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Abstract: The real world can be characterized as a complex network sto in symmetric matrix.
Community discovery (or community detection) can effectively reveal the common features of
network groups. The communities are overlapping since, in fact, one thing often belongs to multiple
categories. Hence, overlapping community discovery has become a new research hotspot. Since the
results of the existing community discovery algorithms are not robust enough, this paper proposes
an effective algorithm, named Two Expansions of Seeds (TES). TES adopts the topological feature of
network nodes to find the local maximum nodes as the seeds which are based on the gravitational
degree, which makes the community discovery robust. Then, the seeds are expanded by the greedy
strategy based on the fitness function, and the community cleaning strategy is employed to avoid
the nodes with negative fitness so as to improve the accuracy of community discovery. After that,
the gravitational degree is used to expand the communities for the second time. Thus, all nodes in the
network belong to at least one community. Finally, we calculate the distance between the communities
and merge similar communities to obtain a less- undant community structure. Experimental results
demonstrate that our algorithm outperforms other state-of-the-art algorithms.

Keywords: overlapping community discovery; gravitational degree; greedy strategy; two expansions

1. Introduction

Many complex systems exist in the form of networks in the real world, such as social
networks [1,2], traffic networks [3,4], network sparsification [5] and protein interaction
networks [6,7]. These complex systems can be characterized as complex networks sto in
symmetric matrix for analysis and research. Entities in the complex network are repre-
sented by nodes, and the relationships between the entities are represented by edges [8,9].
Many researches based on complex networks have been investigated, such as social com-
puting [10], network computation [11], and community discovery [12]. The community
structure (module or cluster) is an important feature of a complex network, which means
that the network is composed of several communities. The connections between the nodes
in the community are very close, while the connections between the communities are rela-
tively sparse [13]. The purpose of community discovery (or community detection [14]) is
to mine community structures in a complex network. Community discovery can reveal the
universal features of a complex network and help in understanding its topology accurately,
which provides guidance for the use and transformation of the network and promotes
the practical application of the network. Hence, community discovery has become one of
the hotspots of complex network research [15] and various researches have been investi-
gated, such as disjoint community detection [16,17], overlapping community detection [18],
and multiobjective community detection [19].

Early researches on community discovery mainly focused on nonoverlapping com-
munities, which assumed that each node belongs to only one community and there is no
overlap of any two communities. Many representative algorithms have been proposed,
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such as the graph-partitioning-based method [20], label-propagation-based method [21],
clustering method [22,23], and optimization method [24,25]. However, in the real world,
things often have the characteristics of diversity. One thing often belongs to multiple cate-
gories and there may be overlap between communities. Therefore, overlapping community
discovery has become a new research hotspot in recent years. Researches on overlapping
community discovery can be divided into two categories: global-network-information-
based and local-network-information-based methods.

The methods based on global network information aim to find the community struc-
ture in the whole network by optimizing a certain global objective function using whole
connection information, which mainly include the link-based method [26,27] and the clique
percolation method [28]. These methods can get better results in community discovery,
but they have high time complexity and are not suitable for large-scale complex networks
with numerous nodes. The methods based on local information aim to find the commu-
nity structure starting from a node in the network by optimizing a certain local objective
function using local connection information, which mainly include the label propagation
method [29,30] and the local community expansion method [31,32]. Since the process of
community discovery is only related to the local information in the network, the time
complexity is low. Thus, these methods are suitable for large-scale complex networks.
However, their disadvantage is that when the parameters of the algorithms change slightly,
the results of community discovery change remarkably.

To tackle this problem, this paper proposes an overlapping community discovery
method based on Two Expansions of Seeds (TES). The main features of this method are
that the topological feature of the network (node degree centrality) is used to define the
gravitational degree and the local maximum node is taken as the seed. The reason is
that the greater the gravitational degree of the node, the greater its influence and the
stronger its information transmission ability in the network is, which is beneficial for
robust community discovery. Then, the seed is expanded by the greedy strategy based
on the fitness function. When new nodes are added to the community, the community
structure may be changed, thereby, there may be nodes with negative fitness. To avoid
such nodes, this paper adopts the community cleaning strategy. After the expansion based
on the fitness function, a community can cover most of the nodes in the network, but there
are still a small number of nodes that cannot be assigned to any community because of
the uction of community fitness. To solve this problem, this paper uses a gravitational
function to expand the nodes that are not included in any community for the second time.
Thus, all nodes belong to at least one community. Finally, by calculating the distance
between communities and merging similar communities, we effectively uce the undant
communities. The main contributions of this paper are as follows:

• We propose an overlapping community discovery algorithm named TES.
• TES employs the gravitational degree to find the local maximum nodes as the seeds

and expands these seeds by the greedy strategy.
• Experimental results verify that our algorithm has better performance than other

competitive algorithms.

