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Abstract: It is a familiar fact that convex and non-convex fuzzy mappings play a critical role in
the study of fuzzy optimization. Due to the behavior of its definition, the idea of convexity plays
a significant role in the subject of inequalities. The concepts of convexity and symmetry have a
tight connection. We may use whatever we learn from one to the other, thanks to the significant
correlation that has developed between both in recent years. Our aim is to consider a new class of
fuzzy mappings (FMs) known as strongly preinvex fuzzy mappings (strongly preinvex-FMs) on the
invex set. These FMs are more general than convex fuzzy mappings (convex-FMs) and preinvex fuzzy
mappings (preinvex-FMs), and when generalized differentiable (briefly, G-differentiable), strongly
preinvex-FMs are strongly invex fuzzy mappings (strongly invex-FMs). Some new relationships
among various concepts of strongly preinvex-FMs are established and verified with the support of
some useful examples. We have also shown that optimality conditions of G-differentiable strongly
preinvex-FMs and the fuzzy functional, which is the sum of G-differentiable preinvex-FMs and
non G-differentiable strongly preinvex-FMs, can be distinguished by strongly fuzzy variational-like
inequalities and strongly fuzzy mixed variational-like inequalities, respectively. In the end, we
have established and verified a strong relationship between the Hermite-Hadamard inequality and
strongly preinvex-FM. Several exceptional cases are also discussed. These inequalities are a very
interesting outcome of our main results and appear to be new ones. The results in this research can
be seen as refinements and improvements to previously published findings.

Keywords: preinvex fuzzy mappings; strongly preinvex fuzzy mappings; strongly invex fuzzy
mappings; strongly fuzzy monotonicity; strongly fuzzy mixed variational-like inequalities

1. Introduction

Recently, many generalizations and extensions have been studied for classical con-
vexity. Polyak [1] introduced and studied the idea of strongly convex functions on the
convex set, which have a significant impact on optimization theory and related fields.
Karmardian [2] discussed how strongly convex functions can be used to solve nonlinear
complementarity problems for the first time. Qu and Li [3] and Nikodem and Pales [4]
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developed the convergence analysis for addressing equilibrium issues and variational
inequalities, using strongly convex functions. For further study, we refer the reader to
applications and properties of the strongly convex functions of [5-10], and the references
therein. For differentiable functions, invex functions were introduced by Hanson [11],
which played a significant role in mathematical programing. The concept of invex sets and
preinvex functions were introduced and studied by Israel and Mond [12]. It is well known
that differential preinvex function are invex functions. The converse also holds under Con-
dition C [13]. Furthermore, Noor [14], studied the optimality conditions of differentiable
preinex functions and proved that the minimum can be characterized by variational-like
inequalities. Noor et al. [15,16] studied the properties of the strongly preinvex function and
investigated its applications. For more applications and properties of strongly preinvex
functions, see [17-19] and the references therein.

In [20], a large amount of research work on fuzzy sets and systems was devoted to
the advancement of various fields, playing an important role in the analysis of broad class
problems emerging in pure and applied sciences, such as operation research, computer
science, decision sciences, control engineering, artificial intelligence, and management
sciences. Convex analysis has made significant contributions to the improvement of
several practical and pure science domains. In the same way, fuzzy convex analysis is a
fundamental principle in fuzzy optimization and it is worthwhile to explore some basic
principles of convex sets in fuzzy set theory. Many scholars have addressed fuzzy convex
sets. Liu [21] investigated some properties of convex fuzzy sets and updated the definition
of shadow of fuzzy sets with the support of useful examples. Lowen [22] gathered some
well-known convex sets’ results and proved the separation theorem for convex fuzzy sets.
Ammar and Metz [23,24] investigated forms of convexity and established the generalized
convexity of fuzzy sets. Furthermore, they used the principle of convexity to formulate a
general fuzzy nonlinear programming problem.

A fuzzy number is a generalized version of an interval that can be discussed
(in crisp set theory). Zadeh [20] defined fuzzy numbers, while Dubois and Prade [25]
built on Zadeh’s work by adding new fuzzy number conditions. Furthermore, Goetschel
and Voxman [26] adjusted many conditions on fuzzy numbers to make them easier to han-
dle. For example, in [25], one of the conditions for a fuzzy number is that it is a continuous
function, whereas in [26], the fuzzy number is upper semi-continuous. The purpose is to
establish a metric for a collection of fuzzy numbers, using the relaxation of requirements
on fuzzy numbers, and then use this metric to examine some basic features of topological
space. Nanda and Kar [27], Syau [28] and Furukawa [29] introduced the concept of convex-
FMs from R" to the set of fuzzy numbers. Furthermore, they also defined different type
of convex-FMs, such as logarithmic convex-FMs and quasi-convex-FMs, as well studying
Lipschitz continuity of fuzzy valued mappings. Yan and Xu [30] provided the notions
of epigraphs and the convexity of FMs, as well as the characteristics of convex-FMs and
quasi-convex-FMs, based on Goetschel and Voxman'’s concept of ordering [31]. The concept
of fuzzy preinvex mapping on the invex set was introduced and studied by Noor [32]. He
also demonstrated that variational inequalities may be used to specify the fuzzy optimality
conditions of differentiable fuzzy preinex mappings. Syau [33], introduced notions of
(¢1, ¢2)—convexity, ¢;-B-vexity and ¢;-convexity-FMs through the so-called fuzzy max
order among the fuzzy numbers, and proved that the ¢;-B-vexity and ¢;-convexity, B-
vexity, convexity and preinvexity of FMs are the subclasses. Syau and Lee [34] examined
various aspects of fuzzy optimization and discussed continuity and convexity through
linear ordering and metrics defined on fuzzy integers. They also extended the Weirstrass
theorem from real-valued functions to FMs. For recent applications, see [35-39] and the
references therein.

On the other hand, integral inequalities have various applications in linear program-
ing, combinatory, orthogonal polynomials, quantum theory, number theory, optimization
theory, dynamics, and the theory of relativity; see [40,41] and the references therein. The
HH-inequality is a familiar, supreme and broadly useful inequality. This inequality has
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fundamental significance [42,43], due to other classical inequalities, such as the Olsen,
Gagliardo-Nirenberg, Hardy, Opial, Young, Linger, arithmetic—-geometric, Ostrowski,
Levinson, Minkowski, Beckenbach-Dresher, Ky Fan and Holer inequalities [44—49], which
are closely linked to the classical HH-inequality. It can be stated as follows:

Let H : K — R be a convex function on a convex set Kand , v € Kwithu < v. Then,

H(”Z”) < L [ H(epae < HOTHE) M)

If H is a concave function, then inequality (1) is reversed.

