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Abstract: The paper offers a general symbolic method to study the motion in a non-inertial reference
frame. In order to achieve this, we use the algebraic and geometric properties of the Lie group of
special orthogonal tensors, SO3, and the Lie group of the rigid body displacements, SE3. We obtain
a simplified form of the initial value problem that models the non-inertial motion using a tensor
instrument introduced in this paper. Thus, the study of the motion in a non-inertial reference frame
is transferred into the study of a classical motion in an inertial reference frame. The applications of
this method refer to solving the relative motion problem and deriving the straightforward solution
to classical theoretical mechanics problems. The motion in a uniform gravitational force field in a
rotating reference frame, the motion of a charged particle in non-stationary electric and magnetic
fields, the exact solution of the relative rigid body motion in the non-inertial reference frame are
studied. Using this symbolic method in studying the motion in a non-inertial reference frame
reduces the number of computations. In addition, it offers, in some essential particular cases, exact
closed-form coordinate-free analytical solutions.

Keywords: non-inertial reference frame; Poisson-Darboux problem; closed-form exact solution;
Lie groups SO3 and SE3; electric and magnetic fields; rigid body motion

1. Introduction

The motion in a non-inertial reference frame and in electric and magnetic fields are
important tools, both in theoretical problems and practical applications. The present
approach offers a new general method to study these aspects. Even though the problems
discussed in the paper can be found in classical mechanics textbooks [1–20], they were
never solved in all their general aspects. The symbolic tensor instrument presented in this
paper simplifies the complex initial value problem that models the motion in a non-inertial
reference frame, and was introduced in Reference [21]. It was used to approach several
classical and celestial mechanics problems, such as: the Kepler problem in a rotating
reference frame [22,23], the Foucault Pendulum-like problem [24], and the spacecraft
relative orbital motion problem [25–28]. The tensor operator is introduced by the Poisson-
Darboux equation [29], written in its tensor form [21–23,30]. In most situations discussed
here, this operator has a closed-form time-explicit formula. It allows to determine explicit
or closed form coordinate-free expressions for the relative law of motion and the relative
velocity. The motion of a mass particle in a uniform gravitational field in a rotating reference
frame, the motion of a charged particle in non-stationary electric and magnetic fields, and
the exact solution of the relative rigid body motion in a non-inertial reference frame are
studied. The result displayed in Theorems 11 and 12 gives significant insight into the
motion of any rigid body with respect to a non-inertial reference frame. A straightforward
method to approach its motion is revealed as follows:

(i) The problem is solved in an inertial frame, that is, our non-inertial frame “frozen” at
the initial moment.
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(ii) The solution to the non-inertial problem is obtained by applying a well-defined
orthogonal tensor to the solution obtained at the previous step (i).

The core result of the paper offers a meaningful understanding and a natural geomet-
rical interpretation of the motion in a non-inertial reference frame.

The paper is structured as follows: in the second section, a tensor map and a differen-
tiation operator, along with some of their properties, are introduced. In the third section,
based on the mathematical instruments previously discussed, we give exact closed-form
solutions to two particular types of initial value problems. For each of them, two equivalent
solutions are offered. Using these mathematical results, in the fourth and fifth section, we
analyze the motion of a mass particle in a uniform gravitational field with respect to a
non-inertial reference frame and the motion of a charged particle in non-stationary electric
and magnetic fields, respectively. In the sixth section, the motion of a rigid body with
respect to a non-inertial reference frame is studied, and an exact closed-form solution is
given for this motion. The last section presents the conclusions.

2. Tensorial Considerations

This section introduces the main mathematical instruments used in this paper [31,32].
A tensor map and a vector differential operator will be defined. The following notations
are introduced:

• t the time variable;

• d
dt ( ) =

·
( ) the derivative with respect to time;

• V3 the set of free vectors in the three dimensional Euclidean space;
• VR

3 the set of functions of real variable, with values in V3;

• VR+
3 the set of functions of real positive variable, with values in V3;

• RT the transpose of tensor R;
• SO3 the special orthogonal group of second order tensors:

SO3 =
{

Q
∣∣∣QQT = I3, det(Q) = 1

}
;

• SOR
3 the set of functions of real variable, with values in SO3;

• ω̃ the skew-symmetric tensor associated with the vectorω;
• so3 the Lie-algebra of skew-symmetric second order tensors:

so3 =
{
ω̃
∣∣∣ω̃T = −ω̃

}
;

• soR3 the set of functions of real variable, with values in so3;

• soR+
3 the set of functions of real positive variable, with values in so3.

2.1. A Tensor Operator

The rotation with arbitrary angular velocityω is related to proper orthogonal tensor
maps of real variable by a tensor initial value problem (IVP), similar to the one from attitude
kinematics, which is also referred to as the Poisson-Darboux equation [30,33].

Lemma 1. Consider the IVP:
.