The rest of this paper is organized as follows: Section 2 briefly summarizes the related
work. Section 3 proposes our algorithm, named TES, which is composed of three parts:
seed selecting, twice node expanding, and overlapping community merging. Section 4
reports the performance of TES. We draw the conclusion in Section 5.

2. Related Work

In this section, we will briefly review the categories of the overlapping community
discovery methods first. Then, we will introduce the methods of local community op-
timization and expansion in detail and analyze the shortcomings of the-state-of-the-art
algorithms. This paper aims to deal with the problem of unreasonable seed selection for
local community optimization and expansion.
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The overlapping community discovery methods can be divided into four categories:
link-based method, clique percolation method, label-propagation-based method, and local-
community-optimization-and-expansion-based method.

• The link-based method converts the cluste objects into network edges (or links) and
deals with these edges by nonoverlapping partitions. Since a node is usually a vertex
of multiple edges, if these edges belong to different linked communities, the node
is an overlapping node. The LINK algorithm [27] is representative of this method.
In addition, k-means was employed to expand seeds twice in dynamic community
detection [33].

• The clique percolation method considers that a community is composed of a number
of fully connected subgraphs. defined as a clique, and an adjacent clique forms a
community. Since a node may belong to more than one clique, it is an overlapping
node. However, the algorithm has higher constraints on interconnected conditions
and depends on the selection of parameter k. The CPM algorithm [28] is representative
of this method.

• The label-propagation-based method assigns a unique label to each node during
initialization; updates the label and its membership by iteration; and finally, assigns
the nodes with the same label to the same community. Apparently, if a node has
multiple labels, the node is an overlapping node. The COPRA algorithm [29] is a
representative of this method.

• The local-community-optimization-and-expansion-based method starts from the local
communities, expands the communities gradually based on the optimization function,
and forms cross-regions between multiple extensions, thus finding overlapping com-
munity nodes. The representative algorithms are LFM [31] and GCE [32]. In addition
to the above algorithms, there are some classical methods, such as the semisupervised
learning method [34]; deep learning method [35]; and the CONGA algorithm [36],
which splits the clone node by itself and adds a virtual edge between the split nodes
to find the overlapping nodes.

Among the abovementioned methods, the fourth one—local community optimization
and expansion—becomes more and more popular. For example, the research in [21] found
that taking the local maximum node defined by the degree centrality as the seed can
discover higher quality communities and avoid instability at the same time. The research
in [37] was about two methods to define the node influence: the community structure of
social networks and the influence-based measure of node intimacy center, and took the
nodes with great influence as the seeds. The EAGLE algorithm took the largest clique in the
network as the seed and igno the second largest one, which has high time complexity [38].
Another paper [39] selected a group of nodes as seeds that were closely connected in the
network, namely, an Egonet (hawk-eye network), but this method is more suitable for
networks with a large global clustering coefficient. A seed set expansion method based on
graph partitioning was proposed in [40] to find a group of nodes with low conductivity,
and the node closest to the cluster was taken as a seed. The online social network (OSN)
algorithm, as a multilever community discovery algorithm, combined user interests and
cohesiveness to coarsen the initial network and found an initial community assignment
using stochastic inference in the coarsest network [41]. All these methods use the local
topology information of the network to optimize the local optimization function to find the
community structure in the network. It does not need to know the global topology of the
network, and shows certain advantages in large-scale networks. Therefore, seed selection is
the foundation of this kind of method, which will affect the quality of community structure
mining. The LFM algorithm [31] and the DEMON algorithm [32] expand the community
by random seed selection, which inevitably causes the instability of community discovery.
The GCE algorithm improved the LFM algorithm by mining k-cliques as the seed through
the classic Bron–Kerbosch algorithm in the network [42]. In this method, cliques are fixed,
but the seed selection depends on the selection of parameter k, which can easily cause the
problem of low network coverage.
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To solve the problem of unreasonable seed selection for local community optimization
and expansion, this paper proposes an overlapping community discovery algorithm based
on two expansions of seeds. A node with the local maximum gravitational degree defined
by degree centrality is taken as a seed. This method has the advantages of a high-quality
community and robust results, but the disadvantage is that these communities cannot
cover the whole network. To overcome this problem, the communities are expanded for
the second time to ensure that each node belongs to at least one community.

3. Proposed Method

In this section, we propose the TES algorithm, which is composed of three parts. The
first part employs the gravitational degree defined by the network topological feature
(degree centrality) to find the local maximum nodes as the seeds. The second part expands
these seeds by the greedy strategy based on the fitness function. Then, the communities are
expanded for the second time based on the gravitational function. The third part calculates
the distance between the communities and merges the similar communities to get the final
communities.