There are several integrals that deal with FMs and have FMs as integrands. For FMs,
Oseuna-Gomez et al. [50] and Costa et al. [51] constructed Jensen’s integral inequality.
Costa and Floures [52] used the same method to present Minkowski and Beckenbach'’s in-
equalities, where the integrands are fuzzy mappings. Costa et al. established a relationship
between elements of fuzzy-interval space and interval space and introduced level-wise
fuzzy order relation on fuzzy-interval space through Kulisch-Miranker order relation
defined on an interval space. This was motivated by [48-53] and particularly [54], because
Costa et al. established a relationship between elements of fuzzy-interval space and interval
space and introduced a level-wise fuzzy order relation on fuzzy-interval space through the
Kulisch-Miranker order relation defined on interval space. By using this relation on the
fuzzy-interval space, we generalize integral inequality (1) by constructing fuzzy integral
inequalities for strongly preinvex-FMs, where the integrands are strongly preinvex-FMs.
Recently, Khan et al. [55] introduced the new class of convex-FMs, which is known as
(h1, hy)-convex-FMs by means of the fuzzy order relation and presented the following new
version of HH-type inequality for (h1, hy)-convex-FM involving fuzzy-interval Riemann
integrals:

Theorem 1. Let H : [u, v] = Fy be a (hy, hy) -convex-FM with hy, hy : [0,1] — R™ and
hy (%)hz (%) # 0. If H is fuzzy Riemann integrable (in sort, FR -integrable), then the following

holds: ) ) ,
H(F") < v Jy H(z)dz

2 (3)h(3) - : @)
< [H(u) + H©)] [y hi(t)ha(1 - 1)dT.
Theorem 1 reduces to the result for convex fuzzy-IVF:
u+v 1 v H(u) + H(v)
W) 4 L [ e < HOTHOL o

For further information related to fuzzy integral inequalities, see [56—68].

Motivated by ongoing studies as well as the relevance of the concepts of invexity and
preinvexity of FMs, in Section 2, we provide an overview of some fundamental concepts,
preliminary notations, and findings that will be useful in further research. In the parts that
follow, the key results are considered and discussed. Section 3 introduces the concepts of
strongly preinvex-FMs and discusses some of their properties. Moreover, new relationships
among various concepts of strongly preinvex-FMs are also investigated in Section 3. In
Section 4, we introduce fuzzy variational-like and Hermite-Hadamard inequalities for
strong preinvex-FMs.

2. Preliminaries

In this section, we first provide some definitions, preliminary notations and results,
which will be helpful for further study.

A fuzzy set of R is a mapping ¥ : R — [0, 1], for each fuzzy setand 7y € (0, 1]; then, -
level sets of ¥ are denoted and defined as follows: ¥, = {u € R| ¥ (u) > «}. The support
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of ¥ is denoted by supp(¥) and is defined as supp(¥) = {u € R| ¥(u) > v}. A fuzzy
set is normal if there exist u € R such that ¥ (u) = 1. A fuzzy set is convex and concave
if¥Y(1-—1tu+tv) > min(¥(u), ¥(v)) and ¥((1 — 1)u+1v) < max(¥(u), ¥(v)) for
u,v € R, T € [0,1], respectively. A fuzzy convex set is a generalization of the classical
convex set.

A fuzzy set is said to be fuzzy number with the following properties.

(a) ¥isnormal. (b) ¥ is a convex fuzzy set. (c) ¥ is upper semi-continuous. (d) ¥
is compact.

Fy denotes the set of all fuzzy numbers. For a fuzzy number, it is convenient to
distinguish the following y-levels:

¥y ={ueR[¥(u) =},
From these definitions, we have the following:

¥y = [F(r), ¥ ()]

where
Yio(y) = inf{u e R| ¥ (u) =7}, ¥ (v) = sup{u € R[ ¥ (u) = 7}

Since each r € R is also a fuzzy number, it is defined as follows:

Fu) = lifu=r
| Oifu#tr
It is also well known that for any ¥, ¢ € Fy and r € R, the following holds:
Tt = {(Fu (1) + ¢ (1), ¥ (1) + 9" (1), 1) : v € [0, 1]}, @)

r = {(r¥e(7), 7Y (v),7) v € [0, 1]}. )

Obviously, Fy is closed under addition and nonnegative scaler multiplication. Fur-
thermore, for each scaler number r € R, the following holds:

FEr={(Fu(0) +r¥ (1) +77) 7 €0, 1]} ©)

Forany ¥, ¢ € Fy, we say that ¥ < ¢ (“<X ” relation between fuzzy numbers ¥ and ¢
if forall v € (0, 1], ¥*(y) < ¢*(7) (“ < ” relation ¥*(y) and ¢*(77)) and ¥ () < ¢«(7).
We say it is comparable if for any ¥, ¢ € Fy, we have ¥ < ¢ or ¥ = ¢; otherwise, they are
non-comparable.

We can state that [ is a partial ordered set under the relation < if we write ¥ < ¢
instead of ¢ = Y. If ¥, ¢ € Fy, there exist w € Fy such that ¥ = ¢—T—w; then, we have the
existence of the Hukuhara difference (in short, H-difference) of ¥ and ¢, and we say that
w is the H-difference of ¥ and ¢, denoted by ¥ —¢; see [37]. If this fuzzy operation exists,
then we have the following;:

(@) (1) = (F=9) (1) =¥ (1) = ¢* (), (). (7) = (¥=9) (1) = ¥x(7) — $+ (7).

A mapping H : K — Fy is called fuzzy mapping (FM). For each v € [0, 1], denote
[H(u)]” = [(H«(u,v), H*(u,v)] and in parameterized form, denote
H(u) = {(H«(u, v), H*(w, 7v),7): v €0, 1]}

Definition 1. Let ussay I = (m, n) and 1 € (m, n) [35]. Then, FM H : (m, n) — Fy is said to
be a generalized differentiable (briefly, G-differentiable) at 1 if there exists an element H'(u) € Fy
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such that for any 0 < 7, sufficiently small, there exist H(u + ) —H (u), H(u)—H(u — 1), and
the limits are (in the metric D) as follows:

lim H(u—&-r_z:?-l(u) — lim H(u):i-l(u—r) = H'(u)

0% 10t B
or lirg+w = li;z)a%;%(”) = H'(u)
T T—
or lim w = lim MT:H(“) = H'(u)
=07t _ T—0+ _
or lim BW=HEtD) _ g H@-H@-1) _ H' (1)
=0+ -t 0+ T ,

where the limits are taken in the metric space (E, D), for ¥, ¢ € Fy as follows:

D(Y¥, ¢) = Osulle(?w Py,
<7<

and H denotes the well-known Hausdorff metric on the space of intervals.

Definition 2. A FM H : K — Fy is said to be convex on the convex set K if the following
holds [27]:

H((1—71u+tv) s (1—1)HW)FTH(v), Vu,veK, T €0, 1]. )
Similarly, H is said to be concave-FM on K if inequality (7) is reversed.

Definition 3. The set Kz in R is said to be invex set with respect to (w.r.t.) arbitrary bifunction
&(.,.), if the following holds [12]:

u+7té(v,u) € Kg, Yu,ve Kg, T €0, 1.

The invex set Kg is also known as a § -connected set. Note that each convex set with
v —u = &(v,u) is an invex set in the classical sense, but the reverse is not true. For instance, the
following set K¢ = [~7, 2] U [2,10] is an invex set w.r.t. non-trivial bi-function { : R x R — R
given as follows:

Definition 4. A FM H : Kz — T is said to be preinvex on the invex set Kz w.r.t. bi-function & if
the following holds [32]:

H(u+1Ev,u)) < (1—1)Hw)FtH(v), 8)

forallu,v € Kg, T € [0, 1], where & : Kz x Kz — R. H is said to be preconcave-FM on Kg if
inequality (8) is reversed.

