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Abstract: Navarro et al. (2010) proposed the increasing dynamic cumulative past entropy (IDCPE)
class of life distributions. In this paper, we investigate some characterizations of this class. Closure
and reversed closure properties of the IDCPE class are obtained. As applications of a main result,
we explore the preservation and reversed preservation properties of this class in several stochastic
models. We also investigate preservation and reversed preservation of the IDCPE class for coherent
systems with dependent and identically distributed components.
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1. Introduction

The subject of partial order relation is crucial to compare the variability of two random
variables. This research field faces an interesting problem, namely, the transmission of
individual (or a unit) properties to population (or a system) properties, or population
properties to individual properties. This relationship was called closure or reversed closure.
According to the definition of symmetry, a mathematical object is symmetric with respect
to a given mathematical operation, if, when applied to the object, this operation preserves
some property of the object (Morris [1]). In fact, under the partial order relation, the
transmission of individual (or a unit) properties to population (or a system) properties is
usually of the anti-symmetry. In this paper, we investigate closure and reversed closure
properties of the IDCPE (increasing dynamic cumulative past entropy) class, and this
symmetry or anti-symmetry is conducive to the concrete realization of risk management.

Let X be an absolutely continuous non-negative random variable representing the
random lifetime of a device or a living thing. Assume that X has probability density
function fX(x). The Shannon differential entropy is a classical measure of uncertainty for
X defined by

HX = −E[ln fX(X)] = −
∫ +∞

0
fX(x) ln fX(x)dx.

It was introduced by Shannon [2] and Wiener [3], and developed subsequently by Ebrahimi
and Pellerey [4], Ebrahimi [5], Ebrahimi and Kirmani [6], Crescenzo and Longobardi [7],
Navarro et al. [8], etc. Furthermore, some generalizations of HX have been proposed, see,
for example, Di Crescenzo and Longobardi [9,10], Nanda and Paul [11–13], Abbasnejad
et al. [14], Kundu et al. [15], Kumar and Taneja [16], Khorashadizadeh et al. [17], Nanda
et al. [18], Kayal [19], Vineshkumar [20], Kang [21], Kang and Yan [22], Yan and Kang [23],
and others.

Rao et al. [24] defined a new uncertainty measure, the cumulative residual entropy
(CRE), by

EX = −
∫ +∞

0
FX(x) ln FX(x)dx, (1)

as an alternative measure of uncertainty.
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The residual life of X at time t is defined by Xt = [X − t |X > t], and the inactivity
time of X at time t is defined as X(t) = [t− X |X ≤ t], for all t ≥ 0. Then, the survival
functions of Xt and X(t) are given by, respectively,

FXt(x) =
FX(x + t)

FX(t)
, for all x ≥ 0; FX(t)

(x) =
FX(t− x)

FX(t)
, for all 0 ≤ x ≤ t.

Then, the mean inactivity time (MIT) of X is given by

mX(t) = E[X(t)] =
1

FX(t)

∫ t

0
FX(x)dx, for all t ≥ 0.

Asadi and Zohrevand [25] introduced a new measure of uncertainty, the CRE of
residual life Xt. This function is called the dynamic cumulative residual entropy (DCRE)
and given by

EX(t) = EXt = −
∫ +∞

0
FXt(x) ln FXt(x)dx, for all t ≥ 0. (2)

Namely,

EX(t) = −
∫ +∞

t

FX(x)
FX(t)

ln
[

FX(x)
FX(t)

]
dx, for all t ≥ 0. (3)

Obviously, EX(0) = EX .
Navarro et al. [8] introduced the dynamic cumulative past entropy (DCPE) of X,

defined as the CRE of inactivity time X(t), and denoted by ẼX(t). Then, ẼX(t) is given by

ẼX(t) = EX(t)
= −

∫ t

0

FX(x)
FX(t)

ln
[

FX(x)
FX(t)

]
dx, for all t ≥ 0. (4)

It is worth mentioning that a generalization of the DCPE is the dynamic fractional
generalized cumulative entropy studied in Section 4 of Di Crescenzo et al. [26].

To prove our main results, we first introduce the following lemma taken from Barlow
and Proschan [27], which plays a key role in the proofs of this paper and are repeatedly
used in the sequel.

Lemma 1. Let W be a measure on the interval (a, b), not necessarily non-negative, where −∞ ≤
a < b ≤ +∞. Let h be a non-negative and decreasing function defined on (a, b). If

∫ t
a dW(x) ≥ 0,

for all t ∈ (a, b), then
∫ t

a h(x)dW(x) ≥ 0, for all t ∈ (a, b).

Recall that a non-negative function h defined on [0, ∞) is said to be convex (concave),
if for all x, y ∈ [0, ∞) and all θ ∈ (0, 1), h satisfies

h(θx + (1− θ)y) ≤ [≥]θh(x) + (1− θ)h(y).

Throughout this paper, the term increasing stands for monotone non-decreasing and
decreasing stands for monotone non-increasing. Assume that the random variables under
consideration are continuous and non-negative, the integrals involved are always finite.
All ratios are always supposed to exist whenever they are written.

In this article, we mainly study characterizations, closure and reverse closure proper-
ties of IDCPE class. In Section 2, we investigate characterizations of the IDCPE class. In
Section 3, we consider closure and reversed closure properties of this class. As applications
of a main result, in Section 4, we study the closure and reversed closure properties of the
IDCPE class in several stochastic models, including the proportional reversed hazard rate
and hazard rate models, the proportional odds model, and the record values model. In
Section 5, we also investigate preservation and reversed preservation of the IDCPE class
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for coherent systems with dependent and identically distributed components. Finally, we
give the conclusions of this research in Section 6.

2. Characterization Results of the IDCPE Class

In this section, we explore characterizations of the IDCPE class.
Navarro et al. [8] proposed the following two classes of life distributions based on the

DCPE functions.

Definition 1. A non-negative random variable X is said to be increasing (decreasing) DCPE,
denoted by X ∈ IDCPE (DDCPE), if ẼX(t) is an increasing (decreasing) function of t ≥ 0.

First, we need a lemma from Navarro et al. [8].

Lemma 2. A non-negative random variable X ∈ IDCPE⇔ ẼX(t) ≤ mX(t) for all t ≥ 0.