3.1. Seed Selection

In actual networks, some nodes are usually closely connected with other nodes,
called central nodes, which contribute greatly to information transmission. They are
usually scatte across the whole network and located in regions where the nodes are more
closely connected. This is consistent with the fact that the nodes in a community are
closely connected, while the connections between communities are sparse. Hence, the
central nodes can be taken as the seeds. The centrality of a node reflects its centrality and
importance in the network [43]. Inspi by the gravitational relationships in the dynamic
social network [44], this paper proposes a gravitational degree based on degree centrality
to measure the influence of the central nodes on other nodes.

Newton’s law of universal gravitation holds that any two particles are attracted by
a force in the direction of the line between them. The gravitation is proportional to the
product of their masses and inversely proportional to the square of their distance, as shown
in Equation (1).

F = g× m1 ×m2

r2 , (1)

where g is the gravitational constant, m1 and m2 are the masses of two particles, and r is
the distance between two particles.

In this paper, a network is represented by an undirected graph G = (V, E), where V =
{v1, v2, . . . , vn} is a set of n vertices and E = {e1, e2, . . . , em} is a set of m edges.

Definition 1. Node centrality is the degree of a node, denoted by d(vi).

Definition 2. If there is an edge between nodes vi and vj, then node vj is a neighbor of node vi.
All neighbors of node vi are denoted by n(vi).

Definition 3. To measure the similarity between nodes vi and vj, this paper employs the Jaccard
similarity coefficient [45], denoted by s(vi, vj).

s(vi, vj) =
|n(vi) ∩ n(vj)|
|n(vi) ∪ n(vj)|

. (2)

Definition 4. The distance between node vi and its neighbor vj is d(vi, vj).

d(vi, vj) = 1− s(vi, vj). (3)
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Definition 5. The gravitation of node vi to its neighbor vj is Gr(vi, vj).

Gr(vi, vj) = g×
d(vi)× d(vj)

(1− s(vi, vj))2 . (4)

Using the node degree to measure the quality of a node can reflect the ability of
information transmission to its neighbor. The gravitational degree of vi to its neighbor
vj is directly proportional to the node degree and inversely proportional to the distance
between them.

Definition 6. The gravitational degree of node vi is the sum of its gravitation to all nodes in
the network.

GD(vi) = ∑
vj∈N(vi)

Gr(vi, vj) = g× ∑
vj∈N(vi)

d(vi)× d(vj)

(1− s(vi, vj))2 . (5)

The greater the gravitational degree of node vi, the greater its influence on the network.
The stronger the information transmission ability of a node, the more likely it is to become
a seed node.

An illustrative example is shown as follows:

Example 1. In Figure 1, node v1 has 7 neighbors, i.e., n(v1)= {2, 3, 4, 5, 6, 7, 8}. Node v4 has 3
neighbors, i.e., n(v4)= {1, 2, 3}. Thus, node centrality of nodes v1 and v4 are d(v1) = 7 and d(v4) =
3, respectively. n(v1) ∩ n(v4) and n(v1) ∪ n(v4) are {2, 3} and {1, 2, 3, 4, 5, 6, 7, 8}, respectively.
Thus, s(v1, v4) = 2/8 = 0.25 and d(v1, v4) = 1− 0.25 = 0.75. Hence, Gr(v1, v4) = 9.8 ∗
7 ∗ 3/0.75/0.75 = 365.9; GD(v4) = Gr(v1, v4) + Gr(v2, v4) + Gr(v3, v4) = 365.9 + 326.7 +
326.7 = 1019.2.

Figure 1. An illustrative network with 8 nodes and 14 edges.

Definition 7. If the gravitational degree of a node is no less than that of all its neighbors, the node
will be called the local maximum degree node of the network.

The local maximum node has a large gravitational degree and strong information
transmission ability. Most of them are scatte in the network. Therefore, this paper selects
the local maximum nodes as the seeds. The seed selection algorithm is shown in Algorithm
1. First, all nodes are marked as 0 and the gravitational degree of each node is calculated.
The node with the largest gravitational degree is put into the seed set. Then, the node with
the local maximum degree is marked as 1, and the node and its neighbors are moved out
of the vertex set. Search for the next seed iteratively until all nodes have been marked and
moved out of the vertex set.
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Algorithm 1 GetSeed.

Require: network G = (V, E);

Ensure: seed set S;

1: S← ∅;

2: for each i ∈ n do

3: vi.label ← 0;

4: GD(vi) = ∑vj∈N(vi)
Gr(vi, vj);

5: end for

6: while V 6= ∅ do

7: s← argmaxv∈V({GD(v)});
8: if s.label = 0 then

9: S← S ∪ {s};
10: s.label ← 1;

11: V ← V − {s ∪ N(s)};
12: end if

13: end while

14: return S

3.2. Community Discovery

For each seed in seed set S, this paper iteratively adds its neighbors to the community
to discover natural communities. There are many ways to expand the community, including
the minimum one norm [20], the label propagation method [29], and the fitness function
method [31,42]. This paper employs the fitness function method since it can provide good
results on real datasets.

