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Abstract: The present paper concerns the general solution for finite plane strain pure bending of
incompressible, orthotropic sheets. In contrast to available solutions, the new solution is valid
for inhomogeneous distributions of plastic properties. The solution is semi-analytic. A numerical
treatment is only necessary for solving transcendent equations and evaluating ordinary integrals.
The solution’s starting point is a transformation between Eulerian and Lagrangian coordinates
that is valid for a wide class of constitutive equations. The symmetric distribution relative to the
center line of the sheet is separately treated where it is advantageous. It is shown that this type of
symmetry simplifies the solution. Hill’s quadratic yield criterion is adopted. Both elastic/plastic
and rigid/plastic solutions are derived. Elastic unloading is also considered, and it is shown that
reverse plastic yielding occurs at a relatively large inside radius. An illustrative example uses real
experimental data. The distribution of plastic properties is symmetric in this example. It is shown
that the difference between the elastic/plastic and rigid/plastic solutions is negligible, except at the
very beginning of the process. However, the rigid/plastic solution is much simpler and, therefore,
can be recommended for practical use at large strains, including calculating the residual stresses.

Keywords: plastic anisotropy; large strain; pure bending; elastic unloading

1. Introduction

Sheet metal forming processes usually include bending. A brief review of typical
sheet metal forming processes that incorporate bending is provided in [1]. The process
of bending is also an essential test for identifying material properties, for example [2–10].
Theoretical analyses of the bending process are necessary for interpreting test results.

An exact rigid perfectly plastic solution for finite pure plane strain bending and plane
strain bending under tension of sheets has been found in [11]. This solution has been
adopted in [12] for deriving a closed form expression for strain at any fiber. This paper has
concluded that the basic assumptions made in [11] are plausible. The solution [11] has been
extended to many material models. Of primary interest for the present paper are solutions
for anisotropic materials and inhomogeneous sheets. A brief review of such solutions is
given below.

Elastic and plastic anisotropy is a typical property of many metallic and non-metallic
materials [13–16]. A solution for pure plane strain bending of anisotropic sheets has
been derived in [17]. The model adopted incorporates the Bauschinger effect and strain
hardening. Plastic anisotropy is described by Hill’s quadratic yield criterion [11]. It has
been found that the effect of plastic anisotropy on the bending moment is rather significant.
Papers [18,19] present an analysis of elastic/plastic bending of orthotropic sheets. Elastic
properties are isotropic, and plastic yielding obeys Hill’s quadratic yield criterion [11].
A more detailed review of solutions for plane strain bending of anisotropic sheets is
provided in [20]. An extension of the solutions above has been proposed in [21] where
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tension/compression asymmetry of plastic properties has been considered. All these
solutions are for homogeneous sheets.

Several solutions are available for piecewise homogenous sheets. The pure bending
of bonded laminated metals under plane strain conditions has been considered in [22,23].
Different rigid plastic material models have been adopted in these papers. Elastic properties
have been taken into consideration in [24]. This paper emphasizes the prediction of
springback. The distribution of residual stresses in bilayer sheets after bending has been
found in [25]. A simplified solution for bending and subsequent unloading of bilayer
sheets has been proposed in [26].

Different methods have been employed to get the solutions above. A unified approach
for analyzing finite pure plane strain bending has been developed in [27]. The approach
applies to a broad class of incompressible materials. In particular, the corresponding
solutions for anisotropic and bilayer sheets have been found in [28] and [29], respectively.

In many cases, the through-thickness distribution of material properties in sheets is
non-uniform but, in contrast to [22–26], is described by continuous functions [30]. Using
the approach [27], the pure bending of isotropic elastic/plastic functionally graded sheets
has been analyzed in [31]. The present paper extends this solution to anisotropic sheets.
In addition, a rigid/plastic model is considered. The general solution involves quite an
arbitrary through-thickness distribution of plastic properties. The numerical example is
based on the experimental data presented in [32]. In the case of the rigid/plastic solution,
the prediction of residual stresses can be made using the methodology proposed in [33] and
further developed and discussed in [34]. According to this methodology, for computing
residual stresses in a deformation process, the elasticity is neglected during the process’s
loading phase. It is shown that the solution for purely elastic unloading is not valid even
for a relatively large inside radius.