Q = Qω̃; Q(t0) = I3, t0 ≥ 0. (1)

For any continuous map ω̃ ∈ soR3 , there exists a unique solution Q ∈ SOR
3 of the problem.

Proof. From the existence and uniqueness theorem, it follows that the IVP (1) has a unique
solution Q = Q(t). One has to prove that Q is in SOR

3 , meaning that QTQ = I3. We

may write d
dt (QQT) =

.
QQT + Q

.
Q

T
= Qω̃QT −Qω̃QT = 03; hence, QQT is a constant
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differentiable function that satisfies (QQT)(t0) = I3. It follows that QQT = I3. Since det(Q)
is also a continuous function which satisfies det(Q) ∈ {−1, 1} and det(Q(t0)) = detI3 = 1,
it results that det(Q) = 1. The conclusion is: Q ∈ SOR

3 . �

Remark 1. Lemma 1 is the well-known Poisson-Darboux problem (also named the attitude kine-
matics equation) (see References [34–38]): determining the rotation tensor when the instantaneous
angular velocity is known. The link between the rotation tensor map and the skew-symmetric tensor
associated to the angular velocity vector is given by IVP (1).

The solution to IVP (1) will be denoted Fω. The next result presents the properties of
this tensor orthogonal map.

Lemma 2. The map Fω satisfies:

1. Fω is invertible;
2. Fωu · Fωv = u · v, (∀)u, v ∈ VR

3 ;
3. |Fωu| = |u|, (∀)u ∈ VR

3 .;
4. Fω(u× v) = Fωu× Fωv, (∀)u, v ∈ VR

3 ;
5. d

dt Fωu = Fω(
.
u +ω× u), (∀)u ∈ VR

3 , differentiable;

6. d2

dt2 Fωu = Fω

( ..
u + 2ω× .

u +ω× (ω× u) +
.
ω× u

)
, (∀)u ∈ VR

3 , differentiable.

The proof of Lemma 2 can be obtained by elementary calculations; therefore,
it is omitted.

2.1.1. Comments

1. The following notation is introduced:

(Fω)−1 , R−ω. (2)

Since Fω is the solution to IVP (1), it follows that R−ω is the proper orthogonal tensor
map associated to the instantaneous angular velocity −ω; therefore, it obeys the IVP:{ .

R + ω̃R = 0

R(t0) = I3, t0 ≥ 0.
(3)

2. When the instantaneous angular velocityω is an arbitrary continuous vector function,
there exists an asymptotical solution to the IVP (3). This solution is known as the
Peano-Baker solution, it is obtained by iteration [33,39,40], and it is presented as a
limit of infinitesimal integrals:

R−ω(t) = I3 +
∞

∑
n=1

1
n!

t∫
t0

dt1 . . .
t∫

t0

dtnT[ω̃(t1), . . . , ω̃(tn)], (4)

with

T[ω̃(t1), . . . , ω̃(tn)] , (−1)n ∑
σ∈P(N)

[
n−1

∏
k=1

θ
(

tσ(k) − tσ(k+1)

) n

∏
p=1
ω̃
(

tσ(p)

)]
, (5)

where

θ(t) =
{

0, t ≤ t0
1, > t0,

(6)

and P(n) denotes the group of permutations of the set {1, . . . , n}, n ≥ 2.
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2.1.2. Remarks

1. If the angular velocity ω has fixed direction, ω = ωω̂, with ω : R+ → R and
ω̂ constant unit vector, since ω̃(t1)ω̃(t2) = ω̃(t2)ω̃(t1), (∀)t1, t2 ∈ R, (also see
References [22,23,26]), then, R−ω has the explicit expression:

R−ω(t) = exp

− t∫
t0

ω̃(s)ds

 = I3 − sin αt
t0
(t)
ω̃

ω
+ [1− cos αt

t0
(t)]
(
ω̃

ω

)2
, (7)

where

αt
τ(t) ,

t∫
τ

ω(s)ds, t, τ ≥ t0. (8)

2. Ifω is constant, then, R−ω has the explicit expression:

R−ω(t) = exp[−(t− t0)ω̃] = I3 − sin[ω(t− t0)]
ω̃

ω
+ {1− cos[ω(t− t0)]}

(
ω̃

ω

)2
. (9)

3. If the vectorω has a regular precession with angular velocityω1 around a fixed axis,
expressed mathematically as:

ω = R1ω0; ω0 =ω(t0); R1 = exp[(t− t0)ω̃1], (10)

then, the IVP (3) has a time–explicit solution [22,28], that can be written as:

R−ω(t) = exp[(t− t0)ω̃1] exp[−(t− t0)(ω̃1 + ω̃0)], (11)

and written explicitly as:

R−ω(t) =

{
I3 + sin[ω1(t− t0)]

ω̃1
ω1

+ {1− cos[ω1(t− t0)]}
(
ω̃1
ω1

)2
}
×

×
{

I3 − sin[ω2(t− t0)]
ω̃2
ω2

+ {1− cos[ω2(t− t0)]}
(
ω̃2
ω2

)2
}

,
(12)

where
ω2 =ω1 +ω0. (13)

4. A comprehensive study, together with an exact closed-form solution to the IVP (3) in
the general case, may be found in References [21,39].

