ whose correlation matrices P(h|k) are as
in (5) of Section 3 with ν = 1 and consider nine values of the scale-free exponent γ, i.e.,
γ = 2 + (0.1)j for j = 1, · · · 9 (In this way, we are fixing the correlations and varying the
degree distribution).

From Table 3, we see that at fixed n, the values of Kn and tmax display a quite strong
dependence on γ, namely, Kn is decreasing in γ, while tmax is increasing. We note in this
regard that the implicit relation between Kn and tmax is quite in agreement with intuition,
because diffusion is expected to be faster when each node has, on the average, neighbors of
higher degree. Varying the maximum degree n, we see that the dependence of Kn and tmax
on γ becomes stronger as n grows.
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Figure 10. The two panels, respectively, display the dependence on n of Kn (as defined in (17)) and
mink F(n, k) (as defined in (18)) for networks with degree distribution P(k) ∝ 1/kγ for five values of
γ and whose correlation matrices P(h|k) are as in (5) of Section 3.
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Table 3. These three tables display values of Kn and of the peak times tmax in correspondence of
different values of the parameters γ for networks with P(k) ∝ 1/kγ and correlation matrices as in
(5) of Section 3 with ν = 1. The tables are relative, respectively, to n = 9 (table on the left), n = 45
(central table), and n = 81 (table on the right).

γ Kn tmax

n = 9

2.1 2.20 4.00
2.2 2.07 4.02
2.3 1.96 4.06
2.4 1.85 4.14
2.5 1.75 4.22
2.6 1.67 4.36
2.7 1.60 4.50
2.8 1.53 4.64
2.9 1.47 4.80

n = 45

2.1 3.30 2.00
2.2 2.88 2.32
2.3 2.54 3.08
2.4 2.26 3.76
2.5 2.04 4.24
2.6 1.87 4.58
2.7 1.73 4.84
2.8 1.61 5.02
2.9 1.52 5.18

n = 81

2.1 3.70 1.48
2.2 3.12 2.48
2.3 2.69 3.54
2.4 2.35 4.16
2.5 2.09 4.54
2.6 1.89 4.82
2.7 1.73 5.04
2.8 1.61 5.18
2.9 1.51 5.30

It is also possible to test the dependence of Kn and tmax on the correlations, for instance,
by varying the parameter ν. The resulting dependence is generally weak and details depend
on n. For instance, in Table 4 we report the dependence of tmax on γ and ν (considering
ν = (0.2)j for j = 1, · · · 5) for the cases n = 9 and n = 81. It can be seen that for n = 9 the
values of tmax decrease slightly in ν at small γ and increase slightly in ν at large γ, while
for n = 81 the opposite is true.

En passant, we mention here that the correlation between Kn and r has been investi-
gated from another perspective (namely, along a network rewiring process) in [23].

Last, two more general properties involving the function knn are worth being noticed.
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Table 4. These two tables display values of the peak times tmax in correspondence of different values
of the parameters γ and ν for networks with P(k) ∝ 1/kγ and correlation matrices as in (5) of
Section 3. The table above is relative to n = 9, the table below is relative to n = 81.

tmax ν = 0.2 ν = 0.4 ν = 0.6 ν = 0.8 ν = 1

n = 9

γ = 2.1 4.04 4.04 4.02 4.02 4.00

γ = 2.2 4.04 4.04 4.04 4.04 4.02

γ = 2.3 4.06 4.06 4.08 4.06 4.06

γ = 2.4 4.12 4.12 4.12 4.14 4.14

γ = 2.5 4.20 4.20 4.22 4.22 4.22

γ = 2.6 4.30 4.32 4.32 4.34 4.36

γ = 2.7 4.44 4.44 4.46 4.48 4.50

γ = 2.8 4.58 4.60 4.62 4.62 4.64

γ = 2.9 4.74 4.76 4.76 4.78 4.80

n = 81

γ = 2.1 1.38 1.40 1.42 1.46 1.48

γ = 2.2 2.26 2.32 2.36 2.42 2.48

γ = 2.3 3.56 3.54 3.54 3.54 3.54

γ = 2.4 4.18 4.16 4.16 4.16 4.16

γ = 2.5 4.58 4.56 4.56 4.56 4.54

γ = 2.6 4.86 4.84 4.84 4.84 4.82

γ = 2.7 5.06 5.04 5.04 5.04 5.04

γ = 2.8 5.20 5.20 5.20 5.18 5.18

γ = 2.9 5.32 5.32 5.30 5.30 5.30

- A normalization property [6,7]: One has (here and henceforth 〈 f (k)〉 denotes
∑n

k=1 f (k)P(k).)
n

∑
k=1

kP(k)knn(k) = 〈k2〉 . (19)

The formula (19) can be useful for calculating the constant c appearing in an ansatz as
knn(k) = ckβ. One finds indeed c = 〈k2〉/〈kβ+1〉.