Definition 8. Community C is a subset of V. For community C in network G = (V, E), its neigh-
bor N(C) is defined as

N(C) = {vj|∀eij ∈ E, vi ∈ C, vj /∈ C}. (6)

Definition 9. For community C in network G = (V, E), its fitness f (C) is defined as

f (C) =
dC

in
(dC

in + dC
out)

α
, (7)

where dC
in and dC

out are the sum of the degrees of the nodes that are inside and outside community
C, respectively. dC

in = 2 ∗ e(C) and dC
out = |E| − e(C), where e(C) is the number of edges inside

community C. α > 0 is an adjustment parameter.

α in the fitness function is the resolution parameter, which can adjust the scale of the
community discove. The smaller α is, the greater the influence of dC

in. This will lead to a
rapid increase of f (C) after adding node vi to community C. Therefore, community C can
accept more nodes. When α tends to be 0, the community may expand to cover the entire
network. On the contrary, the larger α is, the smaller the impact of dC

in. This will lead to the
tiny increase of f (C) after adding node vi. Therefore, a small community is formed. When
α = 1, f (C) = dC

in/(dC
in + dC

out). The more sparse the connection between community C and
outside is, the smaller dC

out is and the larger f (C) is, which can reflect the local connection
density of community C.

Example 2. In Figure 1, suppose community C is composed of nodes 5, 6, and 7. N(C) = {1} since
node 1 connects with community C. Node 8 does not belong to N(C) since it does not connect with
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community C. Suppose there is an edge between nodes 5 and 8, node 8 belongs to N(C). dC
in is 4

since the degrees of nodes 5, 6, and 7 in community C are 1, 1, and 2, respectively, and 1 + 1 + 2 = 4.
Another method is to count the number of edges in community C. There are 2 edges in community
C, thus, dC

in = 2 ∗ 2 = 4. Similarly, dC
out = 14− 2 = 12.

Definition 10. The fitness f (vi) of node vi can be obtained as follows:

f (vi) =

{
f (C ∪ {vi})− f (C) ∀vi ∈ N(C)
f (C)− f (C− {vi}) ∀vi ∈ C

. (8)

The disadvantage of this method is that although most of nodes can be assigned to the
corresponding communities, some nodes fail to be assigned, thus resulting in low network
coverage. Therefore, this paper expands the nodes that have not been assigned to the
community for the second time. This is in accordance with the actual situation. For example,
in a social network, everyone has friends and belongs to a circle of friends [37]. This paper
assumes that each node belongs to at least one community. A gravitational function is
defined by the ratio of the gravitation between nodes and the gravitational degree of nodes.
The gravitation of node vi is the sum of the gravitational degrees between node vi and
its neighbors. The more neighbors of node vi the community C contains, the greater the
gravitation between the community and node vi is. The gravitational function is given
as follows:

Definition 11. The gravitation of community C to node vi is measu by the gravitational degree,
and the gravitational function GF(C, vi) is

GF(C, vi) =
∑(vj∈C)∩(vj∈N(vi))

Gr(vi, vj)

GD(vi)
. (9)

When the seed set is found in the first stage, the seed is expanded by the greedy
strategy, that is, the local objective function of the community is maximized by adding
node to the temporal community or deleting it from the community. We will show the
principle of the algorithm as follows: We put a seed into temporal community C first. Then,
we calculate the fitness of all its neighbors and add the maximum fitness neighbor vmax
into C, as shown in lines 3–7 of Algorithm 2. After adding the maximum fitness neighbor,
the structure of the community will be changed. At this time, the fitness of each node
for the new temporary community should be updated. If a node has a negative fitness,
it will be removed from the community, as shown in lines 9–14 of Algorithm 2. Iterate the
above expansion until the fitness decreases when any node is added. We store temporal
community C into community set CS and remove these nodes from the network.

Obviously, when a community is expanded, the fitness of the nodes in the community
and the neighbors need to be recalculated. To solve this problem, we adopt the following
steps. If there is an edge between vi and vj, then dij is 1; otherwise, it is 0. The initials of dC

in
and dC

out are 0. If node vi is added into the community, we adopt Equations (10) and (11).
If node vi is removed from the community, we adopt Equations (12) and (13).

dC∪{vi}
in = dC

in + 2× ∑
vj∈C∩N(vi)

dij. (10)

dC∪{vi}
out = dC

out − ∑
vj∈C∩N(vi)

dij. (11)

dC−{vi}
in = dC

in − 2× ∑
vj∈C∩N(vi)

dij. (12)
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dC−{vi}
out = dC

out + ∑
vj∈C∩N(vi)

dij. (13)

Example 3. In Figure 1, according to Example 2, community C ={5, 6, 7}. Let node 1 be added
into community C. According to Equation (10), dC∪{v1}

in = 4 + 2 ∗ 3 = 10, since when node
1 is added, there are three edges that are added into community C. According to Equation (11),
dC∪{v1}

out = 12− 3 = 9. Let node 5 be removed from community C. According to Equation (12),
dC−{v5}

in = 4− 2 ∗ 1 = 2, since there is one edge in community C that connects with node 5.