2. Statement of the Problem

A metallic sheet is bent under plane strain conditions by two couples M, as shown in
Figure 1. The initial shape of the sheet in the planes of flow is a rectangular of thickness H
and width 2L.
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Figure 1. Schematic diagram of the pure bending process: (a) initial configuration, (b) intermediate 
and final configurations. 
Figure 1. Schematic diagram of the pure bending process: (a) initial configuration, (b) intermediate
and final configurations.

Curves AB and CD are circular arcs, and AD and BC are straight throughout the
process of deformation (except the initial instant when AB and CD are straight). It has been
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shown in [27] that the following equations describe the transformation of the initial shape
into the shape after any amount of strain:

x
H

=

√
ζ

a
+

s
a2 cos(2aη)−

√
s

a
and

y
H

=

√
ζ

a
+

s
a2 sin(2aη). (1)

Here (x, y) are Eulerian Cartesian coordinates and (ζ, η) are Lagrangian coordinates.
Additionally, a is a time-like variable such that a = 0 at the initial instant and s is a function
of a. The latter should be found from the solution. The x-axis is an axis of symmetry of the
process. The Cartesian coordinate system’s origin is situated at the intersection of the axis
of symmetry and curve AB. At the initial instant,

x = ζH and y = ηH. (2)

This condition is satisfied if
s =

1
4

(3)

at a = 0. It is convenient to introduce a plane polar coordinate system (r, θ) with the origin
at x = −H

√
s/a and y = 0. It follows from (1) that

r
H

=

√
ζa + s

a
and θ = 2aη. (4)

It is seen from (2) and Figure 1 that ζ = 0 on curve AB and ζ = −1 on curve CD
throughout the process of deformation. The radii of circular arcs AB and CD are determined
from (4) as

rAB
H

=

√
s

a
and

rCD
H

=

√
s− a
a

, (5)

respectively. The transformation (1) satisfies the equation of incompressibility.
Let σζ and ση be the normal stresses referred to the Lagrangian coordinate system.

This coordinate system is orthogonal, and the normal stresses σζ and ση are the principal
stresses. The principal axes of anisotropy coincide with the x—and y—axes at the initial
instant. Then, according to the model proposed in [35], the principal anisotropy axes
coincide with the ζ− and η− coordinate curves throughout the process of deformation.
Under plane strain conditions, the anisotropic yield criterion proposed in [11] reads∣∣ση − σζ

∣∣ = 2T
√

1− c (6)

Here T is the shear yield stress with respect to the ζ− and η− coordinate curves, and
c is expressed through the yield stresses in the principal anisotropy axes’ directions [11].
Both T and c depend on ζ. It is convenient to represent T as T = T0ω(ζ) where T0 is
constant with the dimensions of stress. Then, Equation (6) becomes∣∣ση − σζ

∣∣ = T0W(ζ) (7)

where
W(ζ) = 2ω(ζ)

√
1− c. (8)

The transformation equations between the (x, y)− and (ζ, η)− coordinate systems in
(1) satisfy the flow rule associated with the yield criterion (7).

Let ξζ and ξη be the principal components of the total strain rate tensor. This tensor is
the sum of the elastic and plastic strain rate tensors. Then,

ξζ = ξe
ζ + ξ

p
ζ and ξη = ξe

η + ξ
p
η . (9)
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The superscript e denotes the elastic portion of the strain rate components and the
superscript p the plastic portion. The elastic portion is related to the stress components as

.
σζ −

.
σ = 2Gξe

ζ and
.
ση −

.
σ = 2Gξe

η . (10)

Here the superimposed dot denotes the convected derivative, σ is the hydrostatic
stress and G is the shear modulus of elasticity. Since the material is incompressible,
σ =

(
σζ + ση

)
/2. Then, Equation (10) becomes

.
σζ −

.
ση = 4Gξe

ζ and
.
ση −

.
σζ = 4Gξe

η (11)

The only stress equilibrium equation which is not identically satisfied in the polar
coordinate system is

∂σr

∂r
+

σr − σθ

r
= 0. (12)

It is evident from (4) that σr = σζ and σθ = ση . Therefore, Equation (12) becomes
The boundary conditions are

∂σζ

∂r
+

σζ − ση

r
= 0. (13)