Remark 2. Equations (7), (9) and (12) provide the exact closed form solution to the Poisson-
Darboux equation if the vector ω has fixed direction, is constant, and has a regular
precession, respectively.

2.2. A Vector Differentiation Operator

A vector differential operator related to the angular velocityω is introduced. It relates
the derivative of a vector valued function in an inertial reference frame to the derivative
of the same vector function expressed in a rotating reference frame. As in the regular
derivative, it admits an inverse operator, defined within this section. This derivation
rule will prove to be useful in the study of the motion with respect to a non-inertial
reference frame.

Define the differentiation rule for vector valued functions ( )′ : VR
3 → VR

3 by:

( )′ =
.
( ) +ω× ( ). (14)
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For any arbitrary vector map u : R→ VR
3 , it stands that:

u
′
=

.
u +ω× u. (15)

The next result presents the properties of this operator, as well as the connection with
the previously defined tensor valued function Fω.

Lemma 3. The following statements hold:

1. ω
′
=

.
ω;

2. (u + v)′ = u
′
+ v

′
, (∀)u, v ∈ C2(VR

3 );

3. (λu)′ =
.
λu

′
+ λu

′
, (∀)u ∈ C2(VR

3 ), (∀)λ : R→ R differentiable;
4. (u× v)′ = u

′ × v + u× v
′
, (∀)u, v ∈ C2(VR

3 );
5. u

′ · v + u · v′ = .
u · v + u · .

v = d
dt (u · v), (∀)u, v ∈ C2(VR

3 );
6. u” =

..
u + 2ω× .

u +ω× (ω× u) +
.
ω× u, (∀)u ∈ C2(VR

3 );
7. d

dt (Fωu) = Fω(u
′
), (∀)u ∈ C2(VR

3 );

8. d2

dt2 (Fωu) = Fω(u”), (∀)u ∈ C2(VR
3 );

9. Fω(u)|t=t0
= u(t0); d

dt (Fωu)
∣∣∣
t=t0

=
.
u(t0) +ω(t0)× u(t0).

The proof of Lemma 3 may be achieved by elementary calculations; therefore, it will
not be presented here.

The vector differentiation defined in (14) makes the connection between the derivative
of a vector referred to a reference frame which rotates with angular velocityω, denoted
with a dot above, and the derivative of the same vector referred to an inertial reference
frame, denoted with prime.

The anti-derivation rule associated to the differentiation rule ()′ in (14) is
presented below.

Lemma 4. Consider b : R→ VR
3 b = b(t) a continuous vector valued function. The solution to

the IVP:
u
′
= b, u(t0) = u0 (16)

is expressed as:

u = R−ω

u0 +

t∫
t0

RT
−ω(s)b(s)ds

, (17)

where R−ω is defined in (2).

Proof Apply the tensor operator Fω to IVP (16) and take into account point (8.) from
Lemma 3. It follows that:

d
dt

(Fωu) = Fωb; Fωu|t=t0
= u0. (18)

By using point (7.) from Lemma 3, together with the initial conditions from (16),
it follows that:

Fωu = u0 +

t∫
t0

RT
−ω(s)b(s)ds. (19)

Equation (17) is obtained by applying R−ω to the equality (19). The proof is finalized. �

Remark 3. From Lemma 4, it follows that, if a vector map u : R+ → VR
3 obeys the IVP

u
′
= 0, u(t0) = u0, (20)
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then, vector u is the rotation with angular velocity−ω of a constant vector u0 = u(t0):

u = R−ωu0. (21)

3. Exact Closed-Form Solutions to Some Vector Differential Equations

In this paragraph the solutions to two IVPs are given; these problems describe the mo-
tion of a particle with respect to an inertial and a non-inertial reference frame, respectively.

Consider the first problem: { .
v +ω× v = f

v(t0) = v0,
(22)

where v0 ∈ V3,ω ∈ VR+
3 is a differentiable vector function, and f ∈ VR+

3 is a continuous
vector function. Applying Lemma 4, the unique solution to this problem is obtained:

v = R−ω

v0 +

t∫
t0

RT
−ω(s)f(s)ds

. (23)

In the case where ω has fixed direction, RT
−ω = Rω; the solution of the

IVP (22) becomes

v = R−ωv0 + R−ω

t∫
t0

Rω(s)f(s)ds. (24)

From (7) and (24), the following theorem holds:

Theorem 5. If ω has fixed direction and t0 = 0, the solution to the IVP (22) is given by:

v =
f0 ·ω
ω2 ω+

f1 ×ω
ω

+
ω× (f2 ×ω)

ω2 , (25)

where
fk = γ0

kv0 + γk ⊗ f, k = 0, 2, (26)

with: 

