
symmetryS S

Article

Isospin Symmetry Breaking Effects on the Mass-Radius
Relation of a Neutron Star

Giovanni Selva 1, Xavier Roca-Maza 1,2,* and Gianluca Colò 1,2

����������
�������

Citation: Selva, G.; Roca-Maza, X.;

Colò, G. Isospin Symmetry Breaking

Effects on the Mass-Radius Relation

of a Neutron Star. Symmetry 2021, 13,

144. https://doi.org/10.3390/

sym13010144

Received: 26 November 2020

Accepted: 11 January 2021

Published: 16 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland. This

article is an open access article distributed

under the terms and conditions of the

Creative Commons Attribution (CC BY)

license (https://creativecommons.org/

licenses/by/4.0/).

1 Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Via Giovanni Celoria 16,
20133 Milano, Italy; gselva@ebyte.it (G.S.); Gianluca.Colo@mi.infn.it (G.C.)

2 Istituto Nazionale di Fisica Nulceare, Sezione di Milano, Via Giovanni Celoria 16, 20133 Milano, Italy
* Correspondence: xavier.roca.maza@mi.infn.it

Abstract: Isospin symmetry breaking effects on the mass-radius relation of a cold, non-accreting neu-
tron star are studied on the basis of two Skyrme Energy Density Functionals (EDFs). One functional
contains isospin symmetry breaking terms other than those typically included in Skyrme EDFs while
its counterpart is of standard form. Both functionals are based on the same fitting protocol except
for the observables and pseudo-observables sensitive to the isospin symmetry breaking channel.
The quality of those functionals is similar in the description of terrestrial observables but choosing
either of them has a non-negligible effect on the mass-radius relation and tidal deformability of a
neutron star. Further investigations are needed to clarify the effects of isospin symmetry breaking on
these and other observables of neutron stars that are, and will become, available.

Keywords: isospin symmetry breaking; neutron star mass-radius relation; tidal deformability

1. Introduction

The nuclear Equation of State (EoS) is one of the fundamental ingredients to describe
the mass-radius relation in neutron stars [1–5]. The neutron star core is believed to cover
the largest portion of the neutron star radius and mass. Despite the effect of the crust is
non-negligible to properly determine such quantities (for more details see, e.g., Refs. [6,7]),
relative effects might be safely studied neglecting the crust. It is customary to assume the
core of a neutron star as made of β-stable neutrons, protons and electrons [8–13]. This allows
easily calculating the mass-radius relation and compare to observational data in order to
detect deviations from such an approximation. Different effects that may influence such a
relation have been studied in the literature, e.g., three-neutron forces at high densities or the
plausible appearance of new degrees of freedom such as hyperons or quarks. While models
with hyperonic degrees of freedom predict a soft equation of state for the star, not being able
to explain the largest masses observed to date (see, for example, [14]), models that account for
a phase-transition to quark deconfined matter do not suffer from such problem [15].

Nuclear energy density functionals (EDFs) were proven to predict with a good accu-
racy the ground state as well as some excited state properties in terrestrial nuclei and have
been also applied to predict the limits of nuclear existence [16,17]. The use of these models
to the study of neutron-star matter may be regarded as strong extrapolation due to the
difference in average density within the interior of a neutron star (over 2ρ0) and the interior
of the atomic nucleus (ρ0). Currently, EDFs are the only type of models that can be used to
consistently predict the structure and composition of a neutron star outer core and of the
neutron star crust at the same time [18]. Hence, to study how different physical effects may
influence the mass-radius relation of a neutron-star by using EDFs is well justified.