⇔ −
∫ t

0

FX(x)
FX(t)

ln
[

FX(x)
FX(t)

]
dx ≤

∫ t

0

FX(x)
FX(t)

dx, for all t ≥ 0.

The following Theorem 1 will be useful in the proofs of results throughout the paper.

Theorem 1. A non-negative random variable X ∈ IDCPE if, and only if,∫ t

0
FX(x)

[
ln
(

FX(x)
FX(t)

)
+ 1
]

dx ≥ 0, for all t ≥ 0. (5)

Proof. From Lemma 2 we have X is IDCPE if, and only if,

ẼX(t) = −
∫ t

0

FX(x)
FX(t)

ln
(

FX(x)
FX(t)

)
dx ≤ mX(t) =

∫ t

0

FX(x)
FX(t)

dx, for all t ≥ 0. (6)

Rewriting (6) as (5), the proof is complete.

The quantile function of FX is defined by

QX(u) = F−1
X (u) = inf{x| F(x) ≥ u} , for all u ∈ [0, 1], (7)

and the quantile density function is defined by qX(u) = d
du QX(u) = [ fX(QX(u))]−1, for

all u ∈ [0, 1].
A continuous lifetime distribution can be specified either in terms of the distribution

function or by the quantile function. Recently, the quantile-based methods have been
employed effectively for the analysis of lifetime data by many authors in the literature,
see, for example, Li and Shaked [28], Nair et al. [29], Bartoszewicz and Benduch [30], Nair
and Sankaran [31], Nair and Vineshkumar [32,33], Nair et al. [34], Midhu et al. [35], Nair
et al. [36], Nair and Sankaran [37], Franco-Pereira and Shaked [38], Nanda et al. [18],
Vineshkumar et al. [20], etc.

By letting FX(x) = p and denoting FX(t) = u, the following corollary is a direct
consequence of Theorem 1.

Corollary 1. A non-negative random variable X is IDCPE if, and only if,∫ u

0
p
[
ln
( p

u

)
+ 1
]
qX(p)dp ≥ 0, for all u ∈ [0, 1]. (8)

The following example illustrates the usefulness of Corollary 1.
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Example 1. Now consider a random variable studied in Franco-Pereira and Shaked [38]. Let X be
a non-negative continuous random variable with distribution function

FX(x) =


1− e−x, 0 < x ≤ 1;

1− e−
x+1

2 , 1 < x ≤ 2;

1− e−(x− 1
2 ), x > 2.

Inverting FX in the three different regions we have

QX(u) =


− ln(1− u), 0 < u ≤ 1− e−1;

−1− 2 ln(1− u), 1− e−1 < u ≤ 1− e−
3
2 ;

1
2 − ln(1− u), 1− e−

3
2 < u < 1.

Differentiating QX we get

qX(u) =


1

1−u , 0 < u ≤ 1− e−1;
2

1−u , 1− e−1 < u ≤ 1− e−
3
2 ;

1
1−u , 1− e−

3
2 < u < 1.

In view of (8), denote the function

I(u) :=
∫ u

0
p
[
ln
( p

u

)
+ 1
]
qX(p)dp, for all u ∈ [0, 1].

When 0 < u ≤ 1− e−1, we have

I(u) =
∫ u

0
p
[
ln
( p

u

)
+ 1
]
qX(p)dp =

∫ u

0
p
[
ln
( p

u

)
+ 1
] 1

1− p
dp

=
1
8
[1− (1− t)4] ≥ 0.

I(u) =
∫ u

0
p
[
ln
( p

u

)
+ 1
]
qX(p)dp =

1
8
[1− (1− t)4] ≥ 0.

When t ∈ ( 1
2 , 1],

I(t) = I(
1
2
)− 3

4

∫ t

1
2

(1− x)3dx = I(
1
2
) +

3
16

[
(1− t)4 − (

1
2
)4
]
≥ I(1) =

27
256

,

where the inequality is due to the decreasing property of I(t). When t > 1, I(t) ≥ 0 trivially holds.
Hence, we get that I(t) ≥ 0 for all t ≥ 0. By using Corollary 1 we see that X ∈ IDCPE.

Theorem 2. Let a > 0 be a real constant. If X ∈ IDCPE, then aX ∈ IDCPE.

Proof. Suppose that X ∈ IDCPE. Then, from (5) we have∫ t

0
FX(x)

[
ln
(

FX(x)
FX(t)

)
+ 1
]

dx ≥ 0, for all t ≥ 0. (9)

On the other hand, aX is IDCPE if, and only if, for all t ≥ 0,

∫ t

0
FaX(x) ·

[
ln
(

FaX(x)
FaX(t)

)
+ 1
]

dx = a
∫ t/a

0
FX(x) ·

[
ln
(

FX(x)
FX(t/a)

)
+ 1
]

dx ≥ 0, (10)

letting t/a = u in the second integral of the above in (10) yields that if (9) holds, then (10)
holds, as claimed.
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Remark 1. Theorem 2 indicates that the IDCPE class has closure property under a positive
scale transform.

Theorem 3. Let X be a uniform random variable on interval (0, 1), then X ∈ IDCPE.

Proof. Suppose that X ∼ U(0, 1). Then, FX(x) = x, x ∈ (0, 1). It can be verified that∫ t

0
FX(x)

[
ln
(

FX(x)
FX(t)

)
+ 1
]

dx ≥ 0, for all t ≥ 0.

By Theorem 1 we see that X ∈ IDCPE. As claimed.

Let X ∼ U(0, 1), then, for any a > 0, X/a ∼ U(0, a), where U(0, a) denotes a uni-
form distribution on interval (0, a). By means of Theorems 2 and 3 we have reached the
following result.

Theorem 4. Let X ∼ U(0, a), then X is IDCPE for any a > 0.

Theorem 5. Let X ∼ U(0, a), let Xt be the residual life of X at time t (0 < t < a), then Xt is also
IDCPE for any a > 0, and all t ∈ (0, a) .

Proof. Let X ∼ U(0, a). It can be verified that Xt ∼ U(0, a− t) for any t (0 < t < a). From
Theorem 4 we see that Xt is also IDCPE, as claimed.

