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Abstract: The object of this paper is to derive a double integral in terms of the Hurwitz–Lerch zeta
function. Almost all Hurwitz–Lerch zeta functions have an asymmetrical zero-distribution. Special
cases are evaluated in terms of fundamental constants. All the results in this work are new.
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1. Significance Statement

P.S. Laplace (1749–1827) introduced the Laplace transform as part of their famous
study of probability theory and celestial mechanics [1]. R.H Mellin (1854–1933) first gave
a systematic formulation of the Mellin transformation and its inverse [2]. He used their
transform to develop applications of the theory of special functions to the solution of
hypergeometric differential equations.

The double Laplace transform is studied in the work of Debnath [3] to solve initial and
boundary value problems in applied mathematics, and mathematical physics. The double
Laplace transform has been used to study European vulnerable options under constant as
well as stochastic (the Hull–White) interest rates [4].

In this work, we derive a double integral whose kernel involves generalized expo-
nential, logarithmic and polynomial functions. The form of this kernel can be viewed as
a double Laplace transform of logarithmic and polynomial functions when the powers
of the variable x in the exponential function is equal to one. On the other hand, since a
polynomial is involved in this kernel, we can also consider this double integral as a double
Mellin transform of the logarithm and exponential functions when c = e = 1.

These integral types are also used to derive geometric probability constants by calcu-
lating the expected Euclidean distance δ(n) to the center of an n-dimensional cube [5], and
have some similarities with the generalized hyperterminants in globally valid remainder
terms for asymptotic expansions about saddles and contour endpoints of arbitrary order
degeneracy derived from the method of steepest descents [6].

2. Introduction

In this paper, we derive the double integral given by∫ ∞

0

∫ ∞

0
tcm−1x−em+e−1e−btc−dxe

logk(atcx−e)dxdt (1)

where the parameters k, a, b, d, m ∈ C, Re(c) > 0, Re(e) > 0. The derivations follow the
method used by us in [7]. This method involves using a form of the generalized Cauchy’s
integral formula given by

yk

Γ(k + 1)
=

1
2πi

∫
C

ewy

wk+1 dw. (2)
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where C is in general an open contour in the complex plane, which has the same value at
the end points of the contour. We then multiply both sides by a function of x and t, then
take a definite double integral of both sides. This yields a definite integral in terms of a
contour integral. Then, we multiply both sides of Equation (2) by another function of y
and take the infinite sums of both sides such that the contour integral of both equations are
the same.

3. Definite Integral of the Contour Integral

We use the method shown in [7]. The variable of integration in the contour integral is
α = w + m. The cut and contour are in the first quadrant of the complex α-plane. The cut
approaches the origin from the interior of the first quadrant and the contour goes round
the origin with zero radius and is on opposite sides of the cut. Using a generalization
of Cauchy’s integral formula, we replace equations by replacing y by logk(atcx−e) and
multiplying by tcm−1xe(−m)+e−1e−btc−dxe

then taking the definite integral with respect
x ∈ [0, ∞) and t ∈ [0, ∞) to obtain

1
Γ(k+1)

∫ ∞
0

∫ ∞
0 tcm−1x−em+e−1e−btc−dxe

logk(atcx−e)dxdt

= 1
2πi
∫ ∞

0

∫ ∞
0

∫
C aww−k−1tc(m+w)−1xe(−(m+w))+e−1e−btc−dxe

dwdxdt

= 1
2πi
∫

C

∫ ∞
0

∫ ∞
0 aww−k−1tc(m+w)−1xe(−(m+w))+e−1e−btc−dxe

dxdtdw

= 1
2πi
∫

C
πaww−k−1b−m−wdm+w−1 csc(π(m+w))

ce dw

(3)

from Equation (3.381.10) in [8], where Re(w + m) > 0, Re(c) > 0, Re(e) > 0, Re(b) >
0, Re(d) > 0, Re(m) > 0 and using the reflection formula for the Gamma function (25.4.1)
in [9]. We are able to switch the order of integration over α, x and t using Fubini’s theorem
since the integrand is of bounded measure over the space C× [0, ∞)× [0, ∞).

4. The Hurwitz–Lerch Zeta Function and Infinite Sum of the Contour Integral
4.1. The Hurwitz–Lerch Zeta Function

The Hurwitz–Lerch zeta function, shown in Section (25.14) in [9–11] has a series
representation given by

Φ(z, s, v) =
∞

∑
n=0

(v + n)−szn (4)

where |z| < 1, vs. 6= 0,−1, .. and is continued analytically by its integral representation
given by

Φ(z, s, v) =
1

Γ(s)

∫ ∞

0

ts−1e−vt

1− ze−t dt =
1

Γ(s)

∫ ∞

0

ts−1e−(v−1)t

et − z
dt (5)

where Re(v) > 0, and either |z| ≤ 1, z 6= 1, Re(s) > 0, or z = 1, Re(s) > 1.

