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Abstract: In this paper, the approximated periodic solutions of the circular Sitnikov restricted
four–body problem (RFBP) were constructed using the Lindstedt–Poincaré method, by removing
the secular terms, and compared with numerical solution. It can be observed that, in the numerical
as well as approximated solutions patterns, the initial conditions are important. In the sense of a
numerical solution, the motion is periodic in a certain interval, but beyond this interval, the motion
is not periodic. But, the Lindstedt–Poincaré method constantly gives regular and periodic motion all
time. Finally, we observed that the solution obtained by the Lindstedt–Poincaré method gives the
true motion of the circular Sitnikov RFBP and the fourth approximate solution has more accuracy
than the first, second, and third approximate solutions.

Keywords: Sitnikov problem; restricted four–body problem; periodic solution; Lindstedt–Poincaré
method

1. Introduction

The dynamical system of the restricted three-body problem (RTBP) has a significant
role in celestial mechanics. It has many applications in the astrodynamics and stellar
dynamics fields [1–4]. The RTBP is a special case of three-body problem whereas the
restricted four-body (RFBP) problem is a generalization of the RTBP. In the RTBP, both
primaries circumambulate around their common center of mass while the infinitesimal
body does not have gravitational influence on the primaries bodies.

Several studies have been carried out on the RTBP to analyze infinitesimal body
motion [5–8]. Further considerable work in the frame of perturbed RTBP was undertaken
in [9,10] to explore the equilibrium points, linear stability and feature of motion about these
points.

One of the major features of the RTBP is that it can be reduced to some simpler models,
which also has massive significance in celestial mechanics—including but not limited to
Hill’s system [11–13], Robe’s model [14,15] and the Sitnikov problem [6,16]. However, the
Sitnikov problem is considered the simplest model as it is a reduced model of the three-
body problem which can be obtained as a sub-case of the circular or elliptic RTBP where the
infinitesimal body oscillates along the perpendicular to the plane of the primaries—which
is the Z axis. Moreover, it is considered as the simplest sub-case of the N−body problem,
and in many cases it can be used as a first approximation for astronomical problems in real
situations.

In the Sitnikov problem, the existence of oscillation motion was first proven by [17].
Recently, the effect of the gravitational radius in the sense of chaotic scattering phenomenon
and the escape regions were studied under the relativistic effect. Furthermore, inflection
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points in a quantitative behavior were analyzed by using the basin entropy [18]. The
Sitnikov problem is also generalized in the sense that the primary bodies’ motions are
homographic and form over a long time following a permissible central configuration [19].
The author has studied the continuation of the global periodic solutions for all eccentricity
values in the interval [0, 1).

The major motivation of the current study was that the Sitnikov problem is a simple
model. Although it is broadly studied in celestial mechanics, it is still an effective model
which can be used to explore periodic, symmetric and chaotic motions [20,21]. The per-
turbation techniques used to find periodic orbits in the Sitnikov problem can be applied
to some similar real stellar systems. The aim of this paper was to find an approximated
analytical periodic solution for a Sitnikov RFBP using the Lindstedt—Poincaré method
by removing the secular terms and comparing it with a numerical solution to verify the
importance of this perturbation method.

In this article, we studied the Sitnikov problem extended to four–body problems and
found the approximate nonlinear solutions. Moreover, it was a particular case of the RTBP
where both primaries had equal masses and were moving around their center of mass in
the elliptical or circular orbit. In the elliptical Sitnikov problem, the position of infinitesimal
mass in a new analytic way is represented by [16]. Bifurcation analysis and periodic orbits
analysis in the problem of the Sitnikov four-body model were carried out by [22]. The
effect of radiation pressure on the Sitnikov RFBP was discussed by [23]. Several authors
have carried out significant analyses of the Sitnikov three-body, four-body and N-body
problems; for example, considerable work has been established in [19–21].

This manuscript is organized into the following sections. In Section 1, we describe
a brief introduction of the periodic solution of Sitnikov restricted three and four-body
problems. Furthermore, the equations of motion and dynamical characteristics of the
circular Sitnikov four-body problem are described in Section 2. In Section 3, we obtained
the first-, second-, third- and fourth-order approximations with the help of the Lindstedt–
Poincaré method. The results of the numerical simulation and a comparison among
obtained solutions are investigated in Section 4. Finally, in Section 5, we include the
discussion and conclusion of this paper.