Proof. of (19): The normalization property (19) immediately follows from the Network
Closure Condition (3): one multiplies by h the left and the right hand side of (3), and then
takes on both sides the sums for h and k from 1 to n to get 〈k2〉 on the l.h.s in view of (2)
and ∑n

k=1 kP(k)knn(k) on the r.h.s in view of the expression (1) of knn(k).

- Relation with the correlation coefficient: One has

r =
〈k〉∑n

k=1 k2P(k)knn(k)− 〈k2〉2
〈k〉〈k3〉 − 〈k2〉2 . (20)

The formula (20) can be employed for example for calculating r when the function
knn is determined by the ansatz knn(k) = ckβ. In such a case one does not need to know the
correlation coefficients: only the expression of knn and of some averages depending on the
degree distribution appear on the r.h.s. of (20).

Proof. of (20): We consider separately the terms appearing in the expression of the correla-
tion coefficient r in (4).
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Let us start with the first term in the numerator on the r.h.s of (4). Recalling that

ehk = ẽh+1,k+1 and ẽhk =
1

km
P(h|k)kP(k) ,

we can write
n−1

∑
h,k=0

hkehk =
n

∑
h′, k′=1

1
km

(h′ − 1)(k′ − 1)P(h′|k′)k′P(k′) , (21)

where h′ = h + 1, k′ = k + 1 and km = 〈k〉.
Renaming for simplicity h and k the indices, we now transform the four terms which

can be obtained on the r.h.s. of (21) when the product is expanded to get

(i) 1
km

∑h,k hkP(h|k)kP(k),

(ii) − 1
km

∑h,k hP(h|k)kP(k),

(iii) − 1
km

∑h,k kP(h|k)kP(k),

(iv) 1
km

∑h,k P(h|k)kP(k).
By exploiting in these expressions the Formules (1) and (2) and also using (19), we

rewrite these terms, respectively, as
(i) 1

km
∑k k2P(k)knn(k),

(ii) − 1
km
〈k2〉,

(iii) − 1
km
〈k2〉,

(iv) km
km

.

Summarizing, we get

n−1

∑
h,k=0

hkehk =
1

km

(
n

∑
k=1

k2P(k)knn(k)− 2〈k2〉+ km

)
.

The second term in the numerator is ∑n−1
h,k=0 hk(−qhqk). Recalling that qk =

(k+1)P(k+1)
km

,
we rewrite it as

− 1
k2

m

n−1

∑
h,k=0

hk(h + 1)(k + 1)P(h + 1)P(k + 1)

and then, by setting as above h′ = h + 1 and k′ = k + 1, as

− 1
k2

m

n

∑
h′, k′=1

(h′ − 1)(k′ − 1)h′k′P(h′)P(k′) .

with renamed indices this becomes

− 1
k2

m

n

∑
h,k=1

(hk− h− k + 1)hkP(h)P(k) = . . . = − 1
k2

m

(
〈k2〉〈k2〉 − 2〈k2〉km + k2

m

)
.

The numerator on the r.h.s. of (4) is thus

n−1

∑
h,k=0

hk(ehk − qhqk) =
1

km

n

∑
k=1

k2P(k)knn(k)−
1

k2
m
〈k2〉2 .

The denominator on the r.h.s. of (4) only contains quantities which depend on the
qk, and correspondingly on the degree distribution, and not on the correlation coefficients.
These quantities can be expressed in terms of the moments 〈k〉, 〈k2〉 e 〈k3〉 as follows.

n−1

∑
k=0

k2qk =
n−1

∑
k=0

k2 1
km

(k + 1)P(k + 1) =
n

∑
k′=1

(k′ − 1)2 1
km

k′P(k′) = . . . =
1

km

(
〈k3〉 − 2〈k2〉+ 〈k〉

)
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and( n−1

∑
k=0

kqk

)2

=

( n−1

∑
k=0

k
1

km
(k + 1)P(k + 1)

)2

=
1

k2
m

( n

∑
k′=1

(k′ − 1)k′P(k′)
)2

=
1

k2
m

(
〈k2〉 − 〈k〉

)2 .

In conclusion, the denominator on the r.h.s. of (4) is

1
〈k〉
(
〈k3〉 − 2〈k2〉+ 〈k〉

)
− 1
〈k〉2

(
〈k2〉 − 〈k〉

)2
=
〈k3〉
〈k〉 −

(
〈k2〉
〈k〉

)2

and

r =
1
〈k〉 ∑n

k=1 k2P(k)knn(k)−
(
〈k2〉
〈k〉

)2

〈k3〉
〈k〉 −

(
〈k2〉
〈k〉

)2 =
〈k〉∑n

k=1 k2P(k)knn(k)− 〈k2〉2
〈k〉〈k3〉 − 〈k2〉2 .