Isospin symmetry breaking (ISB) effects, other than those originated from direct and
exchange part of the Coulomb interaction, are not commonly included in the fitting of current
EDFs. This is because assuming isospin symmetry of the nuclear strong interaction and
neglecting Coulomb corrections beyond the direct and exchange terms is known to be a
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very good approximation for the study of many observables in atomic nuclei. The most
paradigmatic counter example is the excitation energy of the Isobaric Analog State (IAS) that
has been measured for many nuclei with exquisite accuracy (cf. the compilation in Ref. [19]).
The IAS energy depends only on ISB terms in the nuclear Hamiltonian. Specifically,

EIAS =
〈0|T+[H, T−]|0〉
〈0|T+T−|0〉

, (1)

where |0〉 is the ground state wave function of the nucleus and T± are the raising and
lowering isospin operators. Hence, it is now clear that terms in the Hamiltonian not
commuting with the isospin operator will contribute to EIAS. In the early literature it
was already shown that only the Coulomb interaction is not enough to explain available
experimental data—this is known as the Nolen-Schiffer anomaly [20]—pointing to the fact
that ISB of the nuclear strong interaction should play a non-negligible role.

In addition, it was shown that the energy of the IAS is intimately correlated with
the neutron skin thickness of a heavy neutron-rich nucleus such as 208Pb [21] and, thus,
with the so-called symmetry energy [22,23]. The symmetry energy is a quantity very much
studied in the context of neutron stars since it gives the penalty energy as a function of
the density to convert all protons into neutrons in symmetric nuclear matter. Specifically,
an approximate formula for EIAS has been derived [21]. This formula explains in simple
yet physical terms the relation of the EIAS with the neutron skin thickness

EIAS ≈
6
5

√
3
5

Ze2

rp

(
1− 1

2
N

N − Z
rn − rp

rp

)
, (2)

where N and Z are the neutron and proton numbers, respectively; e the elementary electric
charge; and rp (rn) the proton (neutron) root mean square radius. The neutron skin thickness
is customarily defined as rn− rp. In EDFs rp is commonly well constrained by experimental
data on the electric charge radius of the nucleus while rn or rn − rp remains quite elusive
and highly correlated with the neutron pressure inside nuclei or, which is the same, to the
density dependence of the nuclear symmetry energy. The last simple equation predicts
that the IAS energy should decrease with increasing neutron skin thickness. For example,
for the case of 208Pb Equation (2) is in reasonable agreement with the result of Hartree-Fock
plus Random Phase approximation calculations presented in Ref. [21].

In this contribution, we will briefly analyze the possible ISB effects on the mass-radius
relation of a neutron star by comparing two EDFs of the Skyrme type. The first one,
SAMi [24], is of standard form and assumes exact isospin symmetry in the nuclear channel.
The second one, SAMi-ISB [21], is identical to SAMi but contains all important ISB terms
for a better description of the IAS energy. It is important to note that both functionals
essentially use the same fitting protocol except for the fact that SAMi-ISB includes some
extra information on ISB observables such as the EIAS in 208Pb and pseudo-observables
such as the ISB contributions to the symmetric matter equation of state as calculated by
using the realistic nucleon-nucleon AV18 interaction within the Brueckner-Hartree-Fock
(BHF) approach [25].

The paper is organized as follows. In Section 2, we recall the basic form of ISB terms
adopted here and although this has been published elsewhere [26], we deem it important
to include it also here for the sake of completeness. In Section 3, we will show the main
results of the present investigation while our conclusions are laid in Section 4.

2. Theory

We calculate the mass-radius relation of a cold non-accreting neutron star—neglecting
the contribution from the crust—by solving the Tolman-Oppenheimer-Volkoff equation
using as input neutron-proton-electron β-equilibrated matter. This procedure has been
extensively used in the literature and further details can be found by the reader in Ref. [27].
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To calculate the nuclear contribution assuming this model of neutron-star matter, we will
use a nuclear Skyrme functional. Below we overview the main terms for our purposes here.

The isospin conserving form of the Skyrme functional adopted in this work can be
easily found in the literature (see for example Equation (2.6) in Ref. [28]). Regarding the
ISB contributions included in the SAMi-ISB functional [21] and neglected in the SAMi
functional, we give a brief account here since those correspond to the main topic covered in
this work. The contributions related to the Coulomb interaction discussed below will not
contribute to the calculation of the neutron star mass-radius relation but definitely affect
the fine tuning of the model in the fitting procedure that includes data on finite nuclei and,
hence, will affect in an indirect way the results presented in Section 3.