σζ = 0 (14)

for r = rAB (or ζ = 0) and r = rCD (or ζ = −1).
The bending moment is determined as

M =

rAB∫
rCD

σηrdr. (15)

3. General Solution

Using (1), one can immediately find the total principal strains as

εζ = −1
2

ln[4(ζa + s)] and εη =
1
2

ln[4(ζa + s)]. (16)

Using (4), one transforms Equation (13) to

∂σζ

∂ζ
+

a
(
σζ − ση

)
2(ζa + s)

= 0 (17)

and Equation (15) to

m =
4M

T0H2 =
2
a

0∫
−1

ση

T0
dζ. (18)

It is worthy of note that m = 1 if W(ζ) = 1 in (7), as follows from [11].

3.1. Purely Elastic Solution

In the case of the purely elastic solution, ξe
ζ = ξζ and ξe

η = ξη in (11). The solution of
Equations (11) and (17) supplemented with the equation of strain compatibility is [36]

σζ

T0
=

1
2k

ln2[4(ζa + s)] + C,
ση

T0
=

1
2k

ln2[4(ζa + s)] +
2
k

ln[4(ζa + s)] + C. (19)

Here k = T0/G and C is constant.
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3.2. Solution in Plastic Regions Where ση > σζ

In this case, the yield criterion (7) becomes

ση − σζ = T0W(ζ). (20)

Substituting this equation into (17) leads to

∂σζ

T0∂ζ
− aW(ζ)

2(ζa + s)
= 0. (21)

One integrates this equation to get

σζ

T0
=

a
2

ζ∫
ζ(1)

W(µ)

(µa + s)
dµ +

σ
(1)
ζ

T0
. (22)

Here µ is a dummy variable of integration and

σζ = σ
(1)
ζ . (23)

at ζ = ζ(1). Equations (20) and (22) combine to give

ση

T0
=

a
2

ζ∫
ζ(1)

W(µ)

(µa + s)
dµ + W(ζ) +

σ
(1)
ζ

T0
. (24)

3.3. Solution in Plastic Regions Where ση < σζ

In this case, the yield criterion (7) becomes

σζ − ση = T0W(ζ). (25)

Substituting this equation into (17) leads to

∂σζ

T0∂ζ
+

aW(ζ)

2(ζa + s)
= 0. (26)

One integrates this equation to get

σζ

T0
=

a
2

ζ(2)∫
ζ

W(µ)

(µa + s)
dµ +

σ
(2)
ζ

T0
, (27)

where
σζ = σ

(2)
ζ (28)

at ζ = ζ(2). Equations (25) and (27) combine to give

ση

T0
=

a
2

ζ(2)∫
ζ

W(µ)

(µa + s)
dµ−W(ζ) +

σ
(2)
ζ

T0
. (29)
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4. Initiation of Plastic Yielding

The entire sheet is elastic at the beginning of the process. In this case, the solution
(19) is valid in the range −1 ≤ ζ ≤ 0. Therefore, this solution should satisfy the boundary
conditions in Equation (14). Then,

1
2k

ln2(4s) + C = 0 and
1
2k

ln2[4(s− a)] + C = 0. (30)

Eliminating C between these equations yields

16s(s− a) = 1. (31)

Solving this equation for s and then using any of the equations in (30), one gets

s =
2a +

√
4a2 + 1
4

, C = − 1
2k

ln2
(

2a +
√

4a2 + 1
)

. (32)

Substituting (32) into (19) supplies the principal stresses’ through-thickness distribu-
tion at any value of a. This solution is valid if the yield criterion is not violated in the range
−1 ≤ ζ ≤ 0. Equations (7) and (19) combine to give

− k
2
≤ Φ(ζ) ≤ k

2
(33)

where

Φ(ζ) =
ln[4(ζa + s)]

W(ζ)
. (34)

If Φ(ζ) is a monotonically increasing or decreasing function of its argument, then the
yield criterion may violate at ζ = 0, or ζ = −1, or ζ = 0 and ζ = −1 simultaneously. The
corresponding conditions are

ln(4s)
W(0)

= ± k
2

, or
ln[4(s− a)]

W(−1)
= ∓ k

2
, or

ln(4s)
W(0)

= ± k
2

and
ln[4(s− a)]

W(−1)
= ∓ k

2
. (35)

Here the upper sign corresponds to monotonically increasing functions, and the lower
sign to monotonically decreasing functions.