Lemma 1. Let K be an invex set w.r.t. ¢ and let H : Kz — Fo be a FM, parameterized by the
following [21]:

H(u) = {(H«(u, v), H" (w, 7),7):v €0, 1]}, VueKe

Then, H is preinvex on Kg if, and only if, for all v € [0, 1],
H(u, v) and H* (u, 7y) are preinvex w.r.t. § on K.
If &(v,u) = v — u, then Lemma 1 reduces to the following result:
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“Let Kz be a convex set and let H : Kz — Fo be a FM parameterized by the following:
H(u) = {(Ha(u, v), H*(u, v),7):v€[0, 1]}, Vu ek

Then, H is convex on Kg if, and only if, for all v € [0, 1], H+«(u, 7v) and H*(u, ) are
convex w.r.t. § on Ke.

Theorem 2.If H : [c,d] C R — K is an interval valued function on : [c,d] such that [H., H*][54].
Then H is Riemann integrable over : [c,d] if and only if, H. and H* both are Riemann integrable
over: [c,d) such that the following holds:

d d d
(1R) [ #(z)dz = {(R) [ oz, (®) [ H*(u)dz} ©)
c c [
From the above literature review, the following results can be concluded; see [31,32,53,54].

Definition 5. Let H : [c, d] C R — Fy be a FM [47]. The fuzzy Riemann integral of H over
[c, d], denoted by (FR) [ Cd H(z)dz, is defined by the following:

{(FR) /j?—[(z)dz]’y — (IR) /Cd M (z)dz = {/CdH(z,'y)dz :H(z,7) € R, d]}, (10)

forall y € [0, 1], where R/, 4 is the collection of end-point functions of IVFs. H is (FR)-

integrable over [c, d] if (FR) [ Cd H(z)dz € Fy. Note that, if both end-point functions are
Lebesgue-integrable, then H is fuzzy Aumann-integrable.

Let Kz be a nonempty invex set in R for future investigation. Let ¢ : Kz x Kz — R be an
arbitrary bifunction and H : Kz — Fo be an FM. We denote ||.|| and (., .) as the norm and inner
product, respectively. Furthermore, throughout this article, FMs are discussed through the so-called
“fuzzy-max” order among fuzzy numbers. As is well known, the fuzzy-max order is a partial order
relation “ < " on the set of fuzzy numbers.

3. Strongly Preinvex Fuzzy Mappings

In this section, we propose and study the class of strongly preinvex-FMs. We also
establish the relationship between strongly preinvex-FMs, strongly monotone operators
and strongly invex-FMs. Firstly, we define the following notion of strongly preinvex-FM.

Definition 6. Let Kz be an invex set and w be a positive number. Then, FM H : Kz — Fq is said
to be strongly preinvex-FM on Kg w.r.t. bi-function (., .) if the following holds:

H(u+7e(v,u)) x (1 —1)Hu)FtH{W)—wt(l - T)||§(v,u)||2, (11)

forallu, v € Kg, T € [0, 1]. H is said to be strongly preconcave-FM on K¢ if inequality (11) is
reversed. H. is said to be strongly affine preinvex-FM on K if the following holds:

H(u+tg(v,u)) = (1= OH @) FTHV) “wt(1 - 1) (v, 1), (12)
forallu,v € Kg, T € [0, 1].
Remark 1. Strongly preinvex-FMs, such as preinvex-FMs, have the following highly desirable
features:
(1) YH is also strongly preinvex for Y > 0, if H is strongly preinvex-FM.
(2) max(H (u),@(u)) is also strongly preinvex-FM if H and  both are strongly preinvex-FMs.

Now, we discuss some special cases of strongly preinvex-FMs:
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If ¢(v, u) = v — u, then strongly preinvex-FM becomes strongly convex-FM, that is
H((1-T)u+) < (1-1)HW)FrHV) “wt(l—1)|lv—ul]®>, Vu, ve K, T€ [0, 1].

If w = 0, then inequality (11) reduces to inequality (8).

If w=0and (v, u) = v — u, then inequality (11) reduces to inequality (7).

The following result characterizes the definition of strongly preinvex-FMs and estab-
lishes the relationship between strongly preinvex-FMs and end-point functions. With the
help of this theorem, we can easily handle the upcoming results.

Theorem 3. Let H : Kz — Fo be a FM parametrized by the following:

H(u) = {(Hs(u, 7), H*(w, 7),7) : v € [0, 1]}, Vu € Ke. (13)

Then, H is strongly preinvex on K w.r.t. ¢, with modulus w if and only if, for all
yelo 1],
H(u, v) and H*(u, y) are strongly preinvex w.r.t. ¢ and modulus w.

Proof. Assume that for each v € [0, 1], H«(u, v) and H*(u, ) are strongly preinvex
w.rt. { and modulus w on Kz. Then, from (11), forall u,v € K¢, T € [0, 1], we have the
following:

Ho(u+1E(vu), 7) < (1= Haltt, 7) + TH(v, 1) — 0T(1 = T)||E(v, 1) ]
and
H*(u+ & (v,u), v) < (1—T)H (u, 7) + TH* (v, 7) — wt(1 = 7)||E(v, u)|*.

Then, by (13), (4), (5) and (6), we obtain the following;:

H(u+ 75, u)) = {(Ha(u+5(v, 1), v), H*(u+ 5 (v, 1), v),7) - v € [0, 1]},
<=1 H(u, ), A=T)H (u, 7),7) v € [0, IFH{(THa (v, 7), TH (v, 7),7) s v € [0, 1]}
“wt(1-1)l|g(v,u)|?,
= (1= DH)FHV)~wt(1 = 1) [&(v,u)|

Hence, H is strongly preinvex-FM on Kz with modulus w. [J

Conversely, let H be a strongly preinvex-FM on Kz with modulus w. Then, forall u,v €
Kgand T € [0, 1], we have H (1 + 1¢(v, 1)) < (1 — T)H(u)+TH (V) —wt(1 — 7)||&(v, 1) 112
From (13), we have the following:

H(u+ 78V, u) = {(Ha(u + 5 (v,u), ), 1 (4 +w8(v, ), 7),7) v € [0, 1]}

Again, from (13), (4), (5) and (6), we obtain the following:

(1= 1)Hw)FrH ) ~wt(l - 1)|E(v,u)|
= T’H*< 1), (1=K (u, 7),7) =7 € [0, 1]}
FH{H (v, ), TH (v, 1), 7) 17 € [0, 1} ~wr(1 = 1) [E(v, u)|)%,

forallu,v € Kz and T € [0, 1]. Then, by strongly preinvexity of #, we have forall u, v € K¢
and T € [0, 1] such that the following holds:

He(u+1E(v,u), 7) < (1= 1) Ha(u, 7) + THa (v, 7) — wt(1 = 7)||E(v, u)|%,
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and
M (u+1E(v,u), 7) < A—T)H (1, v) + TH (v, 7) — wt(1 = T)||E(v, 1) |1%,
for each ¢y € [0, 1]. Hence, the result follows.
Example 1. We consider the FM H : [0, 1] — Fy defined by the following:
2§ o€ [0, 2u?
H(u)(o) = § #3270 e (2u?, 4] (14)

0 otherwise,

Then, for each v € [0, 1], we have H, (1) = [2yu?, (4 —27y)u?]. Since H.(u,7),
H*(u,y) are strongly preinvex functions for each 7y € [0,1], H(u) is strongly preinvex-FM
w.r.t. the following:

Evu)=v—u,
with 0 < w = 9 < 1. It can be easily seen that for each w € (0, 1], there exists a
strongly preinvex-FM, and # (u) is neither a convex FM nor a preinvex-FM w.r.t. bifunction
vu)=v—uwith0 < w < 1.
Now, we show that the difference between a strongly preinvex-FM and a strongly
affine preinvex-FM is, again, a preinvex-FM for a strongly preinvex-FM.