γ0(t, τ) = 1

γ1(t, τ) = sin[α(t)− α(τ)] = sin
t∫
τ

ω(s)ds = sin αt
τ(t)

γ2(t, τ) = cos[α(t)− α(τ)] = cos
t∫
τ

ω(s)ds = cos αt
τ(t)

γ0
k(·) , γ(·, 0), k = 0, 2,

(27)

and the following notation was used:

α(t) ,
t∫

0

ω(s)ds, t ≥ 0. (28)

Remark 4. The symbol ⊗ denotes the generalized convolution product which, for two functions
a : R+ ×R+ → R and b : R+ → R , is defined as:

a⊗ b : R+ → R, (a⊗ b)(t) ,
t∫

0

a(t, τ)b(τ)dτ. (29)
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An equivalent form of the solution to the IVP (22) is presented by the following result:

Theorem 6. If ω has fixed direction and t0 = 0, the solution to the IVP (22) is given by:

v =
Ψ ·ω
ω2 ω+ sin α(t)

Ψ×ω
ω

+ cos α(t)
ω× (Ψ×ω)

ω2 , (30)

where

Ψ = v0 +

t∫
0

f ·ω
ω2 ωdτ−

t∫
0

sin α(τ)
f×ω

ω
dτ+

t∫
0

cos α(τ)
ω× (f×ω)

ω2 dτ, (31)

and α(t) is given by (28).

The second IVP of interest is:
..
r + 2ω× .

r +ω× (ω× r) +
.
ω× r = f

r(t0) = r0
.
r(t0) = v0,

(32)

where r0, v0 ∈ V3,ω ∈ VR+
3 is a differentiable vector function, and f ∈ VR+

3 is a continuous
vector function. This problem can also be written as:

d
dt (

.
r +ω× r) +ω× (

.
r +ω× r) = f

r(t0) = r0
.
r(t0) = v0.

(33)

Applying Lemma 4 twice, after simple calculations, the solution to (33) is:

r = R−ω

r0 + (v0 +ω0 × r0)(t− t0) +

t∫
t0

τ∫
t0

RT
−ω(s)f(s)dsdτ

, (34)

where we denoted
ω(t0) ,ω0. (35)

From the identity

t∫
t0

τ∫
t0

RT
−ω(s)f(s)dsdτ = (t− t0) ∗RT

−ω(t)f(t), (36)

it results that the solution (34) can be written as:

r = R−ω
[
r0 + (v0 +ω0 × r0)(t− t0) + [RT

−ω(t)f(t)] ∗ (t− t0)
]
. (37)

If ω has fixed direction (and, consequently, RT
−ω = Rω), the solution to the

IVP (33) is:

r = R−ω[r0 + (v0 +ω0 × r0)(t− t0) + [Rω(t)f(t)] ∗ (t− t0)]. (38)
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Remark 5. The symbol ∗ denotes the convolution product, which, for two functions a, b : R+ → R ,
is defined as:

a ∗ b : R+ → R, (a ∗ b)(t) ,
t∫

t0

a(t− τ)b(τ)dτ. (39)

Theorem 7. If ω has fixed direction and t0 = 0, the solution to the IVP (32) is given by

r =
g0 ·ω
ω2 ω+ sin α(t)

g1 ×ω
ω

+ cos α(t)
ω× (g2 ×ω)

ω2 , (40)

where
gk = γ0

k [r0 + (v0 +ω0 × r0)t] + [(t− τ)γk]⊗ f, k = 0, 2; (41)

γk and γ0
k are defined in (27), α(t) is given by (28), andω0 ,ω(0).

The following theorem offers an equivalent form of the previous result.

Theorem 8. If ω has fixed direction and t0 = 0, the solution to the IVP (32) is given by

r =
ϕ ·ω
ω2 ω+ sin α(t)

ϕ×ω
ω

+ cos α(t)
ω× (ϕ×ω)

ω2 , (42)

where

ϕ = r0 + (v0 +ω0 × r0)t + t ∗
[

f ·ω
ω2 ω

]
− t ∗

[
sin α(t)

f×ω
ω

]
+ t ∗

[
cos α(t)

ω× (f×ω)

ω2

]
, (43)

and α(t) is given by (28).