Let ae and se be the values of a and s, respectively, that correspond to plastic yielding
initiation. These values are readily found from (32) and (35) if the function W(ζ) is
prescribed. In particular, if the distribution of material properties is symmetric relative to
the surface ζ = −1/2, then W(0) = W(−1) and it follows from the third case in (35) that
16se(se − ae) = 1. The latter equation coincides with (31). Therefore, if the distribution of
material properties is symmetric relative to the surface ζ = −1/2, then the initiation of
plastic yielding occurs at ζ = 0 and ζ = −1 simultaneously.

If the Φ(ζ) has a local minimum or maximum, then one should consider the possibility
of the initiation of plastic yielding at such points, in addition to the points ζ = 0 and ζ = −1.
The initiation of plastic yielding at ζ = ζm where −1 < ζm < 0 occurs if

Φ′(ζm) = 0 and
∣∣ση − σζ

∣∣ = T0W(ζm). (36)

Here Φ′(ζ) ≡ dΦ/dζ. Using (19) and (34), one transforms Equation (36) to

aW
(

ζ
(1)
m

)
−
(

ζ
(1)
m a + s

)
W ′
(

ζ
(1)
m

)
ln
[
4
(

ζ
(1)
m a + s

)]
= 0 and ln

[
4
(

ζ
(1)
m a + s

)]
= k

2 W
(

ζ
(1)
m

)
(37)

or

aW
(

ζ
(2)
m

)
−
(

ζ
(2)
m a + s

)
W ′
(

ζ
(2)
m

)
ln
[
4
(

ζ
(2)
m a + s

)]
= 0 and ln

[
4
(

ζ
(2)
m a + s

)]
= − k

2 W
(

ζ
(2)
m

)
(38)
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Here W ′(ζ) ≡ dW/dζ. The equations in (37) combine to give

a(1)e =
k
8

W ′
(

ζ
(1)
m

)
exp

[
k
2

W
(

ζ
(1)
m

)]
. (39)

Then, Equation (32) supplies s = s(1)e as a function of ζ
(1)
m . One can replace a and s in

the second equation in (37) with a(1)e and s(1)e , respectively, to arrive at the equation for ζ
(1)
m .

This equation should be solved numerically. Then, a(1)e is readily determined from (39).
One applies the same procedure to (38) for determining a(2)e , s(2)e , and ζ

(2)
e . In particular,

a(2)e = − k
8

W ′
(

ζ
(2)
m

)
exp

[
− k

2
W
(

ζ
(2)
m

)]
. (40)

If −1 < ζ
(1)
e < 0 and −1 < ζ

(2)
e < 0, then ae = min

{
a(1)e , a(2)e

}
.

In what follows, it is assumed that a ≥ ae.

5. Rigid Plastic Solution

For many applications, it is possible to assume that the inelastic behavior is dominant
and to neglect the elastic response [37,38]. In this case, the general solution given in
Section 3 simplifies. There are two plastic regions throughout the process of deformation.
The inequality σζ > ση is valid in one of these regions, and the inequality σζ < ση in the
other. The neutral line separates the plastic regions. The stress ση is discontinuous across
the neutral line.

Let ζ = ζn be the neutral line. It has been shown in [27] that

ζn = − ds
da

. (41)

The solution (27) is valid in the region −1 ≤ ζ ≤ ζn. This solution should satisfy
the boundary condition (14) at ζ = −1. Then, ζ(2) = −1 and σ

(2)
ζ = 0 in (27), and this

equation becomes

σζ

T0
= − a

2

ζ∫
−1

W(µ)

(µa + s)
dµ. (42)

Consequently, Equation (29) becomes

ση

T0
= − a

2

ζ∫
−1

W(µ)

(µa + s)
dµ−W(ζ). (43)

The solution (22) is valid in the region ζn ≤ ζ ≤ 0. This solution should satisfy
the boundary condition (14) at ζ = 0. Then, ζ(1) = 0 and σ

(1)
ζ = 0 in (22), and this

equation becomes

σζ

T0
=

a
2

ζ∫
0

W(µ)