2.1. Finite Size Effects

The electric charge distribution in momentum space is calculated by taking into
account the effect of the proton and neutron electromagnetic form factors convoluted by
using the proton and neutron point like densities, respectively, i.e., up to order 1/m2 where
m stands for the mass of the nucleon and assuming spherical symmetry [29]

ρch(q) =

(
1− q2

8m2

)[
GE,p(q2)ρp(q) + GE,n(q2)ρn(q)

]
− πq2

2m2 ∑
l,t

[
2GM,t(q2)− GE,t(q2)

]
〈~l ·~s〉

∫ ∞

0
dx

j1(qx)
qx
|Rn,l,j(x)x2|2 (3)

where GE,M are the electric (E) and magnetic (M) form factors [30], Rn,l,j is the radial single
particle wave function, t refers to the isospin state of the nucleon and n, l, j and s to the
principal, orbital, total and spin quantum numbers. The sums run over all occupied states.
The density calculated in such a way is then used for the calculation of the Coulomb energy
functional. Finite size effects are frequently neglected and the proton density distribution
is used instead in many EDF calculations of the Coulomb terms.

2.2. Electromagnetic Spin-Orbit

The electromagnetic spin-orbit correction to the nucleon single-particle (sp) energy
can be written within a non-relativistic approximation as follows,

∆εi =
h̄2

2m2c2 xi〈~li ·~si〉
∫ dr

r
dUC

dr
u2

i (r), (4)

where i labels the i-th nucleon quantum numbers, mi is the neutron or proton mass, UC
is the Coulomb energy potential—calculated at the Hartree-Fock level– and xi is equal to
gp − 1 for protons and gn for neutrons; gn = −3.82608545(90) and gp = 5.585694702(17)
are the neutron and proton g-factors, respectively [31]. The total energy correction to the
binding energy of a nucleus will be then ∆Eemso = ∑A

i=1 ∆εi. The effect of this term can be
treated perturbatively since it produces a change in the nucleon single particle energies of
tens of keV and, thus, negligible in the single particle wave functions.

As an exercise, assuming a uniformly charged sphere of radius RC one can estimate
the energy correction to the single particle energies [32],

∆εi ≈ −
h̄3

2m2
i c

Zα

R3
C
〈~li ·~si〉xi , (5)

where α is the fine structure constant.
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2.3. Coulomb Exchange

In connection with the Skyrme interaction, it is customary to adopt the so-called Slater
approximation for the calculation of the Coulomb exchange. The mean-field corresponding
to such an approximation can be written as,

Ux,Slater
C ϕi(~r) = −e2

(
3
π

)1/3
ρ1/3

p ϕi(~r), (6)

where e is the elementary electric charge, ρp is the proton density and ϕi is the single
particle wave function of the i-th nucleon. The exact exchange has instead the well-known
non-local form,

Ux,exact
C ϕi(~r) = −e2

∫
d3r′

ϕ∗j (~r
′)ϕj(~r)

|~r−~r′| ϕi(~r′). (7)

Since the early pioneering calculations done with the Skyrme force, the Slater approxi-
mation has been known to work quite well. In particular, the relative difference between
the exact total energy and that calculated with the Slater approximation has been found to
be of the order of 3–6% in Ref. [33]. As a consequence, single-particle energies undergo
small changes of about hundreds of keV at most (see, e.g., Ref. [34] for numerical details).

2.4. Vacuum Polarization Correction

The lowest order correction in the fine-structure constant to the Coulomb potential
eZ/r is estimated via the vacuum polarization correction. The vacuum polarization modi-
fies the charge of the proton over a range of the order of the electron Compton wavelength.
The virtual emission and absorption of an electron-positron pair gives rise to a repulsive
potential Vvp that corrects the Coulomb repulsion of two protons. Taking into account the
finite size of the nucleus, the correction potential can be written as follows [35],

Vvp(~r) =
2
3

αe2

π

∫
d~r′

ρch(~r′)
|~r−~r′|K1

(
2

λ̄e
|~r−~r′|

)
(8)

where e is the fundamental electric charge, α the fine-structure constant, λ̄e the reduced
Compton electron wavelength and

K1(x) ≡
∫ ∞

1
dte−xt

(
1
t2 +

1
2t4

)√
t2 − 1 . (9)

2.5. Charge Symmetry Breaking and Charge Independence Breaking Potentials

A charge symmetry breaking potential can be generally defined as VCSB = Vnn −
Vpp while a charge independence breaking potential can be generally defined as VCIB =
1
2
(
Vnn + Vpp

)
−Vpn. So an effective nucleon-nucleon potential can be build on three parts:

the charge independent part (isospin symmetry is fully preserved) plus the two previously
defined breaking terms.