According to Equation (13), dC−{v5}
out = 12 + 1 = 13.

Equation (8) is used to update the community fitness. In this way, we only need to
know the degree of node vi and calculate dij of the nodes which are both in community C
and neighbors of vi. To further speed up the calculation, we store dC

in and dC
out, which will

be updated when temporal community C adds a new node or removes a node, as shown
in lines 7–8 and 11–12 of Algorithm 2.

Algorithm 2 GetNaturalcoms.

Require: network G = (V, E), seed set S, and parameter α;

Ensure: community set CS;

1: CS = ∅,dC
in = dC

out = 0;

2: for each s ∈ S do

3: C ← {s};
4: while C 6= ∅ do

5: vmax ← argmaxv∈N(C)({ f (v)});
6: if f (vmax) > 0 then

7: C ← C ∪ vmax;

8: Update dC
in and dC

out;

9: for each vj ∈ C do

10: if f (vj) < 0 then

11: C ← C− {vj};
12: Update dC

in and dC
out;

13: end if

14: end for

15: else

16: break;

17: end if

18: end while

19: CS← CS ∪ C;

20: V ← V − C;

21: end for

22: return CS

Finally, we expand nodes for the second time. If a node does not belong to any
community, the node is merged into the community with the greatest gravitation, as shown
in Algorithm 3.
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Algorithm 3 ExpandingSecond.

Require: node set V, and community set CS;

Ensure: community set CS;

1: if V 6= ∅ then

2: for each vj ∈ V do

3: for Ci ∈ CS do

4: imax ← argmax({GF(Ci, vj)});

5: end for

6: Cimax ← Cimax ∪ vj;

7: end for

8: end if

9: return CS

3.3. Merging Overlapping Communities

In a nonoverlapping community, a node belongs to only one community [46], while a
node may belong to multiple communities in an overlapping community. Therefore,
there may be similarities between two communities. When a certain similarity is reached,
the excessive overlapping phenomenon will occur, resulting in a undant community [47].
Hence, after discovering the communities, this paper defines a measure of community
distance which is used to discover and merge the overlapping communities to simplify the
community structure.

Definition 12. The distance between communities C1 and C2 is

δE(C1, C2) = 1− |C1 ∩ C2|
min(|C1|, |C2|)

. (14)

In this paper, ε is the threshold of the distance parameter. If δ(C1, C2) < ε, com-
munities C1 and C2 are merged into one community since they overlap excessively. The
Merge_Overlap algorithm is shown in Algorithm 4.

To avoid invalid calculations, we adopt the principle of inverted index to prune
invalid detection of overlapping communities. Therefore, set Cp(vi) is used to store the
communities in which node vi belongs. An illustrative example is shown as follows:

Suppose we have 3 communities: C1 = {a, b}, C2 = {b}, and C3 = {c}. We know that
Cp(a) = {1}, Cp(b) = {1, 2}, and Cp(c) = {3}. To obtain the overlapping community of
C1, we calculate Cp(a) ∪ Cp(b) = {1, 2} since C1 = {a, b}. Therefore, communities C1 and
C2 are two overlapping communities. It is not necessary to calculate the distance between
communities C1 and C3. Therefore, the inverted index is an effective pruning strategy.

According to the above example, we should create set Cp(vi) at first, as shown in
lines 1–7 of Algorithm 4. Apparently, if the number of elements in Cp(vi) is greater than
1, it indicates that node vi belongs to multiple communities and is an overlapping node.
We determine whether the communities in Cp(vi) overlap or not, as shown in lines 8–19 of
Algorithm 4.

To sum up, Algorithm 5 presents the overlapping community discovery algorithm
based on two expansions of seeds.
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Algorithm 4 MergeOverlap.

Require: network G = (V, E), community set CS, and parameter ε;

Ensure: the new community set CS;

1: for vi ∈ V do

2: for each Cj ∈ CS do

3: if vi ∈ Cj then

4: Cp(vi)← Cp(vi) ∪ j;

5: end if

6: end for

7: end for

8: for each Cj ∈ CS do

9: for each vi ∈ Cj do

10: if length(Cp(vi)) > 1 then

11: Cv← Cv ∪ Cp(vi);

12: end if

13: end for

14: for cvi ∈ Cv do

15: if dis(Cj, Ccvi ) < ε then

16: Ccvi ← Cj ∪ Ccvi ;

17: end if

18: end for

19: end for

20: return CS

Algorithm 5 TES.