Theorem 6. Let X ∼ U(0, a), a > 0. Let X(t) be the inactivity time of X at time t (0 < t < a),
then X(t) is also IDCPE.

Proof. Let X ∼ U(0, a). It can be checked that X(t) ∼ U(0, t) for any t (0 < t < a). From
Theorem 4 we see that X(t) is also IDCPE, as desired.

3. Closure and Reversed Closure Properties of the IDCPE Class

In this section, we study the closure and reverse closure properties of the IDCPE class.
First, we consider the closure or reversed closure properties for a series and a parallel
system.

Let X be a non-negative and continuous random variable with distribution function
FX and survival function FX , respectively. Denote

X1:n = min{X1, . . . , Xn}, Xn:n = max{X1, . . . , Xn}.

where X1, . . . , Xn are independent and identically distributed (i.i.d.) copies of X, represent-
ing the lifetimes of components composed of the system. Then X1:n and Xn:n represent the
lifetimes of a series system and of a parallel system, respectively. Denote by FX1:n and FXn:n

the distribution functions of X1:n and Xn:n, respectively.

Theorem 7. If X is IDCPE, then min{X1, . . . , Xn} is IDCPE.

Proof. Suppose that X is IDCPE. Then, from (5) we have∫ t

0
FX(x) ·

[
ln
(

FX(x)
FX(t)

)
+ 1
]

dx ≥ 0, for all t ≥ 0. (11)

Since the function h(x) = ∑n
i=1
[
FX(x)

]i−1 is non-negative and decreasing, making using
of (11) and Lemma 1 we get that

∫ t

0
FX(x) ·

n

∑
i=1

[
FX(x)

]i−1 ·
[

ln
(

FX(x)
FX(t)

)
+ 1
]

dx ≥ 0, for all t ≥ 0. (12)
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It is easy to see that, for all x ≥ 0,

FX1:n(x)= 1− FX1:n(x) = 1−
[
FX(x)

]n
= FX(x) ·

n

∑
i=1

[
FX(x)

]i−1, (13)

and then∫ t

0
FX1:n(x) ·

[
ln
(

FX1:n(x)
FX1:n(t)

)
+ 1
]

dx

=
∫ t

0
FX(x)

n

∑
i=1

[
FX(x)

]i−1
[

ln

(
FX(x)
FX(t)

· ∑n
i=1
[
FX(x)

]i−1

∑n
i=1
[
FX(t)

]i−1

)
+ 1

]
dx

≥
∫ t

0
FX(x) ·

n

∑
i=1

[
FX(x)

]i−1 ·
[

ln
(

FX(x)
FX(t)

)
+ 1
]

dx. (14)

On using (12) and (14) we obtain that

∫ t

0
FX1:n(x) ·

[
ln
(

FX1:n(x)
FX1:n(t)

)
+ 1
]

dx ≥ 0, for all t ≥ 0. (15)

That is, min{X1, . . . , Xn} is IDCPE. Therefore, the proof is complete.

Remark 2. Theorem 7 indicates that the IDCPE class has closure property under series operation.
Theorem 7 also says that the IDCPE class has closure property with respect to a series system.

Example 2. Let X be a uniform random variable on interval (0, 1). By Theorem 3 we see that X is
IDCPE. On the other hand, X1:n has its own distribution function FX1:n(x) = 1− (1− x)n, x ∈
(0, 1). That is, X1:n has a Beta distribution Beta(1, n). On using Theorem 7 we get that X1:n
is IDCPE.

Theorem 8. If max{X1, . . . , Xn} is IDCPE, then X is also IDCPE.

Proof. Suppose that max{X1, . . . , Xn} is IDCPE. Then, from (5) we have for all t ≥ 0,

0 ≤
∫ t

0
FXn:n(x) ·

[
ln
(

FXn:n(x)
FXn:n(t)

)
+ 1
]

dx

=
∫ t

0
FX(x) · [FX(x)]n−1 ·

[
n ln

(
FX(x)
FX(t)

)
+ 1
]

dx

≤
∫ t

0
FX(x) · [FX(x)]n−1 ·

[
ln
(

FX(x)
FX(t)

)
+ 1
]

dx. (16)

Since the function h(x) = 1
/
[FX(x)]n−1 is non-negative and decreasing in x, on using

(16) and Lemma 1 we get that∫ t

0
FX(x) ·

[
ln
(

FX(x)
FX(t)

)
+ 1
]

dx ≥ 0, for all t ≥ 0.

Again, by Theorem 1 X is IDCPE. This completes the proof.

Remark 3. Theorem 8 says that the IDCPE class has reversed closure property with respect to
a parallel system. Theorem 8 also indicates that the parallel operations reversely preserve the
IDCPE class.

Let X be an absolutely continuous non-negative random variables with distribution
function FX . Let X1, X2, . . . be a sequence of i.i.d. copies of X. Assume that N is a positive
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integer-valued random variable independent of Xi’s, and N has probability mass function
pN(n) = P{N = n}, n = 1, 2, . . .. Next, we consider to extend the results in Theorem 7 and
Theorem 8 from a finite number n to a random number N. Denote by

X1:N = min{X1, . . . , XN}, XN:N = max{X1, . . . , XN}.

Then X1:N and XN:N have distribution functions, respectively,

FX1:N (x) = FX(x) ·
[
+∞

∑
n=1

(
n

∑
i=1

Fi−1
X (x)

)
pN(n)

]
(17)

and

FXN:N (x) = FX(x) ·
[
+∞

∑
n=1

[
(FX(x))n−1

]
pN(n)

]
. (18)

The following Theorem 9 can be viewed as an extension of Theorem 7.

Theorem 9. If X is IDCPE, then min{X1, . . . , XN} is also IDCPE.

Proof. Suppose that min{X1, . . . , XN} is IDCPE. Then, from (5) we have∫ t

0
FX(x) ·

[
ln
(

FX(x)
FX(t)

)
+ 1
]

dx ≥ 0, for all t ≥ 0. (19)

In view of (17),

FX1:N (x) = FX(x) ·
[
+∞

∑
n=1

(
n

∑
i=1

Fi−1
X (x)

)
pN(n)

]
.