(µa + s)
dµ. (44)

Consequently, Equation (24) becomes

ση

T0
=

a
2

ζ∫
0

W(µ)

(µa + s)
dµ + W(ζ). (45)
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The stress σζ must be continuous across the neutral line. Then, Equations (41), (42)
and (44) combine to give

0∫
−ds/da

W(µ)

(µa + s)
dµ =

−ds/da∫
−1

W(µ)

(µa + s)
dµ. (46)

Since W is a known function of its argument, this equation is an ordinary differential
equation for determining s as a function of a. However, its form is non-standard. To
develop a numerical method for solving (46), it is advantageous that one considers the
initial instant separately. The distribution of the stress ση at the initial instant is illustrated
in Figure 2. The stress σζ vanishes everywhere.
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Then, it follows from (7) that

ση =

{
T0W(ζ) in the region ζn ≤ ζ ≤ 0

−T0W(ζ) in the region − 1 ≤ ζ ≤ ζn.
(47)

In the case of pure bending, equilibrium demands

0∫
−1

σηdζ = 0. (48)

Substituting (47) into (48) and using (41) yields

0∫
−ds/da

W(ζ)dζ −
−ds/da∫
−1

W(ζ)dζ = 0. (49)

This equation should be solved for ds/da. In general, a numerical method should
be used. However, in some cases, an analytic solution is available. For example, if
W is constant then ds/da = 1/2 at the initial instant. If the distribution of material
properties is symmetric relative to the central plane of the sheet, then WZ(Z) is an even
function of Z where Z = ζ + 1/2 and WZ(Z) = W(ζ) = W(Z− 1/2). In this case,
Equation (49) becomes

1/2∫
−ds/da+1/2

WZ(Z)dZ−
−ds/da+1/2∫
−1/2

W(ζ)dζ = 0. (50)

Integrating gives

Ω(1/2)− 2Ω(−ds/da + 1/2) + Ω(−1/2) = 0 (51)
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where Ω(Z) is the anti-derivative of WZ(Z). Therefore, Ω(Z) is an odd function of Z and
Ω(1/2) + Ω(−1/2) = 0. Then, it follows from (51) that

ds
da

=
1
2

(52)

at the initial instant.
Using (47), the bending moment at the initial instant is determined as

M = T0

0∫
−ds/da

W(ζ)

(
ζ +

ds
da

)
dζ + T0

−ds/da∫
−1

W(ζ)

(
ζ +

ds
da

)
dζ. (53)

If the distribution of material properties is symmetric relative to the central plane of
the sheet, then Equation (53) becomes

M = T0

1/2∫
0

WZ(Z)ZdZ− T0

0∫
−1/2

WZ(Z)ZdZ = 2T0

1/2∫
0

WZ(Z)ZdZ. (54)

Here Equation (52) has been taken into account.
Assume that one needs to find the solution of (46) at a = a f . Let the interval 0 ≤ a ≤ a f

be subdivided into an arbitrary number of small segments by the points ai. The values
of s and ds/da at a = ai are denoted as si and s′i, respectively. It is convenient to choose
these points a constant distance ∆a apart. Let the value of ai, si, and s′i be known. Then,
ai+1 = ai + ∆a. The value of si+1 can be approximated as

si+1 = si +

(
s′i + s′i+1

)
2

∆a. (55)

Equation (46) at a = ai+1 becomes

0∫
−s′i+1

W(µ)

(µai+1 + si+1)
dµ =

−s′i+1∫
−1

W(µ)

(µai+1 + si+1)
dµ. (56)

One can eliminate si+1 in (56) using (55). The resulting equation contains one unknown,
s′i+1. This equation should be solved numerically. Then, si+1 is readily determined from
(55). Having found si+1 and s′i+1, one can apply the procedure above to find the solution
at ai+1. This procedure should be repeated until ai+1 becomes equal to a f . It remains to
find the input data for the first step. It is evident that a0 = 0 and a1 = ∆a. It follows from
(3) that s0 = 1/4. The solution of (49) supplies s′0. However, if the distribution of material
properties is symmetric relative to the central plane of the sheet, then s′0 = 1/2, as follows
from (52).