Require: network G = (V, E), parameter α, and parameter ε;

Ensure: community set CS, community set c(v) to which the node belongs;

1: S← GetSeed(V, E); //Searching for the seed in the network

2: CS← GetNaturalcoms(V, E, S, α); //Expand each seed according to the fitness function

3: CS← ExpandingSecond(V, CS); //Expand the nodes for the second time

4: CS ← MergeOverlop(V, E, CS, ε); //Merge the overlapping communities in the

network

5: return CS

3.4. Theoretical Analysis

The space complexity and time complexity of TES are O(k ∗ n+m) and O(k ∗ n2 +m)),
respectively, where k, n, and m are the number of seeds, nodes, and edges in G, respectively.
The reason is shown as follows:

The space complexity of network G is O(n+m). The space complexity of all neighbors
of each node is O(m) since each edge should be calculated. Thus, the time complexity of
n(vi) of each node is also O(m). Further, the space complexity and time complexity of
s(vi, vj), d(vi, vj), and Gr(vi, vj) are also O(m). Obviously, the time complexity of GD(vi) of
each node is O(m) and the space complexity of GD(vi) is O(n). Hence, the time complexity
of lines 2–5 in Algorithm 1 is O(m). Since each node will be checked once, the time
complexity of lines 6–13 is O(n). Therefore, both the space complexity and time complexity
of Algorithm 1 are O(n + m).
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Suppose we find k seeds, where k << n. When a node is added into or removed
from a community, no more than n edges are checked. Thus, the time complexity of
Equations (10)–(13) are O(n). Hence, the time complexity of Equations (7)–(9) are also
O(n). A node can be assigned into no more than k communities. Therefore, the time
complexity of Algorithm 2 is O(k ∗ n2).

Suppose there are t nodes which are expanded twice, where t << n. Each node will
be added into each community once. Thus, the time complexity of lines 3–5 is O(k ∗ n).
Therefore, the time complexity of Algorithm 3 is O(t ∗ k ∗ n).

Obviously, the time complexity of lines 1–7 of Algorithm 4 is O(k ∗ n) since there are k
communities and n nodes. Similarly, the time complexity of lines 8–19 of Algorithm 4 is
also O(k ∗ n).

Apparently, each community has no more than n nodes. Thus, the space complexities
of these communities are O(k ∗ n). Hence, the space complexities of Algorithms 2, 3, and 4
are O(k ∗ n).

Since t << n, the time complexity of TES is O(n + m + k ∗ n2 + t ∗ k ∗ n + k ∗ n) =
O(k ∗ n2 + m) and the space complexity of TES is O(n + m + k ∗ n) = O(k ∗ n + m).

4. Experimental Results and Analysis
4.1. Baseline Methods

To verify the performance of TES, three state-of-the-art algorithms are selected:
CONGA [36], COPRA [29], and LFM [31]. In addition, the TES algorithm has three
key steps: searching for seeds, discovering communities based on two expansions, and
merging overlapping communities. The two expansions of communities include the first
expansion of the community based on the fitness function and the second expansion of the
community based on the gravitational function. The community expansion based on the
fitness function includes community cleaning. To verify the reasonability of these parts,
four comparative algorithms—TES_Seed, TES_Unclean, TES_Fitness, and TES_Unmerge—
are constructed, and their specific descriptions are shown in Table 1.

Table 1. Comparative algorithms.

Algorithms Description

TES_Seed Nodes are randomly selected as seeds.
TES_Unclean Community cleaning is not performed after the first expansion.
TES_Fitness The community is expanded only once based on the fitness function.

TES_Unmerge Overlapping communities are not detected.

4.2. Benchmark Datasets

In this paper, we compare the performance of the TES algorithm on five real network
datasets. The real network datasets are shown in Table 2.

Table 2. Real network datasets.

Datasets Number of Nodes Number of Edges Description

Karate 34 78 Karate club network [48]
Dolphins 62 159 Dolphins social network [49]

Les Miserables 77 508 Les Miserables network [50]
Football 115 616 American college football network [51]
Power 4941 6594 The US power grid network [52]

4.3. Evaluation Criteria

To evaluate the performance of the proposed algorithm, this paper employs extended
modularity [38] and overlapping modularity [53] as the evaluation criteria.

The main idea of modularity (Q) is that if a subgraph is a community, the number
of edges of its internal nodes is greater than that of a randomly generated subgraph [54].
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Unfortunately, the Q function can only be used to evaluate nonoverlapping communities.
To evaluate the overlapping community structure, extend modularity (EQ) was proposed
based on the Q function [38]. The EQ function is shown as Equation (15).

EQ =
1

2m

K

∑
k=1

∑
vj ,vj∈Ck

[Aij −
didj

2m
]

1
OiOj

, (15)

where m is the total number of edges of the network, K is the number of communities
discove, di is the degree of node vi, Oi is the number of communities to which node vi
belongs, and A is the adjacency matrix of the network. If there is an edge between vi and
vj, then Aij = 1; otherwise, Aij = 0.