Following [36] (cf. Equations (18)–(21)) one can define Skyrme-like CSB and CIB
potentials as follows,

VCSB(~r1,~r2) ≡
1
4
[τz(1) + τz(2)]

{
s0(1 + y0Pσ)δ(~r1 −~r2) +

1
2

s1(1 + y1Pσ)

×
[

P′2δ(~r1 −~r2) + δ(~r1 −~r2)P2
]
+ s2(1 + y2Pσ)~P′ · δ(~r1 −~r2)~P

}
(10)
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and

VCIB(~r1,~r2) ≡
1
2

τz(1)τz(2)

{
u0(1 + z0Pσ)δ(~r1 −~r2) +

1
2

u1(1 + z1Pσ)

×
[

P′2δ(~r1 −~r2) + δ(~r1 −~r2)P2
]
+ u2(1 + z2Pσ)~P′ · δ(~r1 −~r2)~P

}
(11)

where ~P ≡ 1
2ı (

~∇1 − ~∇2) acts on the right, ~P′ is its complex conjugate acting on the left and
Pτ/σ are the usual projector operators in isospin/spin spaces.

The Hartree-Fock energy density associated with the CSB and CIB potentials is (see ap-
pendix in Ref. [37])

HCSB =
s0

8
(1− y0)(ρ

2
n − ρ2

p)

+
3
64
{
−s1(1− y1) + s2(1 + y2)

}
(ρn∇2ρn − ρp∇2ρp)

+
1
16
{

s1(1− y1) + 3s2(1 + y2)
}
(ρnτn − ρpτp)

+
1

32
{

s1(1− y1)− s2(1 + y2)
}
(J2

n − J2
p) (12a)

HCIB =
u0

8
[
(1− z0)(ρ

2
n + ρ2

p)− 2(2 + z0)ρnρp
]

+
3
64
{
−u1(1− z1) + u2(1 + z2)

}
(ρn∇2ρn + ρp∇2ρp)

+
1

64
{

3u1(2 + z1)− u2(2 + z2)
}
(ρn∇2ρp + ρp∇2ρn)

+
1

16
{

u1(1− z1) + 3u2(1 + z2)
}
(ρnτn + ρpτp)

− 1
16
{

u1(2 + z1) + u2(2 + z2)
}
(ρpτn + ρnτp)

+
1
32
{

u1(1− 2z1)− u2(1 + 2z2)
}
(J2

n + J2
p)

+
1

32
{

u1z1 + u2z2
}

J2 (12b)

where τ, τn and τp are the total, neutron and proton kinetic densities, respectively, and J, Jn
and Jp are the total, neutron and proton spin-orbit densities, respectively.

For the case of SAMi-ISB only the terms in s0 and u0 have been considered by set-
ting y0 and z0 to −1. The momentum-dependent terms were not considered since the
information that we have at our disposal might not be sufficient to pin down the values
of all parameters of a general interaction with several partial waves. We remind here
that those terms set to zero in the Hamiltonian ((Equations (12a) and (12b)) will affect
the neutron and proton effective masses as well as the central mean-field potential and
spin-orbit potential [37]. Hence, we kept the model simple and with just a couple of extra
parameters since the Coulomb corrections previously described are model independent.
This is enough for SAMi-ISB to satisfactorily fit the IAS energy of 208Pb and the symmetric
matter EoS predicted by the AV18 potential when solved within the BHF approach.