2. Equations of Motion of the Proposed Model

It is obvious that an equilateral triangular configuration is a particular solution of the
restricted problem of a three- or four-body system. We considered the three primary bodies
m1, m2, and m3 with equal mass, i.e., m1 = m2 = m3 = m = 1/3, which take positions
at the vertices of an equilateral triangle of the unit side, where these masses are moving
in circular orbits around the center of mass of a system, i.e., the center of the triangle.
The equations of motion of the fourth body m4 (infinitesimal body) in the dimensionless
rotating coordinate system within the frame of the restricted four-body problem are written
as [24]

ẍ− 2ẏ = Ωx ,

ÿ + 2ẋ = Ωy ,

z̈ = Ωz ,

(1)

where:

Ω(x, y, z) =
(x2 + y2)

2
+ mi

(
1
r1

+
1
r2

+
1
r3

)
, (2)

and ri (i = 1, 2, 3) is given by

ri =
√
(x− xi)2 + (y− yi)2 + z2 , (3)
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we also remark that ri represents the distances from the infinitesimal body to the three
primaries mi which are located at the following points:

(x1, y1) =

(
1√
3

, 0
)

,

(x2, y2) =

(
−1

2
√

3
,

1
2

)
,

(x3, y3) =

(
−1

2
√

3
,
−1
2

)
.

(4)

The Sitnikov RFBP is a sub-case of the RFBP which characterizes a dynamical system
as follows. Three equal bodies (which are called primary bodies) revolve around their
common center of mass where the infinitesimal body moves along a line perpendicular to
the orbital plane of the primaries motion [17]. The Sitnikov motions are constructed from
the equations of RFBP as a special case, i.e., when m1 = 1/3 = m2 = m3; x(t) = y(t) = 0,
and r1 =

√
1/3 + z2 = r2 = r3. In consideration of Equation (1), we can find equations

of motion for the circular Sitnikov RFBP where the infinitesimal body moves along the
vertical z axis. Therefore:

z̈ = Ωz , (5)

with:
Ωz =

−z
(1/3 + z2)3/2 , (6)

where Ω is the potential function:

Ω(z) =
1√

1/3 + z2
, (7)

From Figure 1, we can see that the potential function is symmetric at approximately
z = 0; hence, the potential function represents a harmonic oscillation motion.
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Figure 1. The potential function Ω(z).
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In the Sitnikov problem, the motion of the infinitesimal body is described by a non-
linear differential equation given in Equation (5). Moreover, in terms of elliptic functions,
only the exact analytical solution can be derived and it is not possible in structures of
mathematics. Hence, the alternative possible solutions are the approximated solutions
which give the characteristics of the exact solution and are developed with the help of
perturbation techniques. The perturbation techniques aim to obtain a solution of nonlinear
differential equations with its own limitations. This depends on a parameter which is
very small and does not appear in the equation of motion such that Equation (1). The
infinitesimal body moves with the Jacobian integral along the z axis as its total energy
which is given by

1
2

ż2 − 1√
1/3 + z2

= E . (8)

From (1), we observed that when the potential is symmetric and close to the region
z = 0, then E = −

√
3 that means the motion of the infinitesimal body is bounded in the

interval −
√

3 ≤ E ≤ −1 and the unbounded motions’ regions can be found when E > −1.
Moreover, the zero velocity of the infinitesimal body are in three cases. When it reaches
infinity (z = ±∞) with zero energy (E = 0) in the first two cases, then there are two critical
points at positive infinity as well as negative infinity. The motion is considered unbounded
and the fourth body will stay stationary at infinity; whereas in the third case, the total
energy takes the negative value −

√
3, i.e., E = −

√
3 and the fourth body moves to stay

at the center of mass, i.e., z = 0, hence the motion is bounded and the fourth body also
remains at the center of mass. It is observed that the from-zero velocity surfaces as well as
the phase portrait are shown in Figure 2.

The negative total energy means that the body has no ability to escape the gravitational
pull of the central body. The negative total energy also means there is a certain position in
which the kinetic energy will approximate towards zero. On the other hand, the negative
energy does not mean that it is less than zero. It just implies that the orbiting body needs
an amount of energy to be added, whether it comes to stable equilibrium or its own energy
is zero [25].
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Figure 2. Phase portrait of Sitnikov restricted four–body problem with different values of total energy E.