Overlapping modularity (Qov) is another method to evaluate the structure of overlap-
ping communities [53], as shown in Equation (16):

Qov =
1
m

n

∑
c∈C

n

∑
i,j∈V

[Aijβl(i,j),c −
βout

l(i,j),ckout
i βin

l(i,j),ckin
j

m
], (16)

where m is the total number of edges of the network, A is the adjacency matrix of the
network, β is the strength of an edge l = (i, j) which belongs to community C, kin

j is the
in-degree of node j, and kout

i is the out-degree of node i.
EQ and Qov are both in the interval [0,1]. The greater they are, the better the commu-

nity discovery results will be.

4.4. Parameter Selection

The selection of parameters will affect the results of community discovery. The TES
algorithm has two parameters, α and ε. According to Equation (7), α = 1 is a special value.
According to Equation (14), ε is in the range of (0,1). Thus, we select α in the range of
[0.8, 1.5] and ε in the range of [0.1, 0.9], and the step is 0.1. EQ is employed to evaluate the
performance. The experimental results are shown in Figures 2 and 3.

Figure 2. Comparison of extend modularity (EQ) with different α on real networks.
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Figure 3. Comparison of EQ with different ε on real networks.

Figures 2 and 3 show the trend of EQ along with the increase of parameters α and ε,
respectively. In general, the influence of α on community discovery is greater than that
of ε. In Figure 2, it can be seen that with the increase of α, EQ increases first and then
decreases. For different networks, the maximum EQ is obtained with different α. The
maximum EQ values are achieved at α = 1.3 on the Karate and Football networks, α = 1
on the Dolphin and Lesmis networks, and α = 0.9 on the Power network. From Figure 3,
it can be seen that ε has little influence on the Karate network and the Football network,
but has the greatest impact on the Dolphin network. EQ values of the Dolphin and Lesmis
networks are not significantly changed when ε ∈ [0.1, 0.5]. However, when ε ∈ [0.5, 0.9],
EQ decreases rapidly as ε increases. All five networks obtain the maximum EQ when
ε = 0.5.

In conclusion, for five real networks, when α = 1.3 and ε = 0.5 for the Karate and
Football networks, α = 1 and ε = 0.5 for the Dolphin and Lesmis networks, and α = 0.9 and
ε = 0.5 for the Power network, the optimal community discovery results can be achieved.
Therefore, in the rest of this paper, TES selects the above parameters for different networks.

4.5. Performance Evaluation
4.5.1. Module Performance Evaluation

In this subsubsection, we verify that each module has an effect on the improvement of
the proposed algorithm. The experiments are carried out on five real networks, and evalua-
tion criteria EQ is selected to evaluate the influence of each module on the TES algorithm.
The parameters of TES_Seed, TES_Unclean, TES_Fitness, and TES_Unmerge are the same
as those of TES. The experimental results are shown in Table 3. The coverage rates of the
nodes with only one expansion and two expansions are calculated, respectively. Therefore,
TES_Fitness with one expansion and TES with two expansions are selected. The coverage
rates of the two algorithms are reported in Table 4.

From Table 3, it can be seen that all four parts of the TES algorithm have impacts on
the TES algorithm and have different influence on different networks. Therefore, TES out-
performs the other four algorithms. For example, TES gets 0.675 on Power dataset, which
is larger than that obtained by the other four algorithms. According to Equation (15),
we know that the greater EQ is, the better the community discovery results will be. The rea-
sons are as follows: It should be noticed that the results of TES_Seed in Table 3 are not
robust. The reason is that TES_Seed randomly selects the seed to expand, resulting in
different community discovery results. Thus, the results are different even under the same
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parameters. Hence, the results of TES_Seed in Table 3 are the average value of 20 times.
After the first community expansion based on the fitness function, TES_Unclean does not
clean the community. When the community structure changes, there may be negative
fitness nodes in the community, which will effect the quality of the community discovery
results. TES_Unmerge has the most significant impact on the algorithm, which proves that
excessive overlapping between communities has a great impact on community structure.

Table 3. Comparison of EQ.

Algorithms Karate Dolphin Lesmis Football Power

TES_Seed 0.402 0.413 0.467 0.512 0.490
TES_Unclean 0.411 0.425 0.474 0.511 0.601
TES_Fitness 0.383 0.417 0.482 0.507 0.649
TES_Unmerge 0.380 0.251 0.428 0.449 0.434
TES 0.417 0.482 0.517 0.560 0.675

Table 4. Comparison of the coverage rate.