6. Unloading

Consider purely elastic unloading. Variations of the shape are neglected during this
stage of the process. At the end of loading, a = al , s = sl , and m = ml . The corresponding
values of the inside and outside radii are denoted as rCD = R0 and rAB = R1, respectively.
The distribution of σζ and ση at a = al is denoted as σ

(l)
ζ and σ

(l)
η . All the quantities

introduced above can be calculated using the solution given in the previous sections.
The general solution for the increment of the principal stresses from the configuration

corresponding to a = al is independent of the solution at loading. Therefore, one may
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adopt the solution for the plane strain bending under tension provided in [36] assuming
the tensile force vanishes. In our nomenclature, this solution reads

∆σζ

2G = V0 ln
(

r
R0

)
−U0

[
1−

(
R0
r

)2
]

, ∆ση

2G = V0

[
1 + ln

(
r

R0

)]
+ U0

[
1 +

(
R0
r

)2
]

,

U0 = − ρ2
0 ln ρ0ml k

2
[
(ρ2

0−1)
2−4ρ2

0 ln2 ρ0

] H2

R2
0

, V0 = − ρ2
0(1−ρ2

0)ml k

2
[
(ρ2

0−1)
2−4ρ2

0 ln2 ρ0

] H2

R2
0

(57)

where ρ0 = R0/R1. Equation (4), in which a should be replaced with al and s with sl ,
supplies the dependence of r on ζ. The distribution of residual stresses is given by

σres
ζ = σ

(l)
ζ + ∆σζ and σres

η = σ
(l)
η + ∆ση . (58)

After calculating the residual stresses, it is necessary to verify that the yield criterion
is not violated in the range −1 ≤ ζ ≤ 0. The corresponding condition follows from (7) in
the form ∣∣∣σres

η − σres
ζ

∣∣∣ ≤ T0W(ζ). (59)

7. Practical Example

The through-thickness distribution of the coefficients involved in Hill’s quadratic yield
criterion [11] has been experimentally determined in rolled sheets of Al-Mg-Si alloy in [32].
The distribution is symmetric relative the central plane of the sheets. In our nomenclature,
Table 1 represents the results from [32]. It is seen from this table that the function W is
non-monotonic in each half of the sheet. This discrete function is approximated to the
following continuous function:

W(ζ) = 0.644− 0.837ζ − 4.888ζ2 − 8.103ζ3 − 4.051ζ4. (60)

It is worthy to note that the experimental data were first approximated by an even
function of ζ + 1/2 and then Equation (60) was derived. The numerical solution has been
found using the general solutions described in Sections 3–6 and (60). In all calculations,
k = 0.001.

Table 1. Through-thickness distribution of W.

Surface (ζ = 0 and ζ = −1) ζ = −1/4 and ζ = −3/4 Center (ζ = −1/2)

0.644 0.659 0.6

It has been found that ae ≈ 6 · 10−5. Two plastic regions initiate in the vicinity of the
inside and outside surface almost simultaneously and quickly propagate to the correspond-
ing stress-free surface. This stage of the process is very short and is not significant for
bending at large strains. The solution with three regions (two plastic regions and an elastic
region between them) starts at a = ap ≈ 2.7 · 10−4. At a ≥ ap, the plastic region adjacent
to the surface ζ = 0 (plastic region 1) occupies the domain ζ1 ≤ ζ ≤ 0 and the plastic
region adjacent to the surface ζ = −1 (plastic region 2) occupies the domain −1 ≤ ζ ≤ ζ2.
The elastic region occupies the domain ζ2 ≤ ζ ≤ ζ1. Thus ζ = ζ1 and ζ = ζ2 are the
elastic/plastic boundaries. Both ζ1 and ζ2 depend on a.

The distribution of σζ and ση in plastic region 1 follows from (22) and (24), and in
plastic region 2 from (27) and (29). Using the boundary conditions in (14), one finds that
σ
(1)
ζ = 0, ζ(1) = 0,σ(2)

ζ = 0, and ζ(2) = −1. The stresses σζ and ση must be continuous
across the elastic/plastic boundaries. This requirement is equivalent to the requirement
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that σζ and σζ − ση are continuous across the elastic/plastic boundaries. Using (19), (20),
(22), (24), (25), (27) and (29), one can represent the latter as

ln2[4(ζ1a + s)] + 2kC = ak
ζ1∫
0

W(µ)
(µa+s)dµ,

ln2[4(ζ2a + s)] + 2kC = ak
−1∫
ζ2

W(µ)
(µa+s)dµ,

2 ln[4(ζ1a + s)] = kW(ζ1), 2 ln[4(ζ2a + s)] = −kW(ζ2).