Theorem 4. Let FM f : Kz — o be a strongly affine preinvex w.r.t. { and 0 < w . Then, H is
strongly preinvex-FM w.r.t. the same bi-function ¢ if, and only if, @ = H — f is a preinvex-FM.

Proof. The “If” part is obvious. To prove the “only if”, assume that f : Kz — Fy is a
strongly fuzzy affine preinvex w.r.t. the non-negative bi-function ¢ and 0 < w. Then, the
following holds:

flu+t5v,u) = (1= 0)f () Frf(v) “wr(1 - 7|5 (v, u)]> (15)

Therefore, for each ¢ € [0, 1], we have the following;:

folu 478, 0),7) = (1= 1) fu,7) + Tfo(1,7) — wr(1 = D) e(, )],
e ), 7) = (=0 f (0,7) + T (0, 7) - wr(l - )&, )|

Since H is strongly preinvex-FM w.r.t. the same bi-function ¢, then, for each y € [0, 1],
we have the following:

Heo(u+78(v, 1), 7)

, (1= T)Ha(1,7) + TH(v,7) — wT(1 = D)||E(v, 1),
H*(u+ té(v,u),7) —

(1= )" (u, ) + TH (v, ) — wt(1 = 1) |§ (v, )|

From (15) and (16), we have the following:

<
< (16)

o+ TE(v,0),7) — foli+ TEw,),7) < (1 )Ha(,7) + THL(1,7)
SO -0 (u) — Thv),

H (4 T(v,0),7) — £ 0+ Te(v,0),7) < (1— OH () + TH (v,7)
ZA—0f ()~ Tf (v,7),

Ho(u+ 76 (v,u),7) = felu+ 18V, u),7) < (1= 1)(Ha(u,7) = f(1,7))
FT(He (v, 7) = fu(v, 7)),

H (u+t8(v,u),y) = fF(u+16(v,u),7) < (=) (H*(w,7) = f*(1,7))
+T(H (v, 7) = f* (v, 7)),
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from which it follows that

@y (u +1¢(v,u),
@*(u+1¢(v,u),
@ (u+ 78
@« (1 + 78

(u+t(v,u),y) = fi(u+tg(v,u),7),
(u+Tg(v,u),v) = f(u+7¢(v,u),7),
Y) < (1= 1)@s(u,7) + T@(v,7),
v,u),y) < (1-1)@*(u,7) +1@*(v,7),

—~
=
~
~—
~

that is
@(u+t¢(v,u)) < (1—-1)@(u)+t@(u),

showing that @ = H — f is preinvex-FM. [

We know that under certain condition invex-FMs, we obtain a solution of the fuzzy
optimization problem because with the help of these FMs, we can obtain the relationship
between the fuzzy variational inequalities and optimization problems.

Definition 7. The G-differentiable FM H : Kz — IFo on K¢ is said to be strongly invex-FM w.r.t.
bi-function ¢ if there exist a constant 0 < w such that the following holds:

Hv)=H(u) = F(u), @(v,u)—T—wHC(v,u)Hz, forall u,v € K. (17)

Example 2. We consider the FMs H : (0, 1) — Fy defined by, H(u) = [2yu?, (4 — 2v)u?],
as in Example 1; then, H(u) is strongly invex-FM w.r.t. bifunction {(v,u) = v — u, with
0<w=r1<1,whereu <v. We have H.(u, v) = yu® and H*(u, v) = (2 — v)u?. Now, we
compute the following:
Ho(v, 7) = Ha(ut, ) = > — i,

while

(' (w,7), &(v,u)) + @&, u)|* = 29 (v —u) + wl|v —ul.
and Y2 — yu? > 29(v —u) + wv — 12, with 0 < w < 1, where u < v.
Similarly, it can be easily shown that

(v, v) = H (u, 9) > (K (u,7), £, u)) + w||E(v,u)|

Hence, H(u) is strongly invex-FM w.r.t. bifunction {(v,u) = v —u, with0 < w < 1. It
can be easily seen that H (u) is not invex-FM w.r.t. bifunction ¢(v,u) = v — u.

Definition 8. The G-differentiable FM H : Kz — o on K¢ is said to be strongly pseudo invex-FM
w.r.t. bi-function ¢ if there exists a constant 0 < w such that the following holds:

(H (), Ev,u)) Fwl|E(v,u)|* =0 = Hv)~H(u) =0, forall u,v € K. (18)

If w = 0, then from Definition 7 and Definition 8, we obtain the classical definitions of
invex-FM and pseudo invex-FM, respectively. If ¢(v,u) = v — u, then Definition 7 and Definition
8 reduce to known ones.

Example 3. We consider the FMs H : (0, oo) — Fy defined by, H(u) = [yu, (3 — 27)u], then
H(u) is strongly pseudo invex-FM w.r.t. bifunction ¢(v,u) = v —u, with 0 < w = vy, where
u < v. We have H.(u, v) = yu and H*(u, ) = (3 — 27y)u. Now we compute the following:

(o (1,7), S(v,u)) + @&, u)|* = v (v —u) + wllv —ul* 2 0,

forallu,v € Kz and 7y € [0, 1] with u < v, 0 < w; which implies the following:

= H* (M/ ’Y)/

Hi(v, v) =qv = u
Hau, ),

Ha(v, v

AV
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Similarly, it can be easily shown that the following holds:
(H! (7). E(v,)) + @lE(v,m)] = 3 =27)(v =) +wllv —u|* > 0,
forallu,v € Kg and vy € [0, 1] with u < v, 0 < w. This means that the following holds:
H (v, v) = (B=27)v > yu=H"(u, v),

from which, it follows that
H(v, v) = H (u, 7)

Hence, the FM H.(u) = [yu,(3—27)u] is strongly pseudo invex-FM w.r.t.
¢(v,u) = v—u, with 0 < w, where u < v. It can be easily seen that H(u) is not a pseudo
invex-FM w.r.t. ¢.

Theorem 5. Let H : Kz — Fo be a G-differentiable and strongly preinvex-FM then H. is a strongly
invex-FM.

Proof. Let H : Kz — [y be G-differentiable strongly preinvex-FM. Since H is strongly
preinvex, then for each u,v € Kz and 7 € [0, 1], we have the following:

H(u+ 78 (v,u) < (1= D) Hw) FrHv) “wt(l - 1) [§(v,u)|?,
< H() FT(H) = H(w)) w1 - 1)l|5 v, u)]%

Therefore, for every v € [0, 1], we have the following:

Mo+ 78(v,u),7) < Ha(,7) + T(Ha(v,7) = He(1,7)) = wT(1 = T)[|E(v, )],
M (u+TE(v,u),7) < Halw,y) +T(H (v, 7) = H (7)) — wt(1 = 1) | E(v,0)[,

which implies that the following:

T(H(V,7) = Haltt,7)) > Hool+ TE (v, 1), 7) = Haltt,7) + wT(1 = T)||E(v, )|,
T(H (v, ) — H*(1,7)) = H (u+ T8 (v, ), 7) — H* (1,7) + wt(1—1)||E(v,u) |,
Ho(v,7) = Ho (1, 7) > HUICCIN D) 4 (1 — 1) 8 (v, u)|?,

H (v, 7) — H* () > BTN WD) o (1 — 1))@ (v, u) %

Taking the limit in the above inequality as T — 0, we have the following;:

Ho(v,7) = Hal, ) > (B (u,7), E(v,u) +w|Ev, )],
(v, ) = H (u,7) > (HY (w,7), E(v,u)) + w|E(v, )],

that is,
H(v)=H(u) = (H (), &v,u))Fw|Ev,u)|.