Algorithms Karate Dolphin Lesmis Football Power

TES_Fitness 0.94 0.95 0.87 0.76 0.89
TES 1.00 1.00 1.00 1.00 1.00

TES_Fitness expands the community based on the seeds only once, which leads to the
decrease of EQ and affects the coverage rate of network nodes. From Table 4, we know that
the coverage rate of TES_Fitness are all less than 1. The reason is as follows: For complex
networks with fewer nodes, the coverage rate of the nodes can be high with only one
expansion. However, with the increase of the nodes, the network scale becomes larger
and larger, and the coverage rate with only one expansion becomes lower and lower.
After two expansions of the community, the TES algorithm can cover all nodes in the
network completely, and a high coverage rate of 1.00 can be achieved for a large network
such as Power.

Hence, we can safely say that the four parts of the TES algorithm are all very important.
The community discovery result is robust since the local maximum node is selected as the
seed based on the gravitational degree. Community cleaning can avoid negative fitness
nodes when the community structure changes. The natural community can significantly
increase the coverage rate of the network nodes through two expansions, and the merging
of the overlapping communities can deal with undant communities effectively. The four
parts can effectively improve the quality of community discovery.

4.5.2. Algorithm Performance Evaluation

To report the performance of the TES algorithm, this paper selects three state-of-the-
art algorithms: the CONGA algorithm, based on the splitting method for overlapping
community discovery; the COPRA algorithm, based on the label propagation method; and
the LFM algorithm, based on local community optimization and expansion. The parameter
of CONGA is community number c, which needs to be determined according to the
modularity degree function. The parameter of COPRA is the label length v, which is from
2 to 8 with steps of 1. The parameter of LFM is the resolution parameter α, which is from
0.8 to 1.5 with steps of 0.1. For each algorithm, we select the best results as the final results
shown in Figures 4 and 5.
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Figure 4. Comparison results of EQ on different networks.

Figure 5. Comparison results of overlapping modularity (Qov) on different networks.

From Figures 4 and 5, TES outperforms all three competitive algorithms since both
EQ and Qov obtained by TES are better than those of the other three algorithms on the
five datasets. For example, from Figure 4, we know that EQ of TES is 0.417 on the Karate
network, while the other three algorithms are all less than 0.4. Similarly, Qov of TES is
0.697 on the Power network, while the other three algorithms are all less than 0.56. As we
know, the greater EQ and Qov are, the better the community discovery results will be.
Hence, the community discovery results of TES are significantly improved compa with
the other three algorithms. The reason is that the natural community discovery is based
on local community optimization, and the expansion is only related to the local topology
structure of the network, not the global topology of the whole network. Although the LFM
algorithm is based on local community optimization, EQ and Qov values achieved by the
LFM algorithm are lower than that of the COPRA algorithm on the Lesmis and Football
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networks, but higher than that of the COPRA algorithm on the other three networks.
The reason is that the LFM algorithm randomly selects seeds, meaning that the community
structure discove is not robust.

In summary, TES has better performance than all competing algorithms.

4.6. Case Study

To further clarify the performance of TES, the Karate network is employed to show the
community discovery results. Figure 6 shows the community discovery results obtained
by the TES algorithm. The seeds are nodes 1, 17, 26, and 34, and four communities are
obtained. Node 10 is the overlapping node of the grey and yellow communities.

Figure 6. Community discovery result by TES algorithm on the Karate network. The seeds are nodes
1, 17, 26, and 34, and four communities are obtained. Node 10 is the overlapping node of the gray
and yellow communities.

It can be seen from Figure 6 that the TES algorithm finds four communities, while the
CONGA and COPRA algorithms both discover two communities and the LFM algorithm
discovers five communities. Compa with the CONGA and COPRA algorithms, the partition
of the network by TES algorithm is more detailed. For example, community {5,6,7,11,17}
is closely related to node 1, but the nodes inside community {5,6,7,11,17} have stronger
connection relationship with each other. The TES algorithm can mine small communities
in large-scale communities, mainly because in the first part of the algorithm, the center
node with strong information transmission ability is taken as the seed. Although the LFM
algorithm discovers five communities, the seed does not have centrality since the LFM
algorithm randomly selects seeds. The expanded community structure locality is poor, and
a community is included in another community. The reason for this kind of situation is
that the LFM algorithm does not detect the merged undant community, which illustrates
the importance of detecting overlapping community in the TES algorithm.

5. Conclusions

In this paper, we propose an overlapping community discovery algorithm, named
TES, which has three parts. In the first part, the local maximum node is taken as the seed
based on the gravitational degree. The second part discovers the natural community by
two expansions. The community is expanded based on the fitness function. After adding a
new node, the community is cleaned. The second expansion is based on the gravitational
function. The third part examines and merges the overlapping communities. To verify
the reasonability of these parts, four comparative algorithms, TES_Seed, TES_Unclean,
TES_Fitness, and TES_Unmerge, are proposed. Besides these four algorithms, three state-
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of-the-art algorithms: CONGA, COPRA, and LFM, are employed. Experimental results on
five real networks report that TES outperforms all these competitive algorithms.
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