(61)

One can eliminate C between the first two equations. In the resulting equation,
ln[4(ζ1a + s)] and ln[4(ζ2a + s)] can be eliminated using the third and fourth equations. Then,

ζ1∫
0

W(µ)

(µa + s)
dµ−

−1∫
ζ2

W(µ)

(µa + s)
dµ =

k
4a

[
W2(ζ1)−W2(ζ2)

]
. (62)

Moreover, the third and fourth equations in (61) can be solved for a and s. As a result,

a = 1
4(ζ1−ζ2)

{
exp

[
k
2 W(ζ1)

]
− exp

[
− k

2 W(ζ2)
]}

,

s = 1
4(ζ2−ζ1)

{
ζ2 exp

[
k
2 W(ζ1)

]
− ζ1 exp

[
− k

2 W(ζ2)
]}

.
(63)

One can now eliminate a and s in (62) using (63). The resulting equation contains the
two unknowns, ζ1 and ζ2. A numerical solution of this equation supplies the dependence of
ζ1 on ζ2. Having found this dependence, a and s are readily calculated from (63) giving ζ1,
ζ2, and s as functions of a in implicit form. Then, C is determined from the first equation in
(61). It has been found that ζ1 ≈ −0.189 and ζ2 ≈ −0.811 at a = ap. It is more informative
to use H/rCD as a time-like variable instead of a. Equation (5) allows one to replace a with
H/rCD with no difficulty. The variation of ζ1 and ζ2 with H/rCD is depicted in Figure 3. It
is seen from this figure that the thickness of the elastic region decreases with H/rCD very
quickly. In particular, this thickness is less than 0.8% of the sheet’s initial thickness when
H/rCD = 0.04 (e.g., the inside radius of the sheet is 25 times larger than the sheet’s initial
thickness). The through-thickness distribution of σζ and ση at H/rCD = 0.04 is shown in
Figures 4 and 5, respectively. In these figures, X is the dimensionless distance from the
inside surface of the sheet defined as

X =
r− rCD

H
. (64)

Using the numerical procedure described in Section 5, s and ds/da have been found as
functions of a. Then, Equation (5) has been used to replace a with H/rCD. The dependence
of ζn = −ds/da on H/rCD in the range 0 < H/rCD ≤ 0.04 is depicted in Figure 3. It is
seen from this figure that the neutral line found from the rigid/plastic solution is located
between the two elastic/plastic boundaries found from the elastic/plastic solution.
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The dependence of ζn = −ds/da on H/rCD in the range 0 < H/rCD ≤ 40 is shown in
Figure 6. It is seen from this figure that the location of the neutral line changes very quickly
at the beginning of the process but gradually at large H/rCD. The through-thickness
distribution of σζ and ση at H/rCD = 0.04 is shown in Figures 4 and 5, respectively. It
is seen from Figure 4 that the difference between the elastic/plastic and rigid/plastic
solutions is insignificant. The difference is most considerable near the neutral line in the
rigid/plastic solution, and the rigid/plastic solution predicts a slightly higher value of

∣∣σζ

∣∣
than the elastic/plastic one. The difference between the elastic/plastic and rigid/plastic
solutions is invisible in Figure 5. The through-thickness distribution of σζ and ση at
several stages of the process found by means of the rigid/plastic solution is shown in
Figures 7 and 8, respectively. The maximum value of

∣∣σζ

∣∣ significantly increases as the
deformation proceeds.

Symmetry 2021, 13, x FOR PEER REVIEW 13 of 17 
 

 

 

Figure 5. Distribution of the stress   at 0.04CDH r   found using the elastic/plastic and 

rigid/plastic solutions. 