Since the total energy is close to −
√

3, hence it is negative and therefore, the fourth
body will be close to the center of mass, thereby |z| � 1. Therefore, with the help of
Equation (1), it is up to O(z3) obtained from:

z̈ + ω2
r z−ω2

dz3 = 0 , (9)

where ω2
r = 3

√
3 and ω2

d = 27
√

3/2.
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With the help of the perturbation technique, the solution of the periodic motion of
Equation (9) is obtained. The term −ω2

dz3 appears in the equation as the perturbation term.

3. Solution by Lindstedt–Poincaré Method

When regular perturbation approaches fail to obtain periodic solutions in ordinary
differential equations, a method is used which was developed by Anders Lindstedt (27
June 1854–16 May 1939) and Jules Henri Poincaré (29 April 1854–17 July 1912). Since
| z |� 1, we can then introduce a very small artificial parameter to the system which can
be replaced by one in the final solution [6]. In this case, we interchange the variable z by σz
where σ is very small (σ � 1); then, we can write ε = σ2ω2

d. Hence, ε is also very small
(ε� 1) where ε is called the strength of the perturbation. Then, the equation of motion in
second-order approximation: Equation (9) can be rewritten as

z̈ + ω2
r z− εz3 = 0 , (10)

A new independent variable s = ωt was introduced where ω is an unspecified
function of ε, initially as a place-keeping parameter. The coefficient of the new governing
equation of the second derivative contains ω. This allows the amplitude and the frequency
to interact, which is a property that is observed in nonlinear systems. The function ω can
be chosen in such a way as to eliminate the secular terms [26].

Using s = ωt, Equation (10) becomes:

ω2z′′ + ω2
r z− εz3 = 0 , (11)

Assuming the expansion for ω as

ω = ωr + εω1 + ε2ω2 + ε3ω3 + ... , (12)

where ω1, ω2, ... are unknown constants. It is similar to straightforward expansion. The
variable z can be represented by an expansion having the form:

z(t) = z0(t) + εz1(t) + ε2z2(t) + ε3z3(t) + . . .

=
∞

∑
i=0

εizi(t) .
(13)

Substituting the values of Equations (12) and (13) into Equation (11) and equating the
coefficients of ε0, ε1, ε2, ε3 and ε4 to zero, we obtained the following differential equations:

ω2
r

d2z0

ds2 + ω2
r z0 = 0 , (14)

ω2
r

d2z1

ds2 + ω2
r z1 = z3

0 + 2ω1ωrz0 , (15)

ω2
r

d2z2

ds2 + ω2
r z2 = 3z2

0z1 + 2ω1ωr

[
z1 −

z3
0

ω2
r

]
+
(

2ω2ωr − 3ω2
1

)
z0 , (16)

ω2
r

d2z3

ds2 + ω2
r z3 = 3z0z2

1 + 3z2
0z2 − 3z1ω2

1 − 2z0ω1ω2

+
3z3

0ω2
1

ω2
r
−

2z0(3z0z1ω1 + ω3
1 + z2

0ω2)

ωr

+ 2
[
z2ω1 + z1ω2 + z0(3ω3

1 + ω3)
]
ωr − 4z0ω1ω2ω2

r ,

(17)
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ω2
r

d2z4

ds2 + ω2
r z4 = z3

1 + 6z0z1z2 + 3z2
0z3 − 3z2ω2

1 − 9z0ω4
1 − 6z1ω1ω2 + z0ω2

2

− 6z0ω1ω3 −
4z3

0ω3
1

ω3
r

+
9z2

0z1ω2
1

ω2
r

+
4z0ω4

1
ω2

r
+

6z3
0ω1ω2

ω2
r

−
6z0z2

1ω1

ωr
−

6z2
0z2ω1

ωr
+

4z1ω3
1

ωr
−

6z2
0z1ω2

ωr
−

2z3
0ω3

ωr

+ 2z3ω1ωr + 2z2ω2ωr + 12z0ω2
1ω2ωr + 2z1ω3ωr

+ 2z0ω4ωr − 4z0ω2
2ω2

r .