The energy densities in Equations (12a) and (12b), needed for the calculation of the
neutron star mass-relation, simplify as follows,

HCSB =
s0

4
(ρ2

n − ρ2
p) HCIB =

u0

4

[
(ρ2

n + ρ2
p)− ρnρp

]
, (13)
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being u0 = 25.8(4) MeV fm3 and s0 = −26.3(7) MeV fm3 determined from nuclear data
and pseudo-data as previously explained. Summing and re-writing the previous terms,

HISB ≡ HCIB +HCSB =
u0 + s0

4
ρ2

n +
u0 − s0

4
ρ2

p +
u0

4
ρnρp

=
s0

4
ρ2δ +

u0

16
ρ2(1 + 3δ2) , (14)

where δ ≡ (ρn − ρp)/ρ and ρ = ρn + ρp. Neutron star matter is characterized by values of
δ→ 1, and therefore,

HISB =
s0

4
ρ2δ +

u0

16
ρ2
[
4− 6(1− δ) + 3(1− δ)2

]
≈ −u0

8
ρ2 +

3u0 + 2s0

8
ρ2δ ≈ −u0

8
ρ2(1− δ), (15)

if u0 were exactly equal to −s0, a situation allowed from the statistical errors reported in
the determination of the parameters. It is also interesting to note that for pure neutron
matter (δ = 1), the resulting energy density will be,

HISB =
u0 + s0

4
ρ2

n ≈ −
1
8

ρ2
n MeV fm−3 , (16)

with a statistical error in the determination of these parameters in the fitting protocol of
SAMi-ISB that would be compatible with no ISB contribution to the neutron matter equation
of state (as seen already in Equation (15)). Hence, it is important to note the relevance of
the fine tuning of the parameters since the cancellation for this phenomenological choice
of the CSB and CIB terms seems to be very large. The resulting energy contribution is
negative and small, indicating a slight attractive overall behavior in pure neutron matter of
ISB terms. The sign of this result is consistent with the neutron-neutron scattering length
in the vacuum (cf. Table 1 in Ref. [38]). Since HISB is included in the fitting protocol of
the self-consistent SAMi-ISB functional, the isospin conserving part of the functional will
be slightly modified with respect to that of SAMi in order to accommodate an accurate
reproduction of the nuclear data (cf. Table 1). The effect on the observables such as the
neutron matter EoS of such refit of the parameters can overcome, and will be shown to
overcome, the genuine ISB effects. To which extent this cancellation effect depends on
the uncertainties associated with the EDF fitting procedure, is an interesting subject for
further investigation.

3. Results

In this section, we first compare the results of SAMi and SAMi-ISB for some ground
and excited state properties of different nuclei as well as some relevant properties of the
nuclear equation of state.

In Table 1, the binding energies and charge radii of some selected neutron-rich nuclei
are given. The accuracy of both models is very good for the medium-heavy and heavy
nuclei shown and never worse than a few h for binding energies and 1% for charge radii.
In the same table, some key nuclear matter properties at saturation density are given.
These values, although non-observable, are thought to be in a reasonable range to properly
describe not only binding energies and charge radii as briefly discussed above but also
collective excited states such as the Giant Monopole, Dipole or Quadrupole Resonances (cf.
Table 2 in Ref. [16]).
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Table 1. Some selected neutron-rich nuclei observables and nuclear matter properties of the SAMi [24] and SAMi-ISB [21]
functionals. Quantities within parenthesis correspond to the statistical theoretical error.

Observable Nucleus SAMi SAMi-ISB Experiment Property SAMi SAMi-ISB

B (MeV) 48Ca 415.61 417.67 415.99 ρ0 (fm−3) 0.159(1) 0.1613(6)
90Zr 781.26 783.60 783.89 e0 (MeV) −15.93(9) −16.03(2)

132Sn 1103.09 1102.75 1102.85 m∗IS/m 0.6752(3) 0.730(19)
208Pb 1636.61 1635.78 1636.43 m∗IV/m 0.664(13) 0.667(120)

J (MeV) 28(1) 30.8(4)
L (MeV) 44(7) 50(4)