The dependence of n ds da    on CDH r  in the range 0 40CDH r   is shown in 
Figure 6. It is seen from this figure that the location of the neutral line changes very quickly 
at the beginning of the process but gradually at large CDH r . The through-thickness dis-
tribution of   and   at 0.04CDH r   is shown in Figures 4 and 5, respectively. It is 
seen from Figure 4 that the difference between the elastic/plastic and rigid/plastic solu-
tions is insignificant. The difference is most considerable near the neutral line in the 
rigid/plastic solution, and the rigid/plastic solution predicts a slightly higher value of   

than the elastic/plastic one. The difference between the elastic/plastic and rigid/plastic so-
lutions is invisible in Figure 5. The through-thickness distribution of   and   at sev-
eral stages of the process found by means of the rigid/plastic solution is shown in Figures 
7 and 8, respectively. The maximum value of   significantly increases as the defor-

mation proceeds.  

 
Figure 6. Variation of the location of the neutral line with CDH r . Figure 6. Variation of the location of the neutral line with H/rCD.

Symmetry 2021, 13, x FOR PEER REVIEW 14 of 17 
 

 

 

Figure 7. Distribution of the stress   at several stages of the process. 

The distribution of   has a weak local maximum in the vicinity of the outside sur-
face, which may affect bendability. Having found the stress solution, one can calculate the 
bending moment using (18). The variation of the dimensionless bending moment with 

CDH r  is depicted in Figure 9. It is seen from this figure that the dimensionless bending 
moment changes very quickly at the beginning of the process but gradually at large 

CDH r . Its value attains a local minimum around 13CDH r  . 
The procedure described in Section 6 has been applied to calculate the distribution of 

residual stresses. The methodology proposed in [34] has been adopted. Figures 4 and 5 
justify the validity of this methodology. These calculations have shown that inequality 
(59) is not satisfied with relatively large values of CDH r , requiring consideration of re-
versed yielding. In particular, even if 0.04CDH r  , inequality (59) is not satisfied at a 
narrow region near the neutral line.  

 
Figure 8. Distribution of the stress   at several stages of the process. 

Figure 7. Distribution of the stress σζ at several stages of the process.

The distribution of ση has a weak local maximum in the vicinity of the outside surface,
which may affect bendability. Having found the stress solution, one can calculate the
bending moment using (18). The variation of the dimensionless bending moment with
H/rCD is depicted in Figure 9. It is seen from this figure that the dimensionless bending
moment changes very quickly at the beginning of the process but gradually at large H/rCD.
Its value attains a local minimum around H/rCD = 13.



Symmetry 2021, 13, 145 14 of 16

The procedure described in Section 6 has been applied to calculate the distribution of
residual stresses. The methodology proposed in [34] has been adopted. Figures 4 and 5
justify the validity of this methodology. These calculations have shown that inequality (59)
is not satisfied with relatively large values of H/rCD, requiring consideration of reversed
yielding. In particular, even if H/rCD = 0.04, inequality (59) is not satisfied at a narrow
region near the neutral line.
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8. Conclusions

A general semi-analytic solution for finite pure plane strain bending of a sheet made of
incompressible material has been found. A distinguished feature of this solution is that the
sheet is plastically anisotropic and inhomogenous. No restriction of the through-thickness
distribution of plastic properties is imposed. Both elastic/plastic and rigid/plastic models
have been considered. It has been shown that the difference between the elastic/plastic
and rigid/plastic solutions is negligible, except at the very beginning of the process. Since
the rigid/plastic solution is much simpler than the elastic/plastic one, it is recommended
to use rigid/plastic models at large strains. It is possible even if residual stresses should be
calculated. In this case, the methodology proposed in [34] can be adopted. The numerical
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example uses real material properties provided in [32]. The through-thickness distribution
of these properties is symmetric relative to the center line of the original sheet. The
through-thickness stress distributions are illustrated in Figures 4, 5, 7 and 8. It is seen from
Figure 5 and Equation (18) that the difference between the bending moment found using
the elastic/plastic and rigid/plastic solutions is negligible if H/rCD ≥ 0.04, at least.

An advantage of the general solution is that it is valid for an arbitrary distribution of
material properties. Therefore, in conjunction with experimental data, this solution can be
readily used for identifying these properties.

It is crucial to predict springback in bending followed by unloading accurately [39].
The solution for purely elastic unloading is not valid for all cases considered, and it is
necessary to consider the appearance of reversed yielding. The latter will be the subject of
a subsequent investigation.
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