4. The Motion of a Particle with Respect to a Non-Inertial Reference Frame

The motion of a particle in the gravitational field of the Earth, considered to be uniform,
is described by the following IVP:

..
r + 2ω× .

r +ω× (ω× r) +
.
ω× r = g

r(0) = r0
.
r(0) = v0, r0, v0, g ∈ V3, ω ∈ VR+

3 .
(44)

In (44), the Coriolis, Euler and centrifugal forces have been taken into account,
g is the intensity of the gravitational field, (the gravitational acceleration), ω ∈ VR+

3
is a differentiable vector function with continuous derivative and having fixed direc-
tion, ω = ω · u, |u|= 1 ,

.
u = 0, ω : R+ → R . Based on Theorem 8, the following result

is obtained:

Theorem 9. The solution to the IVP (44) is given by

r =
ϕ ·ω
ω2 ω+ sin α(t)

ϕ×ω
ω

+ cos α(t)
ω× (ϕ×ω)

ω2 , (45)

where

ϕ = r0 + (v0 +ω0 × r0)t +
g ·ω
ω2 ·

t2

2
ω− g×ω

ω
t ∗ sin α(t) +

ω× (g×ω)

ω2 t ∗ cos α(t), t ≥ 0, (46)

α(t) is given by (28), andω0 ,ω(0).
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Remark 6. In the case whenω ∈ V3 (ω is a constant vector), the problem (44) becomes
..
r + 2ω× .

r +ω× (ω× r) = g
r(0) = r0.
r(0) = v0, g, r0, v0,ω ∈ V3.

(47)

In this case, the relation (28) and the convolution products in (46) become:

α(t) = ωt, t ≥ 0, (48)

t ∗ sin α(t) =
ωt− sin ωt

ω2 , t ∗ cos α(t) =
1− cos ωt

ω2 . (49)

Replacing (48) and (49) in (46), the solution to the IVP (47) is obtained as:

r = r0 + v0t + ω·g
ω2 · t2

2ω− sin ωtω×(r
∗
0+v0t)
ω + (1− cos ωt)ω×[ω×(r

∗
0+v0t)]

ω2 −

−ωt sin ωtω×(ω×r∗0)
ω2 + ωt cos ωtω×r∗0

ω ,
(50)

where the following notation was used:

r∗0 , r0 +
g
ω2 . (51)

If we put v0 = 0 in (50), the exact solution of the free fall deviation is obtained:

r = r0 +
ω · g
ω2 ·

t2

2
ω− (sin ωt−ωt cos ωt)

ω× r∗0
ω

+ (1− cos ωt−ωt sin ωt)
ω× (ω× r∗0)

ω2 . (52)

If the influence of centrifugal force is neglected [36], the IVP (47) becomes:
..
r + 2ω× .

r = g
r(0) = r0.
r(0) = v0, g, r0, v0,ω ∈ V3,

(53)

which is equivalent to the sequence:{ .
v + 2ω× v = g
v(0) = v0, g, v0,ω ∈ V3

(54)

and

r = r0 +

t∫
0

v(τ)dτ, t ≥ 0. (55)

The problem (54) is similar to the problem (22), whereω is replaced by 2ω, and we
take into account thatω ∈ V3; hence,

.
ω = 0. The solution to (54) is, thus, obtained from

(30), as:
v = v0·ω

ω2 ω+ g×ω
2ω2 + g+2v0×ω

2ω sin 2ωt+

+ω×(g+2v0×ω)
2ω2 cos 2ωt + ω·g

2ω3 (2ωt− sin 2ωt)ω.
(56)

From (55) and (56), the solution to the IVP (53) is:

r = r0 + v0t + g+2v0×ω
4ω2 (1− cos 2ωt)+

+ω×(g+2v0×ω)
4ω3 (sin 2ωt− 2ωt) + ω·g

4ω4 (2ω2t2 + cos 2ωt− 1)ω.
(57)
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Remark 7. Usually, in approximate calculus, the powers of ω greater than 4 are neglected (in
the Taylor series for sin 2ωt and cos 2ωt only the first two terms are taken into account). One
may write:

1− cos 2ωt ∼= 2ω2t2, sin 2ωt− 2ωt ∼= −
8ω3t3

3!
= −4ω3t3

3
. (58)

The approximate solution to the problem (53) is obtained from (57) as:

r ∼= r0 + v0t + g
t2

2
+ (v0 ×ω)t2 +

g×ω
3

t3 +
2
3
ω× (ω× v0)t3. (59)

Moreover, if we consider ωn ∼= 0 for n ≥ 2, the solution to the problem (53) is:

r ∼= r0 + v0t + g
t2

2
+ (v0 ×ω)t2 +

g×ω
3

t3. (60)

If v0 = 0, (60) becomes:

r ∼= r0 + g
t2

2
+

g×ω
3

t3. (61)

Relation (61) obtained by means of “small parameter” methods in References [36,38] is
used to explain the deviation to the East of free fall fields in the Earth Northern Hemisphere.