K0 (MeV) 245(1) 235(4)
< r2

ch >1/2(fm) 48Ca 3.51 3.49 3.47
90Zr 4.27 4.26 4.27

132Sn 4.73 4.73 –
208Pb 5.50 5.50 5.50

In Figure 1, left panel, we show ISB contributions predicted by a Brueckner-Hartree-Fock
(BHF) calculation using the AV18 realistic nucleon-nucleon potential to the energy per particle
of symmetric nuclear matter as a function of the density [25]. We also show in the same panel
the result from the SAMi-ISB functional that has been fitted to these pseudo-data.
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Figure 1. (Left panel) ISB contributions to the symmetric matter equation of state as predicted by the BHF calculations
based on AV18 potential (black circles) of Ref. [25]. The solid line corresponds to SAMi-ISB. (Right panel) IAS energy for Sn
isotopes as predicted by SAMi and SAMi-ISB, compared to experimental data. Figure taken from the supplemental material
of Ref. [21].

As discussed in the introduction, the energy of the IAS is particularly sensitive to
ISB effects. In Figure 1, right panel, we show the IAS energy for Sn isotopes as predicted
by SAMi and SAMi-ISB, compared to experimental data. These results correspond to a
prediction of the model since SAMi-ISB has been fitted to the IAS energy in 208Pb alone.
From that figure it is clear that ISB terms help in reproducing the absolute value of IAS
energies along the Sn isotopic chain.

In Figure 2, left panel, we compare the neutron matter and symmetric matter EoS
as predicted by SAMi and SAMi-ISB. Symmetric matter EoS are very similar from the
low density region to 2ρ0 where they start to separate, with SAMi-ISB giving a softer
increase of the energy per particle with density. The pure neutron matter EoS predicted
by SAMi-ISB is slightly larger for densities up to about ∼0.5 fm−3, where it becomes
smaller, but still its trend is softer than SAMi for most of the density range shown. This
behaviour is due to the fine-tuning of the SAMi-ISB parameters since ISB terms alone
would produce attraction in neutron matter (cf. Equation (16)) and, thus, the opposite
trend for ρ ≤ 0.5 fm−3. Hence, the small ISB contributions cannot be disentangled from the
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effect resulting from the re-fit of the parameters between SAMi and SAMi-ISB (cf. previous
Section). In the inset, the same neutron matter EoSs are shown and compared with the
results of two representative ab initio approaches for the low density part. The details of
those calculations can be found in Refs. [39,40]. It is seen from the figure that SAMi-ISB
agrees better than SAMi with the ab initio calculations shown here.

In the right panel of the same figure, the mass-radius relation of a neutron star is
shown for the same models. The maximum observed mass of the J1614-2230 pulsar
(1.97± 0.04Msun) is also shown (grey horizontal band) [41]. In Ref. [42] an observation of
the pulsar J0348 + 0432 allowed to estimate its mass as 2.01± 0.04Msun which essentially
sets the same maximum mass constraint (not shown in the figure). For completeness,
we also show the simultaneous estimation (with 1σ error bars) of the mass and radius of
the millisecond pulsar PSR J0030 + 0451 [43–45]. It is seen that both neutron star EoSs
predict a radius that would be compatible with this observation at the 2σ level and that the
SAMi-ISB model does not reproduce a maximum mass of 2Msun. On the other side, it is
worth noting that both models are fully consistent with GW170817 [46] and GW190425 [47]
radii constraints. In addition, the inclusion of a realistic crust is expected to increase the
predicted radius for low and, to a lesser extent, medium mass stars while keeping the
maximum mass prediction much less affected (cf. right panel of Figure 2.1 in Ref. [7]) and,
thus, both models would likely be in better agreement with the radius observations of the
PSR J0030+0451 pulsar. The brown shaded area encloses SAMi-ISB predictions with the
predictions of the same model if u0 = s0 = 0. Those could be regarded as pure ISB effects
while the difference between SAMi and SAMi-ISB is also affected by the result of the fitting
procedure. Hence, even though large systematic uncertainties exist, it is clear from the
figure that ISB effects that are known to be small in nuclei, may entail non-negligible effects
on observables that are sensitive to large densities as those associated with the core of a
neutron star. These results should be confirmed and tested on the bases of other models for
neutron star matter.
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Figure 2. (Left panel) EoS of pure neutron and symmetric nuclear matter as predicted by SAMi (dashed) and SAMi-ISB
(dash-dotted). In the inset only the neutron matter EoSs are shown and compared with the results from the ab initio
approaches of Ref. [39] (brown shaded area) and Ref. [40] (grey shaded area). (Right panel) Mass-Radius relation of a
neutron star as predicted by SAMi and SAMi-ISB. The brown shaded area encloses SAMi-ISB predictions with the predictions
of the same model if u0 = s0 = 0. The maximum observed mass of the millisecond pulsar J1614-2230 (1.97± 0.04Msun) is
also shown (grey horizontal band) [41] as well as the simultaneous estimation of the mass and radius of the millisecond
pulsar PSR J0030+0451 [43] (dot) and [44] (square). Errors correspond to the 1σ estimation.