Since the function hX(x) = ∑+∞
n=1

(
∑n

i=1 Fi−1
X (x)

)
pN(n) is non-negative and decreasing,

from (19) and Lemma 1 we get that for all t ≥ 0,

∫ t

0
FX(x) ·

[
+∞

∑
n=1

(
n

∑
i=1

Fi−1
X (x)

)
pN(n)

]
·
[

ln
(

FX(x)
FX(t)

)
+ 1
]

dx ≥ 0. (20)

On the other hand, min{X1, . . . , XN} is IDCPE if, and only if, for all t ≥ 0,

∫ t

0
FX1:N (x) ·

[
ln
(

FX1:N (x)
FX1:N (t)

)
+ 1
]

dx =
∫ t

0
FX(x) ·

[
+∞

∑
n=1

(
n

∑
i=1

Fi−1
X (x)

)
pN(n)

]

·

ln

 FX(x)
FX(t)

·
∑+∞

n=1

(
∑n

i=1 Fi−1
X (x)

)
pN(n)

∑+∞
n=1

(
∑n

i=1 Fi−1
X (t)

)
pN(n)

+ 1

dx ≥ 0. (21)

Moreover,∫ t

0
FX(x) ·

[
+∞

∑
n=1

(
n

∑
i=1

Fi−1
X (x)

)
pN(n)

]

·

ln

 FX(x)
FX(t)

·
∑+∞

n=1

(
∑n

i=1 Fi−1
X (x)

)
pN(n)

∑+∞
n=1

(
∑n

i=1 Fi−1
X (t)

)
pN(n)

+ 1

dx

≥
∫ t

0
FX(x) ·

[
+∞

∑
n=1

(
n

∑
i=1

Fi−1
X (x)

)
pN(n)

]
·
[

ln
(

FX(x)
FX(t)

)
+ 1
]

dx. (22)
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Hence, by means of (20) and (22) we see that (21) holds. That is, min{X1, . . . , XN} is
IDCPE. Therefore, the proof follows.

Remark 4. Theorem 9 indicates that the IDCPE class has the closure property under random series
operations. Theorem 9 also says that the IDCPE class has the closure property with respect to a
random series system.

Example 3. Let X be a uniform random variable on interval (0, 1). By Theorem 3 we see that X is
IDCPE. Let N, again, be a positive integer-valued random variable with probability mass function
P(N = 1) = 1/2 and P(N = 2) = 1/2. Then, X1:N has its own distribution function

FX1:N (x) = 1− 1
2
[(1− x) + (1− x)2] for all x ∈ (0, 1).

According to Theorem 9 we know that X1:N is IDCPE.

Remark 5. In Theorem 9, if N takes a positive integer n almost surely, then X1:N =d X1:n,
Theorem 9 becomes as Theorem 7. Hence, Theorem 9 can be viewed as an extension of Theorem 7.

The following Theorem 10 can be viewed as an extension of Theorem 8.

Theorem 10. If max{X1, . . . , XN} is IDCPE, then X is also IDCPE.

Proof. Suppose that max{X1, . . . , XN} is IDCPE. Then, from (5) and (18) we get

∫ t

0
FXN:N (x) ·

[
ln
(

FXN:N (x)
FXN:N (t)

)
+ 1
]

dx =
∫ t

0
FX(x) ·

[
+∞

∑
n=1

[
(FX(x))n−1

]
pN(n)

]

·

ln

 FX(x)
FX(t)

·
∑+∞

n=1

[
(FX(x))n−1

]
pN(n)

∑+∞
n=1

[
(FX(t))

n−1
]

pN(n)

+ 1

dx ≥ 0 (23)

for all t ≥ 0. Whereas

∫ t

0
FX(x) ·

[
+∞

∑
n=1

(FX(x))n−1 pN(n)

]
·

ln

 FX(x)
FX(t)

·
∑+∞

n=1

[
(FX(x))n−1

]
pN(n)

∑+∞
n=1

[
(FX(t))

n−1
]

pN(n)

+ 1

dx

≤
∫ t

0
FX(x) ·

[
+∞

∑
n=1

(FX(x))n−1 pN(n)

]
·
[

ln
(

FX(x)
FX(t)

)
+ 1
]

dx, for all t ≥ 0. (24)

So, from (23) and (24) we have, for all t ≥ 0,

∫ t

0
FXN:N (x) ·

[
+∞

∑
n=1

[
(FX(x))n−1

]
pN(n)

][
ln
(

FX(x)
FX(t)

)
+ 1
]

dx ≥ 0. (25)

Since the function h(x) = 1
/[

∑+∞
n=1(FX(x))n−1 pN(n)

]
is non-negative and decreasing

in x, from inequality (25) and Lemma 1 we obtain that∫ t

0
FX(x)

[
ln
(

FX(x)
FX(t)

)
+ 1
]

dx ≥ 0, for all t ≥ 0, (26)

which is equivalent to that X is IDCPE. Therefore, the proof is complete.
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Remark 6. Theorem 10 indicates that the IDCPE class has reversed closure property under random
parallel operations. Theorem 10 also says that the IDCPE class has reversed closure property with
respect to a random parallel system.

Theorem 11. Let φ(·) be a non-negative increasing and concave function defined on an interval
I = [0, a) ⊆ R+ ≡ [0,+∞) such that φ(0) = 0. If X is IDCPE, then φ(X) is also IDCPE.

Proof. Suppose that X is IDCPE. Then, from (5) we have∫ t

0
FX(x)

[
ln
(

FX(x)
FX(t)

)
+ 1
]

dx ≥ 0, for all t ≥ 0. (27)

Since φ(x) is increasing concave implies that φ′(x) is non-negative and decreasing, by
using (27) and Lemma 1 we get that∫ t

0
FX(x)φ′(x) ·

[
ln
(

FX(x)
FX(t)

)
+ 1
]

dx ≥ 0, for all t ≥ 0. (28)

Additionally, from (5), φ(X) is IDCPE if, and only if,

∫ t

0
Fφ(X)(x) ·

[
ln

(
Fφ(X)(x)
Fφ(X)(t)

)
+ 1

]
dx ≥ 0, for all t ≥ 0. (29)

Moreover, since
Fφ(X)(x) = FX(φ

−1(x)), (30)

making use of (28) we obtain

∫ t

0
Fφ(X)(x) ·

[
ln

(
Fφ(X)(x)
Fφ(X)(t)

)
+ 1

]
dx =

∫ t

0
FX(φ

−1(x)) ·
[

ln
(

FX(φ
−1(x))

FX(φ−1(t))

)
+ 1
]

dx

=
∫ t

0
φ′(x))FX(x)

[
ln
(

FX(x)
FX(t)

)
+ 1
]

dx ≥ 0. (31)

That is, the inequality (29) holds, which asserts that φ(X) is IDCPE. This completes
the proof.