5. The Motion of a Charged Particle in Non-Stationary Electric and Magnetic Fields

Consider a particle which is launched with initial velocity v0 in non-stationary electric
and magnetic fields. The IVP satisfied by the velocity of the particle is [41,42]:{

m dv
dt = qv× B + qE

v(0) = v0, v0 ∈ V3,
(62)

where v ∈ VR+
3 , m is the mass, and q—the electric charge of the particle, B—the magnetic

induction, B ∈ VR+
3 , B = B(t) a continuous function, and E—the intensity of the electric

field, E ∈ VR+
3 , E = E(t) a continuous vector function. If we denote

ω ,
qB
m

and e ,
qE
m

, (63)

the IVP (62) becomes: { .
v +ω× v = e

v(0) = v0, v0 ∈ V3,
(64)

which, from (23), has the solution:

v = R−ω

v0 +

t∫
0

RT
−ω(s)e(s)ds

. (65)

In the case where the magnetic field has fixed direction, RT
−ω = Rω and the relation

(65) can be written (see (24)) as:

v = R−ωv0 + R−ω

t∫
0

Rω(s)e(s)ds. (66)

Now, applying Theorem 6, the following result is obtained:
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Theorem 10. The solution of the IVP (62) is given by

v(t) =

(
v0+

q
m

t∫
0

E(τ)dτ

)
·B

B2 B +

(
v0 sin α(t)+ q

m

t∫
0

E(τ) sin αt
τ(t)dτ

)
×B

B +

+
B×
[(

v0 cos α(t)+ q
m

t∫
0

E(τ) cos αt
τ(t)dτ

)
×B

]
B2 ,

(67)

where αt
τ(t) was defined in (8).

If the initial position is known as r(0) = r0, the law of motion of the particle can be
found from:

r(t) = r0 +

t∫
0

v(τ)dτ, t ≥ 0. (68)

Particular cases:
1. If E(t) = 0, the particle is acted only by the magnetic field. The solution to the IVP

(62) becomes (see Remark 3):
v(t) = R−ωv0. (69)

If the magnetic field has fixed direction, this solution becomes:

v(t) =
v0 · B(t)

B2(t)
B(t) +

v0 × B(t)
B(t)

sin α(t) +
B(t)× (v0 × B(t))

B2(t)
cos α(t). (70)

The relation (70) shows that the hodograph of the velocity is a circle located in a plane
perpendicular to the fixed direction of the magnetic field. The vector velocity sweeps the
surface of a circular cone (Figure 1) with the angular velocity ω = − qB

m .

Figure 1. The hodograph of the velocity of a charged particle launched in a magnetic field with fixed direction: (a) Positive
charge q > 0; (b) Negative charge q < 0.

The law of motion of the particle results from (68):

r(t) = r0 +
v0 · B(t)

B2(t)
tB(t) +

v0 × B(t)
B(t)

t∫
0

sin α(τ)dτ+
B(t)× (v0 × B(t))

B2(t)

t∫
0

cos α(τ)dτ. (71)

This solution is pointed out in Reference [21].
2. If the electric and the magnetic fields have the same direction, B× E = 0; the

solution (67) of the IVP (62) is in this case given by:

v(t) =
v0 · B(t)

B2(t)
B(t) +

v0 × B(t)
B(t)

sin α(t) +
B(t)× (v0 × B(t))

B2(t)
cos α(t) +

q
m

t∫
0

E(τ)dτ. (72)
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3. If the magnetic field is uniform, B ∈ V3 ⇒
.
B = 0 ; the law of variation of the

velocity (67) becomes:

v(t) =

(
v0+

q
m

t∫
0

E(τ)dτ

)
·B

B2 B +

(
v0 sin ωt+ q

m

t∫
0

E(τ) sin ω(t−τ)dτ
)
×B

B +

+
B×
[(

v0 cos ωt+ q
m

t∫
0

E(τ) cos ω(t−τ)dτ
)
×B

]
B2 ,

(73)

where we denoted ω = qB
m . This relation can also be written as:

v(t) =
(v0+

q
m E(t)∗1)·B

B2 B +
(v0 sin ωt+ q

m E(t)∗sin ωt)×B
B +

+
B×[(v0 cos ωt+ q

m E(t)∗cos ωt)×B]
B2 ,

(74)

where ∗ represents the convolution product (39).
3.1. Moreover, if the electric field is uniform, E ∈ V3 ⇒

.
E = 0 ; the law of the velocity

given by (74) becomes:

v(t) = v0·B
B2 B + E×B

B2 + v0×B+E
B sin ωt+

+B×(v0×B+E)
B2 cos ωt + E·B

B3 (ωt− sin ωt)B,
(75)

solution also presented in References [21,35].
When E · B 6= 0, the hodograph of the velocity is a variable pitch helix, wrapped

around an elliptic cylinder whose axis of symmetry is parallel to B. If E · B = 0, the
hodograph becomes a circle with radius |E+v0×B|

B , located in a plane perpendicular to B.
The vector v sweeps the surface of a circular cone (Figure 2a); if v0 · B = 0, the vertex of the
cone belongs to the plane of the circle (Figure 2b).