As a special case of Theorem 5, when w = 0, we have the following. UJ

Corollary 1. Let H : Kz — Fo be a G-differentiable preinvex-FM on Kg [32]. Then, H is an
invex-FM.

It is well known that the differentiable preinvex functions are invex functions, but
the converse is not true. However, Mohan and Neogy [13] showed that the preinvex
functions and invex functions are equivalent under Condition C. Similarly, the converse of
Theorem 5 is not valid; the natural question is how to obtain a strongly preinvex-FM from
strongly invex-FM. To prove the converse, we need the following assumption regarding
the bi-function ¢, which plays an important role in G-differentiation of the main results.
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Condition C.
Swu+ti(v,u)) =1 -1)¢(v,u),
S(uu+té(v,u)) = —1¢(v, u).

Clearly for T = 0, we have (v, u) = 0if, and only if, v = u for all u, v € K¢. Addition-
ally, note that from Condition C, we have the following:

Su+nl(vu),ut+ni(v,u)) = (—1)lv,u)

For the application of Condition C, see [13-17].
The following Theorem 6 gives the result of the converse of Theorem 5.

Theorem 6. Let H : Kz — Fo be a G-differentiable FM on K¢ . Let Condition C holds and H (u)
satisfies the following condition:

H(u+té(v,u)) < H(v), (19)

and then, the following are equivalent:
(a) H is strongly preinvex-FM.

(b) H(v)=H (1) = H' (1), &(v,u)Fwl||E(v,u)|? forallu, v e Kg, (20)
() H (), &) (FH (), &) < =w{le@w)+lewv)I*} @1
forallu, v € K.
Proof. (a) implies (b) O

The demonstration is analogous to the demonstration of Theorem 5.
(b) implies (c). Let (b) hold. Then, for everyy € [0,1] , we have the following:

Hav,7) = Heli, ) > (L (0,7), §(v,0) + wllgv, )P, )
M 0,m) = W (w,7) = (1 (), 8lv,0)) + wlléCo, o)l

Then, by replacing v by u and u by v in (22), we obtain the following:

M1, 7) = Halv, 1) Z (K (v,7), §(w,v)) + wl|§ ()%, (23)
H (,7) = H* (v,7) = (K (0, 7), §u,v)) + @l|§ ()%

Adding (22) and (23), we have the following:

(H*'(u,7), E(v,u)) + (- (v,7), E(u,v)) < —w (18, u) >+ &)

7

(H (,7), Ew,u)) + (K (v,7), E(u,v)) < —wgnav,u)nz + |¢<u,v>||2§,

That is, the following:

(M (), &(v,0) FH (), 8,v)) < Zo{ 80| + 160 v) 2}

(c) implies (b). Assume that (21) holds. Then, for every v € [0,1], we have the
following:

(1 (v,7), 8 ) < =(Hor(w,7), Ew,u) = @ (18w w) P + l1gw,v)IP),

24
(H*' (v, 7)) Eu,v)) < —(H ' (u, 1), 8@,w) —w (18,1 + 2w v)]?). @
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Since, v; = u + t¢(v,u) € Kg forall u,v € Kz and 7 € [0,1]. Taking v = v in (24), we
obtain the following;:

(R 28 w0, ), S T8 v,0))) < = (! (), -+ () )
e (llgtu+ e, u),w)lP + la(wu+7ew,u)?),

(L a8 (), 7)€ 78 () < —(H 7)o
¢

T (v,u)0))
—o (1 Gu-+ e, )P + et + 72 (v, ),

by using Condition C, we have the following:

(M (u,7), T8 (v, 1)) + 2072 & (v, 1) |,
(1 (u, ), 76 (v,u)) + 20725 (v, )|,

(M’ (u+ T8 (v, u),7), T8 (v, 1))
(H (u+ 18 (v,u),7), 15 (v,u))

(' (w478 (v,u),7),E(v,u)) = (Ha' (u,7),
(H (u+ 15 (v,u),7), 8 (v, u)) =

Let the following hold:

£, ) + 207 E (v, 1)
A (0,7, E ) + 20t e )P )

H. (1) = Ho(u +1E(v,1),7),
H*(1) = Y

H/ (1) = H (u+t8(v,u),v).L(v,u) = (H' (u+ 18 (v,u),7),¢(v,u)),
H* (1) = H" (u+7¢(v,u),7).L(v,u) = (H* (u+t¢(v,u),7),¢(v,u)),
from which, using (25), we have the following:
H. (1) > (1 (1,7),E(v, 1)) + 207]|E (v, u) )%, 26)
H*'(t) > (H* (1,7), &(v,u)) + 207§ (v, )%

By integrating (26) between 0 to 1, w.r.t. T, we obtain the following:

H.(1) = Ha(0) > (K (1,7), &(v,u)) + wllE (v, )7,
H*(1) = H*(0) = (K™ (u,7), &(v,u)) + wl| (v, )%
Ho(+E(v,u),7) = Ha(,7) = (K (w,7), (v, 1)) + wlE(v, )%,
M+ (v0),7) = H () = (H (,7), 6 (v, 1)) + wl|& (v, )|

Using (19), we have the following:
Mo (v, ) = Ha(1t,7) 2 (H (1,7), E(v, ) + wl|E (v, )2,
(v, ) = 1 () = (M (1,7), 8 (v, ) + w8 (v, )],

that is, the following:

HW)=H (1) = (H (1), (v, u)) Fw||&(v,u)||*, forall u, v € Ke.

(b) implies (a). Assume that (20) holds. Since K¢, v¢ = u + 7&(v,u) € K¢ for all
u,v € Kg and 7 € [0, 1]. Taking v = v in (20), we obtain the following:

M+ T8 (v, ) =H(u) = (H (), §(u+ T8 (v,u), 1)) Fel|§ (u + 6 (v,u),u) |

Therefore, for every v € [0, 1], we have the following:
H+ T8, 1), 7) = Ha,7) > (M (1,7), €+ T (v, 0),0)) + ]| €0 + T8 (v, ), )|,
M (u+TE(v,u), v) — H (u,7) > (K (), E(u+TE(v,u),u)) + wl|&(u + (v, u),u)|.
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Using Condition C, we have the following;:
Hoo( 476 (v, 1), 7) = Ha(,7) = (L= 0) (K (), S(v,u)) + w1 =1)|E (v, 1), 27)
W (4 TE(v,1),7) = M (1,7) > (1= 1) (0 (1,), &(v,u)) + (1 —1)[&(w,u) |2

In a similar way, we have the following:

Ho(u,7) — Ho(u+1E(v,1),7) > —T(H (0,7),E(v,u)) + wt?|E(v, 1) |, 8
H(u,7) — H(u+TE(v,u),7) > —T(H (u,7),E(v,u)) + wr?|E(v, u) %,

Multiplying (27) by 7 and (28) by (1 — 7), and adding the resultant, we have the

following:
Ho(u+ 1, u),7) < (1= 1T)Ha (1, 7) + THL(v,7) — wt(1 = T)||E(v,1)|]%,
M (u+1E(v,u),7) < (1= T)H (u,9) + TH* (v,7) — wt(1 = 1) [E(v, )|,

That is, the following holds:
Hu+1E(v,u)) < (1 —0)H(u)FrHw) Zwt(l —1)||Ev, )|

Hence, H is strongly preinvex-FM w.r.t.
Theorems 5 and 6, enable us to define the followings new definitions.