Let X be a non-negative continuous random variable, and φ(·) be a non-negative
increasing function defined on an interval I = [0, a) ⊆ R+ ≡ [0,+∞) with φ(0) = 0. We
call φ(X) the generalized scale transform of X.

Refer to the research of Kang and Yan [22], Yan and Kang [23], for a real-valued
function defined on an interval I = [0, a) ⊆ R+ ≡ [0,+∞) with φ(0) = 0, If φ(·) is
increasing convex (concave), then φ(·) is called a risk preference (aversion) function, and
φ(X) is called the risk preference (aversion) transform of X.

Remark 7. Theorem 11 says that the IDCPE class has closure property under a concave generalized
scale transform. Theorem 11 also indicates that the IDCPE class has closure property under a risk
aversion transform.

Example 4. Let X be a uniform random variable on interval (0, 1). By Theorem 3 we see that X is
IDCPE. Let Y be a Beta random variable with the distribution function FY(x) = xα, x ∈ (0, 1),
where constant α > 1 is a parameter. That is, Y has a Beta distribution Beta(α, 1). Then, FY(x) has
its inverse function F−1

Y (u) = u1/α, for all u ∈ [0, 1). Take φ(u) = F−1
Y (u) = u1/α, u ∈ [0, 1).

Then φ(u) is a non-negative increasing and concave function with φ(0) = 0. Due to the fact that
φ(X) = F−1

Y (X) = Y and the fact that X is IDCPE, by means of Theorem 11 we get that Y is
IDCPE. That is, this power random variable is IDCPE.
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Remark 8. In Theorem 11, the condition “φ(·) is a non-negative increasing and concave function”
is only a sufficient condition, but not necessary.

Counterexample 1. Let X be a power random variable with distribution function

FX(x) = xα, for all x ∈ (0, 1),

where constant α > 1 is a parameter. From Example 4 we know that X is IDCPE. Take
φ(x) = FX(x) = xα, x ∈ (0, 1). One has

φ(X) = FX(X) = Xα.

It is easy to see that φ(X) is a uniform random variable on interval (0, 1). Hence
φ(X) is IDCPE. Clearly, φ(x) = xα is not increasing and concave. Hence, the condition in
Theorem 11 “φ(·) is a non-negative increasing and concave function” is only a sufficient
condition, but not necessary.

On using a method similar to above Theorem 11 we easily have the following theorem.

Theorem 12. Let φ(·) be an increasing convex function defined on an interval I = [0, a) ⊆ R+ ≡
[0,+∞), such that φ(0) = 0. If φ(X) is IDCPE, then X is also IDCPE.

Remark 9. Theorem 12 says that the IDCPE class has reversed closure property under a convex
generalized scale transform. Theorem 12 also indicates that the IDCPE class has reversed closure
property under a risk preference transform.

Example 5. Let X be a uniform random variable on interval (0, 1). Let Y be a Beta random variable
with the distribution function FY(x) = 1− (1− x)α, x ∈ [0, 1), where constant α (0 < α < 1)
is a parameter. That is, Y has a Beta distribution Beta(1, α). Take φ(x) = FY(x) = 1− (1− x)α,
x ∈ [0, 1). It is easy to verify that φ(x) is a non-negative increasing and convex function with
φ(0) = 0. Due to the fact that φ(Y) = FY(Y) = X and the fact that X is IDCPE, by Theorem 11
we obtain that Y is IDCPE. That is, this Beta random variable is also IDCPE.

Remark 10. In Theorem 12, the condition “φ(·) is an increasing convex function” is only a
sufficient condition, but not necessary.

4. Preservation of the IDCPE Class in Several Stochastic Models

In this section, we investigate the preservation of the IDCPE class in the proportional
reversed failure rate model, the proportional hazard rate model, the proportional odds
model, and the k-record values model.

First, we deal with the following proportional reversed hazard rate model. For more
details on the proportional reversed hazard rate model, we refer to Di Crescenzo [39], Gupta
and Gupta [40], Di Crescenzo and Longobardi [10], and Shaked and Shanthikumar [41].

Let X be a non-negative random variable with the distribution functions FX . For any
real θ > 0, let X(θ) denote another random variable with the distribution function (FX)

θ .
Suppose that X has 0 as the left endpoint of its support. Then, we have the following results.

Theorem 13. Let X, Y, X(θ), and Y(θ) be non-negative random variables as described above.
(a) If 0 < θ ≤ 1, then X is IDCPE =⇒ X(θ) is IDCPE;
(b) If θ ≥ 1, then X(θ) is IDCPE =⇒ X is IDCPE.

Proof. Since FX(θ)(x) = [FX(x)]θ . From (5) we have that X is IDCPE if, and only if,
the inequality ∫ t

0
FX(x) ·

[
ln
(

FX(x)
FX(t)

)
+ 1
]

dx ≥ 0, for all t ≥ 0 (32)
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holds, and that X(θ) is IDCPE if, and only if, the inequality

∫ t

0
FX(θ)(x)

[
ln

(
FX(θ)(x)
FX(θ)(t)

)
+ 1

]
dx =

∫ +∞

t
[FX(x)]θ ·

[
θ ln
(

FX(x)
FX(t)

)
+ 1
]

dx ≥ 0 (33)

holds for all t ≥ 0.
(a) Assume that X is IDCPE. Since the function h(x) = [FX(x)]θ−1 is non-negative and

decreasing in x ≥ 0 whenever 0 < θ ≤ 1, by using Lemma 1 and inequality (32) we obtain∫ t

0
[FX(x)]θ ·

[
ln
(

FX(x)
FX(t)