Figure 2. The hodograph of the velocity of a charged particle (q > 0) launched in uniform magnetic and electric fields: (a)
The case E · B 6= 0; (b) The case E · B = 0.
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If the electric and magnetic fields are uniform, the acceleration of the charged particle
a =

.
v is obtained from (64), as the solution of the IVP:{ .

a +ω× a = 0
a(0) = a0, a0 ∈ V3,

(76)

where
a0 = e−ω× v0 ∈ V3. (77)

It results that:
a = R−ωa0 = R−ω(e−ω× v0). (78)

It results that the force that acts at the particle has constant magnitude and performs a
uniform precession around the magnetic field lines (Figure 3) with the angular velocity
ω = − qB

m .

Figure 3. The force that acts at a charged particle launched in uniform electric and magnetic fields: (a) Positive charge q > 0;
(b) Negative charge q < 0.

3.2. Suppose that the magnetic field is uniform and the intensity of the electric field
has fixed direction and its variation with respect to time is E(t) = E sin(ω0t + α), with
.
E = 0, ω0 > 0, α ∈ [0, 2π). In this case, (74) becomes:

v(t) =
(v0+

q
m E sin(ω0t+α)∗1)·B

B2 B +
(v0 sin ωt+ q

m E sin(ω0t+α)∗sin ωt)×B
B +

+
B×[(v0 cos ωt+ q

m E sin(ω0t+α)∗cos ωt)×B]
B2 .

(79)

The convolution products in (79) are:

sin(ω0t + α) ∗ 1 =
1

ω0
[cos α− cos(ω0t + α)], (80)

sin(ω0t + α) ∗ sin ωt =


sin
(

ω+ω0
2 t

)
cos
(

ω−ω0
2 t−α

)
ω+ω0

−
sin
(

ω−ω0
2 t

)
cos
(

ω+ω0
2 t+α

)
ω−ω0

, if ω0 6= ±ω,

− 1
2ω [ωt cos(ωt + α)− sin ωt cos α], if ω0 = ω,

1
2ω [ωt cos(ωt− α)− sin ωt cos α], if ω0 = −ω,

(81)

and

sin(ω0t + α) ∗ cos ωt =


−

sin
(

ω+ω0
2 t

)
sin
(

ω−ω0
2 t−α

)
ω+ω0

+
sin
(

ω−ω0
2 t

)
sin
(

ω+ω0
2 t+α

)
ω−ω0

, if ω0 6= ±ω,
1

2ω [ωt sin(ωt + α) + sin ωt sin α], if ω0 = ω,

− 1
2ω [ωt sin(ωt− α)− sin ωt sin α], if ω0 = −ω,

(82)
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respectively. Replacing (80), (81), and (82) into (79), the velocity of the particle is obtained
in each case, as follows:

v(t) = v0·B
B2 B + v0×B

B2 sin ωt + B×(v0×B)
B2 cos ωt + E·B

B3 · ω
ω0

[cos α− cos(ω0t + α)]+

+ ω
B2

[
sin
(

ω+ω0
2 t

)
cos
(

ω−ω0
2 t−α

)
ω+ω0

−
sin
(

ω−ω0
2 t

)
cos
(

ω+ω0
2 t+α

)
ω−ω0

]
E× B−

− ω
B3

[
sin
(

ω+ω0
2 t

)
sin
(

ω−ω0
2 t−α

)
ω+ω0

−
sin
(

ω−ω0
2 t

)
sin
(

ω+ω0
2 t+α

)
ω−ω0

]
B× (E× B),

(83)

if ω0 6= ±ω,

v(t) = v0·B
B2 B + v0×B

B2 sin ωt + B×(v0×B)
B2 cos ωt + E·B

B3 [cos α− cos(ω0t + α)]+

+E×B
2B2 [ωt cos(ωt− α)− sin ωt cos α]− B×(E×B)

2B3 [ωt sin(ωt− α)− sin ωt sin α],
(84)

if ω0 = ω, and

v(t) = v0·B
B2 B + v0×B

B2 sin ωt + B×(v0×B)
B2 cos ωt + E·B

B3 [cos α− cos(ω0t + α)]−

−E×B
2B2 [ωt cos(ωt + α)− sin ωt cos α]− B×(E×B)

2B3 [ωt sin(ωt + α) + sin ωt sin α],
(85)

if ω0 = −ω.
After finding the velocity of the particle in each of these cases, the law of motion can

be easily determined by (68).

6. Exact Solution of the Rigid Body Motion in Non-Inertial Reference Frame

The pose of a rigid body with respect to a reference frame is given by an element of
the special group of the displacements of the rigid body [34,37], denoted SE3:

g =

[
Q r
0 1

]
. (86)

In (86), Q ∈ SO3 determines the orientation (the attitude) of the rigid body with
respect to the chosen reference frame, and r ∈ V3 is the position vector of the origin of the
frame attached to the rigid body. The motion of the rigid body with respect to a reference
frame is given by a curve g(t) ∈ SER

3 , where t is the variable time. This leads to the
following form of the parametric equations of the motion of a rigid body:{

Q = Q(t) ∈ SOR
3

r = r(t) ∈ VR
3 .