For completness, in Table 2, we report on some basic properties of a neutron star as
predicted by SAMi, SAMi-ISB and SAMi-ISB with u0 = s0 = 0 functionals. Specifically,
the maximum mass Mmax and radius Rmax where for SAMi-ISB the maximum mass is
reduced by ∼7% with respect to the one predicted by SAMi. The central density ρc

1.4 of
a 1.4Msun neutron star is ∼10% larger for SAMi-ISB and the corresponding radius has



Symmetry 2021, 13, 144 9 of 11

only slightly decreased. The sensitivity of the radius to nuclear ISB effects (see table and
compare green dash-dotted and brown solid curves in the left panel of Figure 2) seems
to be around hundreds of meters for a wide range of neutron star masses. The tidal
deformability Λ1.4 (see, e.g., [46,48–50]) predicted by SAMi-ISB shows a decrease with
respect to SAMi that is larger than ∼10%. The range deduced from GW170817 is Λ1.4 ≤
800 [46]. The tidal deformability Λ is customarily written as a function of the compactness
parameter ξ = GM/Rc2 (also shown in Table 2) and of the quadrupole tidal Love number
k2 [51] as Λ = 2k2ξ−5/3.

In summary, according to SAMi-ISB results, we shall expect an influence of ISB terms
originated from the nuclear strong interaction for properties related to very high densities
–easily found in a neutron star interior– as well as a small to moderate effect on the radius
and tidal deformability. The properties of the crust, not studied here, might also be affected
by ISB effects whenever competing configurations are close enough in energy since ISB
effects at normal densities are expected to be of the order of hundreds of keV.

Table 2. Some basic properties of a neutron star as predicted by SAMi, SAMi-ISB and SAMi-ISB with
u0 = s0 = 0 functionals. Specifically, the maximum mass (Mmax), radius (Rmax) and central density
(ρc

1.4), radius (R1.4), tidal deformability (Λ1.4) and compactness (ξ1.4) for a 1.4Msun neutron star.

Mmax/Msun Rmax [km] ρc
1.4 [fm−3] R1.4 Λ1.4 [km] ξ1.4

SAMi 2.03 9.8 0.54 11.2 301 0.18
SAMi-ISB 1.88 9.8 0.59 11.2 261 0.19
SAMi-ISB 1.86 9.9 0.61 11.0 242 0.19

(u0 = s0 = 0)

4. Conclusions

In this contribution, we present a preliminary study of the effect of ISB on the mass-
radius relation of a neutron star and a few related observables such as the tidal deforma-
bility. Since densities expected along the core of the star are thought to be well above 2ρ0,
ISB terms that are commonly small and frequently negligible for the study of finite nuclear
properties, may become relevant for the study of neutron star matter and specifically its
mass-radius relation (see brown area in the right panel of Figure 2). We compared the
predictions of two models based on the same fitting protocol, one containing non-standard
ISB terms (SAMi-ISB) and the other neglecting them (SAMi). Some differences appear even
though there is a large cancellation between the CSB and CIB parts of the proposed phe-
nomenological interaction. The extrapolation of our model to very large densities should be
further investigated and complemented with other type of calculations in order to confirm
or dismiss the effects of ISB on the mass-radius relation of a neutron star and, whenever
possible, study the large cancellation predicted here for the CSB and CIB terms. The study
of ISB effects on other observable properties of neutron stars might also be envisaged.
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