(18)

For simple calculation, let us assume the initial conditions:

z(0) = z, ż(0) = 0 (19)

Utilizing conditions in Equation (19) with Equation (14), the solution of the first linear
second-order initial value problem is given by

z0(s) = z cos(s) . (20)

After utilizing Equations (15) and (20), then we obtain:

d2z1

ds2 + z1 =

[
3z3

4ω2
r
+

2ω1z
ωr

]
cos(s) +

z3

4ω2
r

cos(3s) . (21)

Now the first term on the right-hand side of Equation (21) will lead to a secular term
in the obtained solution; if the coefficient of cos(s) does not equal zero, then this coefficient
must equal zero to avoid an unwanted term (secular term). Thus, we obtain:

3z3

4ω2
r
+

2ω1z
ωr

= 0 ,

hence, we obtain:

ω1 =
−3z2

8ωr
. (22)

Therefore, Equation (21) takes the form:

d2z1

ds2 + z1 =
z3

4ω2
r

cos(3s) , (23)

and its general solution is:

z1(s) = c1 cos(s) + c2 sin(s)− z3

32ω2
r

cos(3s) . (24)

Applying the initial conditions z1(0) = 0, ż1(0) = 0 (z1(0) = 0 and z0(0) + z1(0) = z,
satisfying our initial conditions) into Equation (24), we obtain:

c1 =
z3

32ω2
r

, c2 = 0 . (25)

Hence, the final solution of Equation (23) is:

z1(s) =
z3

32ω2
r
[cos(s)− cos(3s)] . (26)
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Substituting the values of (20), (22) and (26) into (16), we obtain:

d2z2

ds2 + z2 =

[
21z5

128ω4
r
+

2ω2z
ωr

]
cos(s)

+
3z5

16ω4
r

cos(3s)− 3z5

128ω4
r

cos(5s) .
(27)

Again, the coefficient of cos(s) must be equal to zero to eliminate the secular term in
z2. This leads to:

ω2 =
−21z4

256ω3
r

. (28)

Therefore, Equation (27) reduces to:

d2z2

ds2 + z2 =
3z5

16ω4
r

cos(3s)− 3z5

128ω4
r

cos(5s) , (29)

and its general solution is:

z2(s) = c1 cos(s) + c2 sin(s)− 3z5

128ω4
r

cos(3s) +
z5

1024ω4
r

cos(5s) . (30)

With the help of initial conditions z2(0) = 0, ż2(0) = 0 (z2(0) = 0 and z0(0) + z1(0) +
z2(0) = z, satisfying our initial conditions) in Equation (30), we obtain:

c1 =
3z5

128ω4
r
− z5

1024ω4
r

, c2 = 0 . (31)

Hence, the final solution of Equation (29) is:

z2(s) =
z5

1024ω4
r
[23 cos(s)− 24 cos(3s) + cos(5s)] . (32)

Substituting the values of (20), (22), (24), (28) and (32) into (17), we obtain:

d2z3

ds2 + z3 =

[
531z7

1024ω6
r
− 225z7

512ω4
r
+

2zω3

ωr

]
cos(s)

+
297z7

2048ω6
r

cos(3s)− 9z7

256ω6
r

cos(5s) +
3z7

2048ω6
r

cos(7s) .
(33)

Again, we have to put the coefficient of cos(s) equal to zero to eliminate the secular
term in z3. This means that:

ω3 =
−531z6

2048ω5
r
+

225z6

1024ω3
r

. (34)

Therefore, Equation (33) reduces to:

d2z3

ds2 + z3 =
297z7

2048ω6
r

cos(3s)− 9z7

256ω6
r

cos(5s) +
3z7

2048ω6
r

cos(7s) , (35)
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and its general solution takes the form:

z3(s) = c1 cos(s) + c2 sin(s)− 297z7

16384ω6
r

cos(3s)

+
3z7

2048ω6
r

cos(5s)− z7

32768ω6
r

cos(7s) .
(36)

With the initial conditions z3(0) = 0, ż3(0) = 0 (z3(0) = 0 and z0(0) + z1(0) + z2(0) +
z3(0) = z, satisfying our initial conditions) in Equation (36), we obtain:

c1 =
547z7

32768ω6
r

, c2 = 0 . (37)

Hence, the final solution of Equation (33) is:

z3(s) =
547z7

32768ω6
r

cos(s)− 297z7

16384ω6
r

cos(3s)

+
3z7

2048ω6
r

cos(5s)− z7

32768ω6
r

cos(7s) .
(38)

Utilizing Equations (20), (22), (24), (28), (32), (34) and (38) with Equation (18), we obtain:

d2z4

ds2 + z4 =

[
262144zω4ωr

+ 3z9(9383− 7200ω2
r )

]
cos(s)

131072ω8
r
+

z9(31321− 16200ω2
r )

131072ω8
r

cos(3s)

− 2649z9

65536ω8
r

cos(5s) +
27z9

8192ω8
r

cos(7s)− 5z9

65536ω8
r

cos(9s) .