(87)

If the origin of the frame attached to the rigid body is located at the center of mass of
the body, the IVP that determines the motion of the rigid body is:

..
r + 2ωc ×

.
r +ωc × (ωc × r) +

.
ωc × r + ac = f

r(t0) = r0
.
r(t0) = v0, r0, v0 ∈ V3, ωc ∈ VR+

3 ,

(88)



.
Q = ω̃Q

.
ω+

.
ωc = QJ−1[τ−QT(ω+ωc)× JQT(ω+ωc)] +ω×ωc

ω(t0) =ω0, ω0 ∈ V3

Q(t0) = Q0, Q0 ∈ sO3.

(89)

In (88) r ∈ VR
3 is the position vector of the center of mass of the rigid body with respect

to the non-inertial reference frame (NIRF),ωc is the instantaneous angular velocity of the
NIRF, ac is the acceleration of the origin of the NIRF, and f = Rm , whereR is the resultant
of the forces which act at the center of mass. The vectors r0 ∈ V3 and v0 ∈ V3 represent
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the initial position and the initial velocity of the center of mass with respect to the NIFR,
respectively.

In (89), the tensor Q ∈ SOR
3 gives the attitude of the rigid body in relation with the

NIRF,ω is the instantaneous angular velocity of the rigid body in relation with the NIRF,
τ is the resulting torque of the forces applied on the rigid body in relation with its mass
center, J is the inertia tensor of the rigid body in relation with its mass center, ω0 is the
angular velocity of the rigid body with respect to the NIRF at the moment t0, and Q0 is the
orientation of the rigid body with respect to the NIRF at the moment t0.

Let R−ωc be the unique solution of the IVP:{ .
R + ω̃cR = 0

R(t0) = I3.
(90)

Theorem 11. The solution to the IVP (88) is obtained by applying the tensor R−ωc to the problem:
..
r = RT

−ωc(f− ac)

r(t0) = r0
.
r(t0) = v0 +ωc(t0)× r0.

(91)

Proof. Taking into account the differentiation rule (14), the differential equation in the IVP
(88) can be written as:

r” = f− ac. (92)

Applying Fω to Equation (92), we obtain Fωc r” = Fωc(f− ac), or, from point (8.) of
Lemma 3:

d2

dt2 (Fωc r) = Fωc(f− ac). (93)

The conclusion of the theorem is proved if we now replace r with r→ Fωr . �

In what follows, we give a representation theorem for the tensor Q ∈ SOR
3 , which

parameterizes the rotation of the rigid body around its center of mass; this motion is
recovered from the IVP (89).

Theorem 12. The solution to the IVP (89) results by applying R−ωc to the solution of the Euler
fixed point classic problem: 

.
Q∗ = Q∗ω̃∗
J

.
ω∗ +ω∗ × Jω∗ = τ∗
ω∗(t0) = QT

0 (ω0 +ωc(t0))

Q∗(t0) = Q0.

(94)

Proof. In (89), consider the following change of variable:

ω∗ = QT(ω+ωc). (95)

It leads to
.
ω∗ =

.
Q

T
(ω+ωc) + QT(

.
ω+

.
ωc) = −QTω̃(ω+ωc) + QT(

.
ω+

.
ωc),

which is equivalent with
.
ω∗ =

.
Q

T
(ωc ×ω+

.
ω+

.
ωc), or

ωc ×ω+
.
ω+

.
ωc = Q

.
ω∗. (96)
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After some calculation, from (95), (96), and (89), it results that{
J

.
ω∗ +ω∗ × Jω∗ = τ∗
ω∗(t0) = QT

0 (ω0 +ωc(t0)),
(97)

where τ∗ = QTτ is the in-body torque related to the center of mass in the body frame of
the rigid body.

The problem (97) is a Euler fixed point classic problem. For any Q ∈ SOR
3 , the solution

of (97) is obtained from: { .
Q = ω̃Q

Q(t0) = Q0.
(98)

From (95), it results that Qω∗ = ω+ωc. Applying the operator ∼, this relation
becomes Q̃ω∗ = ω̃+ ω̃c ⇔ Qω̃∗QT =

.
QQT + ω̃c . After right multiplying the last ex-

pression by Q, we obtain the IVP:{ .
Q = Qω̃∗ − ω̃cQ

Q(t0) = Q0.
(99)

Considering now Q = R−ωc Q∗, the theorem is proved. �

7. Conclusions

The paper presents a new general method for studying motion in a non-inertial
reference frame, using the properties of the Lie groups SO3 and SE3. This method is
based on proper orthogonal and skew-symmetric tensor valued functions, introduced
by the Poisson-Darboux equation and an appropriately defined differentiation operator,
as a function of the instantaneous angular velocity of the non-inertial reference frame.
Three applications are presented: the motion in a gravitational force field with respect
to a rotating reference frame, the motion of a charged particle in non-stationary electric
and magnetic fields, and the exact solution of the rigid body motion in the non-inertial
reference frame. The results are closed-form and coordinate-free.
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