Definition 9. A G-differentiable FM H : Kz — Fg is said to be as follows:

(i)  Strongly monotone w.r.t. bi-function ¢ if, and only if, there exists a constant 0 < w such that
the following is true:

(H (), &(v,u)F(H' W), &u,v)) < “o{ e, u)| + g, v) |} for all u, v € K;

(i)  Strongly pseudo monotone w.r.t. bi-function ¢ if, and only if, there exists a constant 0 < w
such that the following is true:

(H'(u), E(v,u))Fw||E(v,u)||* =0 = Z(H'(v), &u,v)) =0, forallu, v e Ke.
If &(v,u) = —¢(u,v), then Definition 9. reduces to new one.
Example 4. We consider the FMs H : (0, co) — [ defined by the following:
Er Ly o € [0, 2u?]

H(u)(o) = 5‘; W0 g e (2u?, 5u?]

0 otherwise.

Then, for each 7y € [0, 1], we have H.,(u) = [2yu?, (5 — 3y)u® | , where H (u) is strongly
fuzzy pseudomonotone w.r.t. bifunction ¢(v,u) = u — v, with 1 < w, where v < u. We have
Ho(u, v) = 29u® and H* (u, ) = (5 — 3v)u®. Now, we compute the following:

(M (1,7), S(v,u)) + w|[&(v,u)|* = dyu(u —v) +wu—v* 20,
forallu,v € Kg and y € [0, 1] with v < u, 1 < w; which implies he following:

—(H (v, ), E(u,v) = —dyu(v —u)) = dyv(u —1/) >0, Vu, veKg,
—(H(v,7), §(u,v)) =0

Similarly, it can be easily shown that the following holds:

(H* (u,7), E(v,u)) + wl|&(v,u)|]* = 2(5 = 3y)u(u —v) + wllu —v|]* > 0,
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forallu,v € Kg and «y € [0, 1] withv < u, 1 < w. This means the following is true:
—(H"(v,7), G(u,v)) = =2(5 =3y)u(v—u) =2(5=3y)v(u—v) >0, Vu, veKg,
From which, it follows that

= (" (v, 7), &(u,v)) 2 0.

Hence, the G-differentiable FM M., (1) = [yu, (5 — 47)u] is strongly fuzzy pseudomonotone
wrt. E(v,u) = u—v, with1 < w, where v < u. It can be easily noted that H'(u) is neither fuzzy
pseudomonotone nor fuzzy quasimonotone w.r.t. ¢.

If w =0, then from Theorem 6, we obtain following result.

Corollary 2. [36] Let H : Kz — Fo be a G-differentiable FM on K. Let Condition C holds and
H(u) satisfies the following condition:

H(u+1e(v,u)) < Hv),

and then, the following are equivalent:

(a) H isinvex-FM.
(b) H’is monotone.

Theorem 7. Let H : Kz — Fo be FM on Kz w.r.t. ¢ and Condition C hold. Let H(u) is G-
differentiable on K with the following conditions:

(@) H(utTE(v,u) < H).

(b) H'(u)is a strongly fuzzy pseudomonotone.

Then, H is a strongly pseudo invex-FM.
Proof. Let H' be strongly pseudomonotone. Then, for all #, v € K¢, we have the following:

(M (u), &(v,u))FewlE(v,u)]? = 0.
Therefore, for every v € [0, 1], we have the following:

(H (u,7), E(v,u)) + w||E(v, u)||* > 0,
(H*(u,7), (v, 1)) + wl|&(v,u)|* > 0,

which implies that the following is true:

—(H' (v, 7), E(u,v)) >0,

*<7‘l*,(1/,’)/), C(u,v)) > 0. (29)

Since vr = u +1¢(v,u) € Kg forall u,v € Kz and 7 € [0,1 ]. Taking v = v in (29), we
obtain the following;:

— (M (u+ 78 (v, u),7), §(u,u+T8(v,u))) >0,
—(H(u+7¢(v,u),7), S, u+15(v,u))) = 0.

By using Condition C, we have the following:

(R (u+ 8 (v,),7), E(v,)) > 0, a0
(R + T2 (v, 0),7), E(v,0)) 2 0.
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Assume the following:
H(7) = Ha(u +7E(v,u),7),
H*(7) = H*(u+1¢(v,u),7),
taking G-derivative w.r.t. T, then using (30), we have the following:
HL/ () = (W (-4 T8 (v,0),7), E(v,0)) > 0, -

H*'(t) = (K" (u+t¢(v,u),7), ¢(v,u)) >0,

Integrating (31) between 0 to 1 w.r.t. T, we obtain the following:
(0) >0,
>0,

which implies the following:

Ha(u~+E(v,u),v) — Halu,y
H*(u+¢(v,u),y) —H* (u,7) > 0.

From condition (i), we have the following:

H*(V/ ,Y) - H*(u/ ’)’) 2 0/
H* (v, ) = H (u,7) =0,

that is, N
H(v)=H(u) =0, Vu,ve Kz

Hence, H is a strongly pseudo invex-FM.
If w = 0, then Theorem 7 reduces to the following result. [J

Corollary 3. Let H : Kz — Fo be a FM on Kz w.r.t. & and Condition C hold [36]. Let H(u) be
G-differentiable on Kz with the following conditions:

@) H(utTE(v,u) < H).

(b) H'(.) is fuzzy pseudomonotone.

Then, H is a pseudo invex-FM.
The fuzzy optimality requirement for G-differentiable strongly preinvex-FMs, which
is the fundamental impetus for our findings, is now discussed.

4. Fuzzy Mixed Variational-like and Integral Inequalities

The variational inequality problem has a close relationship with the optimization
problem, which is a well-known fact in mathematical programming. Similarly, the fuzzy
variational inequality problem and the fuzzy optimization problem have a strong link.

Consider the following unconstrained fuzzy optimization problem:

Lrlreué;?-[(u),

where K is a subset of R, H : Kz — [y and is a FM.

A feasible point is defined, as u € K¢ is called an optimal solution, a global optimal
solution, or simply a solution to the fuzzy optimization problem if u € Kz and nov € K¢,
H(u) < H(v).

The fuzzy optimality criterion for G-differentiable preinvex-FMs is discussed in the
following theorems, and this is the fundamental rationale for the results.