6. Conclusions

This paper took shape from the investigation, carried out through two different
mathematical frameworks, of some dynamical systems on top of synthetic correlated
networks. Beside the description of the two approaches and of some findings obtained
with them, the paper contains comments and observations on various features emerged.
We emphasize next the main facets found as output of several numerical simulations.

– A singular and unexpected property is revealed for the six families of scale-free
Markovian networks (characterized by given correlation coefficients) considered here:
the graphs of the average nearest neighbor degree function knn(k), usually employed to
detect assortativity or disassortativity, display an apparently ignored quasi-invariance with
respect to the maximal degree of the network and, accordingly, its dimension. In our view,
this is an interesting aspect, which deserves deeper inspection and understanding.

– The existence of correlated networks is shown whose average nearest neighbor
degree function knn(k) does not behave as αkβ with some coefficient α and β. See indeed,
e.g., the graphs in Figures 4 and 5. In general, in the literature, the functions knn(k)
analytically expressed by means of the correlation coefficients are supposed to behave as
αkβ, see, e.g., in [5–7,17,18,24]. Only after writing this paper, did we learn from one of its
referees of the existence of a recent work, [25], where a knn(k) is constructed, which does
not behave as αkβ.

– Unavoidable differences are found and illustrated between the graphs of the function
knn(k) in the case of Markovian scale-free networks and of concrete assortative scale-free
networks. See also, in this connection, the discussion on the conflict between degree
correlations and the scale-free property in [5]. Independently of this, we can conclude
that, at least with reference to the diffusion problem explored in Section 4, the mean-field
approach provides quite satisfactory results. Furthermore, of course, it has the advantage
of being much less demanding from the computational point of view, in particular when
larger networks are involved.

We notice that a functional behavior in k as in the ansatz knn(k) = αkβ is intrinsically
independent from any scale. In the presence of such an anstatz it is therefore inevitable
that the graph of knn(k) is self-similar (1) for any value of the maximum degree and (2)
for networks having any degree distribution. The introduction of possible functional
forms of knn(k) as proposed in this paper allows to distinguish between the situations (1)
and (2) above, which appear otherwise like coincident or degenerate as far as the degree
distribution and degree correlations are concerned. In fact the new functions obtained for
knn(k) (for which there is no closed algebraic expression; they are the result of a construction
procedure on the P(h|k) performed in several steps and involving the P(k)) display in
their plots some inflection points whose position may in general depend on the degree
distribution and on n. We can therefore change separately (1) the maximum degree and (2)
the degree distribution (from being scale-free to non scale-free) and check if these inflection
points change their relative position. It turns out that, as seen in Figure 7,
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(a) at fixed scale-free degree distribution, the plot of knn(k) is self-similar, indepen-
dently from n (no change in the relative position of the inflection points);

(b) at fixed non scale-free distribution, the plot is not self-similar if we change n; and
(c) at fixed n, the plot is not self-similar, if we switch from scale-free to non scale-free

distributions.
Again, we stress that these different behaviors cannot be observed using an ansatz for

knn(k) that is inherently self-similar.

It seems to us that there are few works dealing with the problem tackled here. Yet, we
can mention that various mean-field approximation schemes (node-based, degree-based,
pair approximation, and approximate master equation) are compared with each other in
connection with applications to epidemic spreading in [22], and mean-field predictions
and numerical simulation results are compared for dynamical processes running on 21
real-world networks in [26]. It is impossible to give a concise description of the various
specific results contained in these two references, but we emphasize here that also their
authors provide evidence of cases in which the mean-field theory works quite well. Instead,
it can be worthwhile to dwell on the paper [24], where a comparison is made between
mean-field predictions and simulations on large synthetic networks built with the Porto–
Weber method, for some cases in which there is no decreasing tail of the knn at large k. This
shows that the question is still open of whether mean-field predictions also are compatible
with numerical solutions on synthetic assortative networks that do display a decreasing
tail, like in the real case. Our paper describes an effort in this direction. Technically, our
strategy has been to (1) generate “ideal” assortative correlation matrices P(h|k) of various
kinds; (2) compute diffusion times of the Bass model for each P(h|k) in the mean-field
approximation; (3) generate, by rewiring, synthetic scale-free networks whose real P(h|k)
is as close as possible to the given ideal P(h|k), according to the probability method by
Newman (since the procedure is quite complex and involves an intermediate averaging,
see Section 3, it was limited to small n); and (4) compute again diffusion times using the
adjacency matrices of the synthetic networks and compare them with those of Point (2).
What we found is that, unlike in [24], the effective knn(k) of the networks so constructed
does display a decreasing tail, like in real networks. Nevertheless, the diffusion times are
in reasonable agreement.

Finally, a maximal degree equal to 9, as here prevalently considered, may look quite
small. The majority of papers studying complex networks deal with much greater numbers.
We believe, however, that for the purpose of this paper, and to show the outlined facets
and differences, this choice is sufficient and suited.
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