)
+ 1
]

dx ≥ 0, for all t ≥ 0. (34)

Moreover, for 0 < θ ≤ 1,∫ t

0
[FX(x)]θ ·

[
θ ln
(

FX(x)
FX(t)

)
+ 1
]

dx ≥
∫ t

0
[FX(x)]θ ·

[
ln
(

FX(x)
FX(t)

)
+ 1
]

dx. (35)

Making use of (34) and (35), we see that (33) holds. That is, X(θ) is IDCPE.
(b) Assume that X(θ) is IDCPE. If θ ≥ 1, since ln

(
FX(x)
FX(t)

)
≤ 0, then

∫ t

0
[FX(x)]θ ·

[
θ ln
(

FX(x)
FX(t)

)
+ 1
]

dx ≤
∫ t

0
[FX(x)]θ ·

[
ln
(

FX(x)
FX(t)

)
+ 1
]

dx. (36)

On using inequalities (33) and (36) we get that∫ t

0
[FX(x)]θ ·

[
ln
(

FX(x)
FX(t)

)
+ 1
]

dx ≥ 0, for all t ≥ 0. (37)

Since the function h(x) = [FX(x)]1−θ is non-negative decreasing in x ≥ 0 whenever
θ ≥ 1. In view of (37) and Lemma 1, we know that (32) holds. That is, X is IDCPE. This
completes the proof.

Below we investigate the preservation in a proportional hazard rate model. For more
details about the model, one can refer to Nanda and Paul [11], Abbasnejad et al. [14],
Shaked and Shanthikumar [41], Kang and Yan [22], and Yan and Kang[23].

Let X be a non-negative random variable with survival function FX. For θ > 0, let
X(θ) denote a random variable with survival function (FX)

θ . We have the following results,
the proofs are similar to that of Theorem 13, and hence, are omitted here.

Theorem 14. Let X, Y, X(θ) and Y(θ) be non-negative random variables as described above.
(a) If θ ≥ 1, then X is IDCPE =⇒ X(θ) is IDCPE;
(b) If 0 < θ ≤ 1, then X(θ) is IDCPE =⇒ X is IDCPE.

Marshall and Olkin [42], Sankaran and Jayakumar [43] and Navarro et al. [8] studied
the following proportional odds models. Let X be a non-negative continuous random
variable with the distribution function FX and density function fX . The proportional odds
random variable, denoted by Xp, is defined by the distribution function

FXp(x) =
θFX(x)

1− (1− θ)FX(x)

for θ > 0, where θ is a proportional constant. It is easy to see that the reversed hazard rate
function of Xp is

aXp(x) =
fXp(x)
FXp(x)

=
aX(x)

1− (1− θ)FX(x)
.
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Clearly,
aXp(x)
aX(x)

=
1

1− (1− θ)FX(x)
.

Thus, we have reached the following results.

Lemma 3. Let X and Xp be as described above.
(a) If θ ≥ 1, then aXp(x)/aX(x) is decreasing in x ≥ 0;
(b) If 0 < θ ≤ 1, then aXp(x)/aX(x) is increasing in x ≥ 0.

A real-valued function on D ⊆ Rr is called increasing (decreasing) if it is increasing
(decreasing) in each variable when the other variables are held fixed. For the convenient
of citation, we introduce the following lemma which will be useful in the proofs of next
theorems. This result is motivated by Lemma 2.2 of Khaledi et al. [44], and the proof
utilizes a similar manner there. The monotonicity assumption of the lemma is related to
the conception of relative RHR order proposed in Definition 2.1 of Rezaei et al. [45].

Lemma 4. Let X and Y be two non-negative random variables with corresponding reversed hazard
rate functions aX and aY. If aY(u)/aX(u) is increasing in u ≥ 0, then, the function

ϕ(x, y) =
ln GY(x)− ln GY(y)
ln FX(x)− ln FX(y)

is increasing in (x, y) ∈ {(u, v) : 0 ≤ u ≤ v}.

Proof. Denote h1(x) = aX(x), h2(x) = aY(x), and define

ψi(x, y) =
∫ ∞

0
1{x≤u≤y}hi(u)du, i ∈ {1, 2},

where 1A is the indicator function of set A. Since

ln FX(y)− ln FX(x) =
∫ ∞

0
1{x≤u≤y}aX(u)du

and
ln GY(y)− ln GY(x) =

∫ ∞

0
1{x≤u≤y}aY(u)du,

we get that

ϕ(x, y) =
ψ2(x, y)
ψ1(x, y)

.

Note that aY(u)/aX(u) is increasing in u ≥ 0 means that hi(u) is TP2 in (i, u) ∈
{1, 2} ×R+. It is easy to verify that 1{x≤u≤y} is TP2 in (u, x) ∈ R+ × [0, y] for any y ∈ R+,
and is TP2 in (u, y) ∈ R+ × [x,+∞) for any x ∈ R+. Utilizing these facts, by using the
basic composition formula, we conclude that ψi(x, y) is TP2 in (i, x) ∈ {1, 2} × [0, y] for
each y ∈ R+, and is TP2 in (i, y) ∈ {1, 2} × [x,+∞) for each x ∈ R+. This proves the
desired result.

For the proportional odds models we obtain the following results.

Theorem 15. Let X and Xp be as described above.
(a) If θ ≥ 1, then X ∈ IDCPE =⇒ Xp ∈ IDCPE;
(b) If 0 < θ ≤ 1, then Xp ∈ IDCPE =⇒ X ∈ IDCPE.

Proof. Denote the function

h(u) =
θu

1− (1− θ)u
, u ∈ [0, 1] (38)
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for any θ > 0. It is easy to see that
(i) If θ ≥ 1, then h(u) is non-negative, increasing and concave on [0, 1];
(ii) If 0 < θ ≤ 1, then h(u) is non-negative, increasing and convex on [0, 1].