Symmetry 2021, 13, 1816 16 of 24

Theorem 8. Let H be a G-differentiable strongly preinvex-FM modulus 0 < w . If u € K¢ is the
minimum of the FM H , then the following holds:

HW)ZH (1) = w||&E(v,u)||?, forallu,v e Ke. (32)

Proof: Let u € K be a minimum of H. Then
H(u) < H(v), forallv € Kq.
Therefore, for every v € [0, 1], we have the following:

Ha(u,v) < Hao(v, ),

H*(u,y) < H* (v, 7). (33)

Forallu, v e Kg, T € [0, 1], we have the following:

Vr = M+TC(v,u) S Ké

“ II

Taking v = v in (33), and dividing by “t”, we obtain the following:

0< Ho (u+7&(v,u),7)—Ha (1,7)
0< H*(M+T§(V,MT,’)‘)*H*(L[,’)’)'

T

Taking limit in the above inequality as T — 0, we obtain the following:

0 S <H*/(u/’)/)/ é(vlu)>’
0 < (H*(u,7), &(v,u)).

Since H : Kz — Fy is a G-differentiable strongly preinvex-FM, we have the following:

(34)

Ho(u+ tE(v,u), ) < (1— O H(t,9) + TH(v,7) — wt(1 - T)||E(v, 1) %,
H(u+7té(v,u),y) < (1—1)H*(1,v)+ T?-l v, 7) —wt(1 —1)|&(v,u)|?
Ha(v,7) — Ha(u,y) > LRI 4 (1 — 7) (v, u) %,
H (v,7) = H (u,7) > HLETELIDN WD) 4 (1 - 7)||g (v, u) |,

Again, taking the limit in the above inequality as T — 0, we obtain the following;:

Ho(v, ) = Holu,7) = (H! (,9), E(v,0)) + wl|E(v,0)],
(v, ) — H (7)) > (HY (1,9), E(v,u)) +wl|E(v,u)|,

from which, using (34), we have the following:

He(v,7) = He(u,7) 2 @|E(v,u) ] 2 0,
7‘[*(1/,’)/) - H*(”/ ')’) 2 w||§(1//“)||2 2 O/

that is,
H(v)—H(u) = 0.

Hence, the result follows. (I
Theorem 9. Let H be a G-differentiable strongly preinvex-FM modulus 0 < w, and
(H (), §(v,u))—T—w||§(v,u)||2 = 0,forall u,v € Kg, (35)

then u € Kg is the minimum of the FM ‘H.
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Proof. Let H : Kz — [y be a G-differentiable strongly preinvex-FM and u € K satisfies
(35). Then, by Theorem 5, we have the following:

HW)=H () = (H (), Ev,u) FwlEw,u)]?,
Therefore, for every v € [0, 1], we have the following:

He(v, ) = Ha(,7) = (Ha' (1,7),

), E(v,u)) + wl|E(v,u)],
H*(v,v) = H (w,7) = (H(u,7), ¢(v,

(v,u)) + wl&(v,u)|?,

from which, using (35), we have the following:

that is,

O
If w = 0, then Theorem 9 reduces to the following result:

Corollary 4. Let H be a G-differentiable preinvex-FM w.r.t. ¢ [32]. Then, u € K¢ is the minimum
of H if, and only if, u € K satisfies the following:

(H'(u), E(v,u)) =0, for all u,v € K.

Remark 2. The inequality of the type (35) is called a strongly variational-like inequality. It is very
important to note that the optimality condition of preinvex-FMSs cannot be obtained with the help of
(35). So, this idea inspires us to introduce a more general form of a fuzzy variational-like inequality
of which (35) is a special case. To be more unambiguous, for given FM ¥, bi function &(.,.) and a
0 < w, consider the problem of finding u € Kg, such that the following holds:

(¥(u), E(v,u)) Tw||&(v,u)|> =0, Vv e Ke. (36)

This inequality is called a strongly fuzzy variational-like inequality.
We look at the functional I(v) , which is defined as follows:

I(v)=HW)+JT(v), Vv ER, (37)

where H is a G-differentiable preinvex-FM and [J is a strongly preinvex-FM, which is non-G-
differentiable.

The following theorem shows that the functional I(v) minimum can be distinguished by a
class of variational-like inequalities.

Theorem 10. Let H : Kz — o be a G-differentiable preinvex-FM and J : Kz — Fo be a non-G-
differentiable strongly preinvex-FM. Then, the functional I(v) has minimum u € Kg, if and only if
u € Kg satisfies the following:

(H' (), E(v,u))FT (V) =T (u)Fw|E(v,u)|* =0, Vv € Ke. (38)

Proof: Let u € K¢ be the smallest value of I.
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Therefore, for every 7 € [0, 1], we have the following:
L(u,v) < L(v,7),
x x 39
I (u,7) < I*(v, 7). 9

Since v; = u + t¢(v,u), forallu, v € Kz and 7 € [0, 1]. Replacing v by v in (39), we
obtain the following;:

Le(u,v) < L(u+76(v,u),7),
I, y) < I (u A 78 (v,u), 7).
which implies that, using (37), the following holds:

Ho(u, ) + Te(u,7) < Holu+7E(v,u),9) + Tu(u+ (v, u),7),
H(u,y) + T (u,v) < H (w+T¢(v,u),7) + T (u+18(v,u),7).
Since J is strongly preinvex-FM, then the following holds:
Ho(u, ) + T, ) < Ho(u+18(v,u),7) + (1= 1) T (u,7) + tT4(v, 7)
+wt(1-1)[Ev,u),

H*(w,y) + T*(u,v) < H (u+7E(v,u),y)+ (1 —1)T*(u,v) + T *(v,7)
+wt(1—)l|Ew, u)]?,

that is
0 < Halu+ (v, 1),7) = Ha(tt,7) + T(Telv,7) = T, 7)) + wr(1 = 1) [E(v, 1) |,
0 < H* (u+TE(v,u),y) = H (w,7) + T(T*(v,7) = T*(,7)) + wr(1 = )| &(v, 1),

Now dividing by “7” and taking lirr(l), we have the following;:
T—

0 < lim {4 7, (1,9) = T, ) + (L= D)]E(v, )|},
0 < lim { PO TN 1 74 (1, 9) = T (1, ) + (1 = T) & (v, 0) |},
then 5
0.< (W (), £ )+ Ta(v,7) = Tl 1) + ey
0 < (W (1,7), Ev, )+ T (v,7) = T (u,7) + @l (v, u) P,
that is,

0= (H'(w), §(v, ) FT () =T (u) Fwl|g (v, 1)

Conversely, let (38) be satisfied to prove that u € K is a minimum of I. Assume that for
allv € Kg, wehave I(u)=I(v) = H(u)+T (u)=HWv)=T (v), = H(u)=HW)+T (u)=T (v),
Therefore, for every v € [0, 1], we have the following:

L(u,v) = L(v,7) = Halu,v) = Hu(v, 7) + T (u,7) = Ti(v, 7),
I*(U/'Y) - I*(V/'Y) = /H*(”r')’) - 'H*(U,"y) + j*(”r')’) - ,_7*(1/,’)/).

By Corollary 1, we have the following:

Le(u,7) = L(v,7) < =[(H/(u,7), (v, u))

, Te(v, ) = Ti(,7)]
I (u,y) = (v, y) < =[(H (w,7), §(v,u)

+ ,
+ T (v, ) = T*(u,7)],

from which, using (38), we have the following:

L(u,7) = L(v,7) < —wl|&(v,u)|* <0,
I (u, ) = I*(v,7) < —w|&(v,u)|* <0,

thatis, I(u)~I(v) < 0, hence, (1) < I(v). O
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"
"

2u+¢(v, u)

2

2u+¢(v, u)

2

)
)

Note that (38) are called strongly fuzzy mixed variational-like inequalities. This
result shows that the minimum of fuzzy functional I(v) can be characterized by a strongly
fuzzy mixed variational-like inequality. It is very important to observe that the optimality
conditions of preinvex-FMs and strongly preinvex-FMs cannot be obtained with the help
of (38). This idea encourages us to introduce a more general type of fuzzy variational-like
inequality of which (38) is a particular case. In order to be more precise, for given FMs
¥, @, bi function ¢(.,.) and a 0 < w, consider the problem of finding u € K¢, such that the
following holds:

(¥(u), E(v,u))FoW)~ou)Tw|&(v,u)|]* =0,¥ v € K. (40)

This inequality is called a strongly fuzzy mixed variational-like inequality.