(39)

We have to put the coefficient of cos(s) equal to zero to eliminate the secular term in
z4. This means that:

ω4 =
−28149z8

262144ω7
r
+

675z8

8192ω5
r

. (40)

Therefore, Equation (39) is reduced to the form:

d2z4

ds2 + z4 =
z9(31321− 16200ω2

r )

131072ω8
r

cos(3s)− 2649z9

65536ω8
r

cos(5s)

+
27z9

8192ω8
r

cos(7s)− 5z9

65536ω8
r

cos(9s) .
(41)

and its general solution is:

z4(s) = c1 cos(s) + c2 sin(s)− z9(31321− 16200ω2
r )

1048576ω8
r

cos(3s)

+
883z9

524288ω8
r

cos(5s)− 9z9

131072ω8
r

cos(7s) +
z9

1048576ω8
r

cos(9s) .
(42)

Using initial conditions z4(0) = 0, ż4(0) = 0 (z4(0) = 0 and z0(0) + z1(0) + z2(0) +
z3(0) + z4(0) = z, satisfying our initial conditions) in Equation (42), we obtain:

c1 =
14813z9

524288ω8
r
− 2025z9

131072ω6
r

, c2 = 0 . (43)
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Hence, the final solution of Equation (39) is:

z4(s) =
(

14813z9

524288ω8
r
− 2025z9

131072ω6
r

)
cos(s)− z9(31321− 16200ω2

r )

1048576ω8
r

cos(3s)

+
883z9

524288ω8
r

cos(5s)− 9z9

131072ω8
r

cos(7s) +
z9

1048576ω8
r

cos(9s) .
(44)

Finally, substituting the values of z0(t), z1(t), z2(t), z3(t) and z4(t) in Equation (13) as
well as ω1, ω2, ω3 and ω4 in Equation (12), we obtain:

z = z cos(ωt) + ε
z3

32ω2
r
[cos(ωt)− cos(3ωt)]

+ ε2 z5

1024ω4
r
[23 cos(ωt)− 24 cos(3ωt) + cos(5ωt)]

+ ε3
[

547z7

32768ω6
r

cos(ωt)− 297z7

16384ω6
r

cos(3ωt)

+
3z7

2048ω6
r

cos(5ωt)− z7

32768ω6
r

cos(7ωt)
]

+ ε4
[(

14813z9

524288ω8
r
− 2025z9

131072ω6
r

)
cos(ωt) − z9(31321− 16200ω2

r )

1048576ω8
r

cos(3ωt)

+
883z9

524288ω8
r

cos(5ωt)− 9z9

131072ω8
r

cos(7ωt) +
z9

1048576ω8
r

cos(9ωt)
]

,

(45)

with:

ω =ωr − ε
3z2

8ωr
− ε2 21z4

256ω3
r
+ ε3

(
−531z6

2048ω5
r
+

225z6

1024ω3
r

)
+ ε4

(
−28149z8

262144ω7
r
+

675z8

8192ω5
r

)
.

(46)

Equations (45) and (46) are the desired solutions up to fourth-order approximation
of the system, while all terms with order O(ε5) and higher are ignored. At the end, the
parameter ε can be replaced by one for obtaining the final form solution according to the
place-keeping parameters method.

4. Numerical Results

A comparison was carried out among the numerical: the first-, second-, third- and the
fourth-order approximated solutions in the Sitnikov RFBP. The investigation includes the
numerical solution of Equation (5) and the first, second, third and fourth-order approxi-
mated solutions of Equation (10) obtained using the Lindstedt–Poincaré method which are
given in Equations (45) and (46), respectively.