From the definition of Xp we have

FXp(x) = h[FX(x)], for all x ≥ 0. (39)

By Theorem 1 we have X ∈ IDCPE if, and only if,∫ t

0
FX(x) ·

[
ln
(

FX(x)
FX(t)

)
+ 1
]

dx ≥ 0, for all t ≥ 0; (40)

and that Xp ∈ IDCPE if, and only if,

∫ t

0
FXp(x)

[
ln

(
FXp(x)
FXp(t)

)
+ 1

]
dx ≥ 0, for all t ≥ 0,

or, from (39), equivalently,∫ t

0
h[FX(x)]

[
ln
(

h(FX(x))
h(FX(t))

)
+ 1
]

dx ≥ 0, for all t ≥ 0. (41)

(a) If θ ≥ 1, since h(u) is non-negative, increasing, and concave non-negative and
increasing concave in u ∈ [0, 1], then, the function

g(x) :=
FXp(x)
FX(x)

=
h[FX(x)]

FX(x)
is non-negative and decreasing in x ≥ 0. (42)

Hence,
h[FX(x)]/h[FX(t)] ≥ FX(x)/FX(t), for all t ≥ x ≥ 0.

We obtain that, for all t ≥0,∫ t

0
h[FX(x)]

[
ln
(

h(FX(x))
h(FX(t))

)
+ 1
]

dx ≥
∫ t

0
h[FX(x)]

[
ln
(

FX(x)
FX(t)

)
+ 1
]

dx. (43)

Assume that X ∈ IDCPE. By using (40), (43) and Lemma 1, we get that∫ t

0
h[FX(x)]

[
ln
(

FX(x)
FX(t)

)
+ 1
]

dx ≥ 0. (44)

From (43) and (44) we see that inequality (41) holds, which asserts that Xp ∈ IDCPE.
(b) The proof is similar to that of above (a). Therefore, the proof is complete.

Next, we study the closure property of the IDCPE class for the record values model.
Chandler [46] introduced and studied some properties of record values. For more details
about record values and their applications, one can refer to Khaledi et al. [44], Kundu
et al. [47], Zhao and Balakrishnan [48], Zarezadeh and Asadi [49], Li and Zhang [50], Kang
and Yan [22], and the references therein.

According to Kang and Yan [22], Yan and Kang[23], let {Xi, i ≥ 1} be a sequence
of independent and identically distributed random variables (rv’s) from an absolutely
continuous non-negative random variable X with the survival function FX(·) and the
density function fX(·). The rv’s TX

n , defined recursively by TX
1 = 1 and

TX
n+1 = min{j > TX

n : Xj > XTX
n
}, n ≥ 1,

are called the n-th record times. The quantities XTX
n

, denoted by RX
n , are called the n-th

record values.
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It can be proven that the probability density, distribution and reversed hazard rate
functions of RX

n are given, respectively, by

fRX
n
(x) =

1
Γ(n)

Λn−1
X (x) fX(x), (45)

FRX
n
(x) = FX(x)

+∞

∑
j=n

(ΛX(x))j

j!
= Γn(ΛX(x)), (46)

for all x ≥ 0, where Γn(·) is the distribution function of a Gamma random variable with
a shape parameter n and a scale parameter 1, and ΛX(x) = − ln FX(x) is the cumulative
failure rate function of X.

We now recall two stochastic orders which will be used in the next. one can refer to
Shaked and Shanthikumar [41] for more details.

Let X and Y be two non-negative continuous random variables with the density
functions fX and gY and the distribution functions FX and GY, respectively.

(a) X is said to be smaller than Y in the likelihood ratio order (denoted by X ≤lr Y) if
gY(x)/ fX(x) is increasing in x ≥ 0;

(b) X is said to be smaller than Y in the reversed hazard rate order (denoted by
X ≤rh Y) if GY(x)/FX(x) is increasing in x ≥ 0.

It is well-known that
X ≤lr Y =⇒ X ≤rh Y.

For the preservation property of the IDCPE class in the record values model, we obtain
the following result.

Theorem 16. Let X and RX
n be as described above, m and n be positive integers. Then

RX
n ∈ IDCPE =⇒ RX

m ∈ IDCPE, for all n > m ≥ 1.

Proof. Suppose that RX
n ∈ IDCPE. Then, from Theorem 1 we have, for all t ≥ 0,

∫ t

0
FRX

n
(x)

[
ln

(
FRX

n
(x)

FRX
n
(t)

)
+ 1

]
dx ≥ 0. (47)

From (45) we see that the function

fRX
m
(x)

fRX
n
(x)

=
Γ(n)
Γ(m)

(ΛX(x))m−n is increasing in x ≥ 0 for n > m.

Hence, we have RX
m ≤lr RY

n . So, RX
m ≤rh RY

n . Thus, we obtain that

FRX
m
(x)

FRX
n
(x)

is non-negative and decreasing in x ≥ 0. (48)

This leads to
FRX

m
(x)

FRX
m
(t)
≥

FRX
n
(x)

FRX
n
(t)

for all t ≥ x ≥ 0.

We, hence, find that

∫ t

0
FRX

m
(x)

[
ln

(
FRX

m
(x)

FRX
m
(t)

)
+ 1

]
dx ≥

∫ t

0
FRX

n
(x)

[
ln

(
FRX

n
(x)

FRX
n
(t)

)
+ 1

]
dx. (49)

In view of (47) and Theorem 1 the desired result follows.
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5. Preservation and Reversed Preservation of the IDCPE Class for Coherent Systems
with Dependent and Identically Distributed Components

In this section, we explore the preservation and reversed preservation of the IDCPE
class for a coherent system with dependent and identically distributed components.

A distortion distribution associated to a distribution function F and to an increasing
continuous distortion function q : [0, 1]→ [0, 1] with q(0) = 0 and q(1) = 1 is defined by

Fq(t) = q(F(t)). (50)

By means of the distortion function, Navarro et al. [51] gave a convenient representa-
tion of a coherent system reliability FT . They proved the following result which plays a
key role to obtain the results included in this section. For the ease of citation, we give this
result as a lemma.

Lemma 5 (Navarro et al. [51]). Let T = φ(X1, . . . , Xn) be the lifetime of a coherent system based
on possibly dependent components with lifetimes X1, . . . , Xn, having a common reliability function
FX(t) = Pr(Xi > t). Assume that h is a distortion function. Then, the system reliability function
can be written as

FT(t) = h(FX(t)), (51)

where h only depends on φ and on the survival copula of (X1, . . . , Xn).