Now, we look at a few specific types of strongly fuzzy mixed variational-like inequali-
ties:

If ¢(v,u) = v — u, then (40) is called a strongly fuzzy mixed variational inequality
such as the following:

(¥ (u),v—u)yFov)~@u)Fw|lv—ul* =0, Vv e Ke.
If w = 0, then (40) is called fuzzy mixed variational-like inequality such as the

following:
(F(u), E(v,u))Fo(v)=o(u) =0, Vv € K.

If (v,u) = v—uand w = 0, then (40) is called a fuzzy mixed variational inequality
such as the following:

(F(u), v—u)to(v)=@(u) =0, Vv € Kq.

Similarly, we can obtain a fuzzy variational inequality and fuzzy variational-like
inequality in [32] as special cases of (40). In a similar way, some special cases of strongly
fuzzy variational-like inequality (36) can also be discussed.

Remark 3. The inequalities (36) and (40) show that the variational-like inequalities arise naturally
in connection with the minimization of the G-differentiable preinvex-FMs, subject to certain
constraints.

The Theorem 11 provides the Hermite -Hadamard inequality for strongly preinvex-
FM. This inequality provides a lower and an upper estimation for the average of strongly
preinvex-FM defined on a compact interval.

Theorem 11. Let H : [u, u + &(v, u)] — Fg be a strongly preinvex-FM with H(z) = 0. If H
is fuzzy integrable and (., .) satisfies Condition C, then the following holds:

~ W 2 1 utG(v, u) H(u) —T— H(V) ~ w 2

Flew )l < g (R [ e < BB )t @
If H is preconcave FM then, inequality (41) reduces to the following inequality:

~ W 2 1 u+g(v, u) H(u) —T— H(V) ~ w 2

Flew I = g FR) [ ez - FES I e,

Proof. Let H : [u, u+ (v, u)] = Fy be a strongly preinvex-FM. Then, by hypothesis, we
have the following:

N (2u+§2(1/, u))
< Hu (1D, W)
FHuA+ e, u) =91 -2 E(v, ).
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Therefore, for every v € (0, 1], we have the following:

2. (2L ) <Mt (1= 108, w), 7) + Ha(u+ T8, W), )
—5(1=207¢(v,u))?

2 (2, o) <+ (L= D)2y, ), 7) + H (4 T8 (v, 1), )
—$1 - 207 & (v, u)|%

Then

1 1 1
2 Of . (%H fy)dT < Of’H*(u + (1= 1)E®, u), v)dt+ Of M, (u+TE(v, u),v)dt

—¢lew,ml?,

1 1 1
2 Of e (2t g )dr < Of?-[*(u + (1= 1)Ev, u),7)dT + Of W (u+ TE(v, u), 7)dT

—4E(w, )|
It follows that
Ao (2, o)+ gl )P < gy ST Mz, )iz,
e (2l ) + gl )l < gl ST H e )iz

That is

[ (2, o), e (2, )] + el

<I g(v% m) Uuuﬁ(v’ ¥ Hi(z, 7)dz, fouré(V/ u) H*(z, 'y)dz}.
Thus,
utilv,u)y @ 2,1 wt (v, )
7—[( 5 >+ pIewI" < 702 (FR)/u H(z)dz. 42)

In a similar way as above, we have the following:

u+¢(v, u)
C(vl, u) (FR)/M ' H(z)dz < w - %HC(VIM)HZ- (43)

Combining (42) and (43), we have the following:

" vou W u+¢(v, u) u T V) ~w
(2 R e < s ) [ e < P =L

This completes the proof. [

Remark 4. If w = 0, then Theorem 11 reduces to the result for preinvex convex-FM as follows:

u+¢(v, u) i v
H(ZH‘:Z(V’ ”)> < g(i m (FR)/u Y 2z < 77{(”);”( ).

If §(v,u) = v —u, then Theorem 11 reduces to the result for strongly convex-FM as follows:

U+v\-w 1 v Hu) FHW) ~w, 9
%( : )+ Vot (FR)/MH(z)dz<72 - u
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If (v,u) =v —uand w = 0, then Theorem 11 reduces to the result for convex-FM in [55]

as follows: ‘
H(u;rv) <L(FR)/”V»H(Z)dz<w' )

If Hi(u, v) = H*(v, v) with w = 0and -y = 1, then Theorem 11 reduces to the result for
preinvex function as follows (see [36]):

H<2”+§(V' ”)> < i ! (R) /MM(V' u)’H(Z)dz < Hw) +Hv) (45)

2 v, u) 2

If Ho(u, v) = H*(v, v) with(v,u) = v —u, w = 0and -y = 1, then Theorem 11 reduces
to the result for convex function as follows (see [42,43]):

H(u;v) < Uiu (R) /uvq.[(z)dz < w )

Example 5. We consider the fuzzy-IVF H : [u, u+ (v, u)] = [0, (2, 0)] — Fo defined by the
following:
5, 0 € [0, 22%],
Uz (o) =4 50, o e (222, 427,
0, otherwise,

Then, for each <y € [0, 1], we have H(z) = [2vz?, (4 — 27)z?]. Since for each y € [0,1],
Hi(z,7) = 2922, H*(z, 7) = (4 — 27)z? are preinvex functions w.r.t. (v, u) = v — u and
w = 3. Hence H(z) is preinvex fuzzy-IVF w.rt. &(v, u) = v —u. We now compute the
following:

2 ,
(PG, ) + e P = a1 1) = ¥,

, 2
g(vl, u) fu”+§(1/ & Hs (Z’ ’)/)dZ = % fO Z’yzzdz = 877’

Ha () +Ha (v, 2 32
AR — g g (v )P = 5

forall v € [0, 1]. That means the following holds:

By _ 8y _ 32y
373~ 9

Similarly, it can be easily shown that the following holds:

W 2u+E&(v, u) 1 utcv, u) H*(u, v)+H*(v, )
" <2’ ) = E(v, u) /u (2 7)dz < 2

forall vy € [0, 1], such that we have the following:

ae (R, o) 4 e u) = Ha(1, ) = 25,

o L iz = ] 74— 22z = B,

H* (u, 7)+H* (v, 2 _ 72-2
(u 7)2 (v w-%“@(%“)” — 22y

From which, it follows that

3616y _8(2—1) _72-227
9 ~ 3 ~ 9
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that is
8y 36—16v 8y 8(2—19) 32y 72229
SR O S D i Gt O} D el A e Bl Il 1
{3’ 9 } = 1{3’ 3 S g9 g | foralveln ]

and hence, the Theorem 11 is verified.

5. Conclusions

In this study, we introduced and studied a new class of preinvex-FMs called strongly
preinvex-FMs. Using Condition C, we obtained the equivalence relation between strongly
preinvex- and strongly invex-FMs. To characterize the optimality condition of the sum
of preinvex-FMs and strongly preinvex-FMs, we introduced the strong fuzzy mixed
variational-like inequality. Moreover, we established a strong relationship between strongly
preinvex-FM and the Hermite-Hadamard inequality. There is much room for further study
to explore this concept in fuzzy convex and non-convex theory, such as the existence of
a unique solution of strong fuzzy mixed variational-like inequalities and some iterative
algorithms, which can also obtained under some mild conditions. From last two sections,
we can conclude that these classes of FMs will play an important and significant role in
fuzzy optimization and their related areas.
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