The comparison of the solution obtained from the first-, second-, third- and fourth-
order approximation with a numerical solution obtained from (1) is shown in Figures 3–5,
respectively. We take three different initial conditions to make the comparison. The
infinitesimal body starts its motion with zero velocity in general, i.e., ż(0) = 0 and at
different positions (z(0) = 0.1, 0.2, 0.3).
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Figure 3. Third- and fourth-approximated solutions for z(0) = 0.1 and the comparison between
numerical simulations.
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Figure 4. Third- and fourth-approximated solutions for z(0) = 0.2 and the comparison between
numerical simulations.
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Figure 5. Third- and fourth-approximated solutions for z(0) = 0.3 and the comparison between
numerical simulations.

The investigation of motion of the infinitesimal body was divided into two groups. In
a first group, three different solutions were obtained for three different initial conditions,
which are shown in Figures 6–10. In these figures, the purple, green and red curves refer
to the initial condition z(0) = 0.1, z(0) = 0.2 and z(0) = 0.3, respectively. However, in a
second group, three different solutions were obtained for the above given initial conditions.
This group includes Figures 3–5, in which the green, blue and red curves indicate the
numerical solution (NA), third-order approximated (TA) and fourth-order approximations
(FA) of the Lindstedt–Poincaré method, respectively, in these figures.
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Figure 6. Solution of first-order approximation for the three different values of initial conditions.
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Figure 7. Solution of second-order approximation for the three different values of initial conditions.
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Figure 8. Solution of third-order approximation for the three different values of initial conditions.
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Figure 9. Solution of fourth-order approximation for the three different values of initial conditions.
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Figure 10. The numerical solution on the three different initial conditions.

In Figure 10, we see that the motion of the infinitesimal body is periodic, and its
amplitude decreases when the infinitesimal body begins moving closer to the center of
mass. Moreover, in numerical simulation, the behavior of the solution is changed by the
different initial conditions. Furthermore, the numerical solution is not bounded (we mean
that the motion is not periodic) to the infinitesimal body which begins its motion from a
large distance to the center of mass of the primaries. Perhaps, the solution has periodic
behavior with regular periodicity for the proper selection of initial conditions during a
certain time period.
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From Figures 3–5, we impose that the infinitesimal (fourth-) body starts moving from
three different position with respect the center of mass of primaries. Motion is periodic in
the interval 0 ≤ t ≤ 102 and its amplitude decreases when its motion starts nearer to the
position because of the common center of masses of the primaries, which agree with [6].
On the other hand, when 0 ≤ t ≤ 102, the numerically obtained motion is then periodic,
however, when t > 102, it escapes from the path of the orbit.

5. Conclusions

In this paper, the periodic solutions of the Sitnikov restricted four-body problem
(RFBP) were constructed by using the Lindstedt–Poincaré method by removing the un-
bounded terms, which are called the secular. These solutions are compared with numerical
solution to verify the importance of the used perturbation method (Lindstedt–Poincaré
method). One of the major significant aims of removing secular terms is determining the
conditions which enforce the motion to be periodic or establish the periodicity conditions
of motion. Under these conditions, we can find approximated periodic solutions in closed
form. It was observed that in the numerical and the obtained periodic solutions’ patterns,
the initial conditions are very important. The motion was numerically examined and
compared with the approximated solution obtained by the Lindstedt–Poincaré method.

We remark that the motion is periodic in the time interval 0 ≤ t ≤ 102; however,
beyond this interval, the motion is not periodic in the numerical sense. However, the
Lindstedt–Poincaré method gives regular and periodic motion for a time of t > 0. In
addition, we note that the motion obtained by the first-, second-, third- and fourth-order
approximate solutions is regular and periodic when the test particle starts its motion
closer to the center of the mass. On the other hand, the test particle starts its motion far
from the center of mass and the solutions obtained by numerical simulation may not be
periodic for a long time—whereas all the first- to fourth-order approximated solutions
may become regular and periodic motions. We demonstrated that the obtained solution
by the Lindstedt–Poincaré method gives the true motion of the circular Sitnikov RFBP
and the fourth-order approximate solution has more accuracy than the first-, second- and
third-order approximate solutions.

In the future study, we aimed to present more analysis of the dynamical motion
of the N−body problem, particularly the circular and elliptical Sitnikov motion. In this
context, we will use some power tools to find periodic solutions such as the method of
parameter variation and averaging or the multiple scales technique, which is considered a
generalization of the Lindstedt–Poincaré method.
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