Making use of (51), the distribution function of the coherent system lifetime T is
given by

FT(t) = 1− FT(t) = 1− h(1− FX(t)) = g(FX(t)), (52)

where g(u) = 1− h(1− u), u ∈ (0, 1). Notice that h and g depend on both φ and K, but
they do not depend on FX(Navarro et al.) [51]. Moreover, h (or g) is an increasing function
in (0, 1) from h(0) = 0 to h(1) = 1. In the general case, the function h in Equation (51)
is called structure and dependence function (see, for example, Navarro et al. [51] and
Navarro and Gomis [52].

We now study the preservation of the IDCPE class for a coherent system with depen-
dent and identically distributed components. We get the following result:

Theorem 17. Let X be a non-negative continuous random variables with survival function FX(t).
Let T = φ(X1, . . . , Xn) be the lifetime of a coherent system with structure function φ and with
identically distributed component lifetimes X1, . . . , Xn having common continuous survival func-
tions FX(t) = Pr(Xi > t). Let h be the domination function of the coherent system.

(a) Assume g(u)/u is decreasing in u ∈ (0, 1). If X ∈ IDCPE, then T ∈ IDCPE;
(b) Assume g(u)/u is increasing in u ∈ (0, 1). If T ∈ IDCPE, then X ∈ IDCPE.

Proof. In view of Theorem 1, we have that X ∈ IDCPE if, and only if,∫ t

0
FX(x)

[
ln
(

FX(x)
FX(t)

)
+ 1
]

dx ≥ 0, for all t ≥ 0; (53)

Further, that T ∈ IDCPE if, and only if,∫ t

0
FT(x)

[
ln
(

FT(x)
FT(t)

)
+ 1
]

dx ≥ 0, for all t ≥ 0,

by using (52), equivalently,∫ t

0
g[FX(x)]

[
ln
(

g(FX(x))
g(FX(t))

)
+ 1
]

dx ≥ 0, for all t ≥ 0. (54)
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(a) Assume that X ∈ IDCPE. If g(u)/u is decreasing in u ∈ (0, 1), then, the function

g[FX(x)]/FX(x) is non-negative and decreasing in x ≥ 0. (55)

Thus,
g[FX(x)]
g[FX(t)]

≥ FX(x)
FX(t)

, for all t ≥ x ≥ 0.

Hence, for all t ≥ 0,∫ t

0
g[FX(x)]

[
ln
(

g(FX(x))
g(FX(t))

)
+ 1
]

dx ≥
∫ t

0
g[FX(x)]

[
ln
(

FT(x)
FT(t)

)
+ 1
]

dx. (56)

Moreover, By (53), (55) and Lemma 1, we get that∫ t

0
g[FX(x)]

[
ln
(

FT(x)
FT(t)

)
+ 1
]

dx ≥ 0, for all t ≥ 0. (57)

On using (57), (56) and Lemma 1, we see that the inequality (54) holds, which asserts
by Theorem 1 that T ∈ IDCPE.

(b) The proof is similar with that of (a). Therefore, the proof is complete.

6. Conclusions

In this paper, we investigate some characterizations of the IDCPE class, and we mainly
obtain the closure and reversed closure properties of this class. Meanwhile, we examine the
preservation and reversed preservation properties of this class in several stochastic models.

We get that the IDCPE class is:
(1) Closed respect to a series system (see Theorem 7); but
(i) The inverse proposition of Theorem 7 does not hold;
(ii) Not reversely closed respect to a series system.
These two cases can all be viewed as a kind of anti-symmetry.
(2) Reversely closed respect to a parallel system (see Theorem 8); but
(i) The inverse proposition of Theorem 8 does not hold;
(ii) Not closed respect to a parallel system.
These two cases can all be viewed as a kind of anti-symmetry.
(3) Closed respect to a random series system (see Theorem 9); but
(i) The inverse proposition of Theorem 9 does not hold;
(ii) Not reversely closed respect to a random series system.
These two cases can all be viewed as a kind of anti-symmetry.
(4) Reversely closed respect to a random parallel system (see Theorem 10); but
(i) The inverse proposition of Theorem 10 does not hold;
(ii) Not closed respect to a random parallel system.
These two cases can all be viewed as a kind of anti-symmetry.
(5) Closed under a non-negative, increasing and concave transform (see Theorem 11);

but
(i) The inverse proposition of Theorem 11 does not hold;
(ii) Not reversely closed under a non-negative, increasing and concave transform.
These two cases can all be viewed as a kind of anti-symmetry.
(6) Reversely closed under a non-negative, increasing and convex transform (see

Theorem 12); but
(i) The inverse proposition of Theorem 12 does not hold;
(ii) Not closed under a non-negative increasing convex transform.
These two cases can all be viewed as a kind of anti-symmetry.
(7) Closed but not reversely closed under some appropriate condition in the propor-

tional reversed hazard rate models (see Theorem 13 (a)). This case can be viewed as a kind
of anti-symmetry;
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(8) Reversely closed but not closed under the other condition in the proportional
reversed hazard rate models (see Theorem 13 (b)). This case can be viewed as a kind of
anti-symmetry;

(9) Closed but not reversely closed under some appropriate condition in the pro-
portional hazard rate models (see Theorem 14 (a)). This case can be viewed as a kind of
anti-symmetry;

(10) Reversely closed but not closed under the other appropriate condition in the
proportional hazard rate models (see Theorem 14 (b)). This case can be viewed as a kind of
anti-symmetry;

(11) Closed but not reversely closed under some appropriate condition in the propor-
tional odds model (see Theorem 15 (a)). This case can be viewed as a kind of anti-symmetry;

(12) Reversely closed but not closed under the other appropriate condition in the
proportional odds model (see Theorem 15 (b)). This case can be viewed as a kind of
anti-symmetry;

(13) Reversely closed in the record-value models (see Theorem 16). This case can be
viewed as a kind of anti-symmetry;

(14) Closed under some appropriate condition for a coherent system (see Theorem
17 (a)); but the inverse proposition does not hold. This case can be viewed as a kind of
anti-symmetry;

(15) Reversely closed under the other condition for a coherent system (see Theorem
17 (b)); but the inverse proposition does not hold. This case can be viewed as a kind of
anti-symmetry.
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