4.2. Infinite Sum of the Contour Integral

Using Equation (2) and replacing y by log(a) − log(b) + log(d) + iπ(2y + 1) then
multiplying both sides by

− 2iπb−mdm−1eiπm(2y+1)

ce
(6)

then taking the infinite sum over y ∈ [0, ∞) and simplifying in terms of the Hurwitz–Lerch
zeta function to obtain
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−
(2iπ)k+1eiπmb−mdm−1Φ

(
e2imπ ,−k,−i log(a)+i log(b)−i log(d)+π

2π

)
ceΓ(k+1)

= − 1
2πi ∑∞

y=0
∫

C
1
ce 2iπb−mdm−1w−k−1 exp(w(log(a)− log(b) + log(d))

+iπ(2y + 1)(m + w))dw

= − 1
2πi
∫

C ∑∞
y=0

1
ce 2iπb−mdm−1w−k−1 exp(w(log(a)− log(b) + log(d))

+iπ(2y + 1)(m + w))dw

= 1
2πi
∫

C
πaww−k−1b−m−wdm+w−1 csc(π(m+w))

ce dw

(7)

from Equation (1.232.3) in [8], where Im(w + m) > 0 in order for the sum to converge.

5. Definite Integral in Terms of the Hurwitz–Lerch Zeta Function

Theorem 1. For all k, a, b, d, m ∈ C, Re(c) > 0, Re(e) > 0,∫ ∞
0

∫ ∞
0 tcm−1x−em+e−1e−btc−dxe

logk(atcx−e)dxdt

= − 1
ce (2iπ)k+1eiπmb−mdm−1Φ

(
e2imπ ,−k, −i log(a)+i log(b)−i log(d)+π

2π

) (8)

Proof. Observe the right-hand side of Equations (3) and (7) are equal so we may equate
the left-hand sides and simplify the factorial to yield the stated result.

Lemma 1. ∫ ∞
0

∫ ∞
0 t

c
2−1x

e
2−1e−btc−dxe

logk(−tcx−e)dxdt

= − 1√
bc
√

de
ik+2(2π)k+1

(
2kζ
(
−k, i log(b)−i log(d)+2π

4π

)
−2kζ

(
−k, 1

2

(
i log(b)−i log(d)+2π

2π + 1
))) (9)

Proof. Use Equation (8) and set m = 1/2, a = −1 and simplify using entry (4) in the table
below (64:12:7) in [12].

6. Special Cases

In this section, we evaluate Equation (8) for various values of the parameters in terms
of special functions and fundamental constants. In this section, we use the following
functions and fundamental constants; Euler’s constant γ, Catalan’s constant C, Glaisher’s
constant A, Aprey’s constant ζ(3), Hurwitz zeta function ζ(s, a), hypergeometric function
2F1(a, b; c; z), Polylogarithm function Lin(z) and Riemann zeta function ζ(s).

Example 1.

∫ ∞

0

∫ ∞

0
tcm−1x−em+e−1e−btc−dxe

dxdt =
πb−mdm−1 csc(πm)

ce
(10)

Proof. Use Equation (8) and set k = 0 and simplify using entry (2) in the table below
(64:12:7) in [12].
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Example 2. ∫ ∞
0

∫ ∞
0

e−2(t2+x3)(t2px2−3p−t2mx2−3m)
t log

(
t2
x3

) dxdt

= 1
6

(
tanh−1(eiπm)− tanh−1(eiπp)) (11)

Proof. Use Equation (8) and form a second equation by replacing m→ p and taking their
difference and setting k = −1, a = 1, b = c = d = 2, e = 3 and simplifying using entry (3)
in the table below (64:12:7) in [12].

Example 3.∫ ∞
0

∫ ∞
0
√

xe−2t2−3x3
log
(

log
(
− t2

x3

))
dxdt

= π
12
√

6

(
4log Γ

(
− i log( 3

2 )
4π

)
− 4log Γ

(
− 1

2 −
i log( 3

2 )
4π

)
+ 3iπ + log(16)

+2 log(π) + 4 log
(
log
( 3

2
))

+ log
(

1

(log( 3
2 )−2iπ)

4

)) (12)

Proof. Use Equation (9) and take the first partial derivative with respect to k and set
k = 0, b = c = 2, d = e = 3 and simplify using Equation (25.11.18) in [9].

Example 4. ∫ ∞

0

∫ ∞

0

√
xe−5x3−it2

log2
(

it2

5x3

) dxdt =
(−1)3/4C

3
√

5π
(13)

Proof. Use Equation (9) and set k = −2, a = i/5, b = i, c = 2, d = 5, e = 3 and simplify
using Equation (3) in [13].

Example 5.

∫ ∞

0

∫ ∞

0

t
1
6 (
√

2−6)x
1
4 (
√

2−4)e−t
1√
2−x

1√
2
(

x
1

6
√

2 − t
1

6
√

2

)
log
(

t
1√
2 x−

1√
2

) dxdt = − log(3) (14)

Proof. Use Equation (8) and form a second equation by replacing m→ p and taking their
difference and setting k = −1, a = 1, b = 1, d = 1, m = 1/2, p = 1/3, c = 1/

√
2, e = 1/

√
2

and simplify using Equation (7) in [14].

Example 6.

∫ ∞
0

∫ ∞
0

e−t
1√
2 −x

1√
2 x
−m+p−1√

2
−1
(

x
m√

2 t
p√
2−t

m√
2 x

p√
2

)

t log

(
t

1√
2 x
− 1√

2

) dxdt

= 2 log
(
cot
(

πm
2
)

tan
(πp

2
))

(15)

Proof. Use Equation (8) and form a second equation by replacing m→ p and taking their
difference and setting k = −1, a = 1, b = 1, d = 1, c = 1/

√
2, e = 1/

√
2 and simplifying

using entry (1) in the table below (64:12:7) in [12].
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Example 7.

∫ ∞

0

∫ ∞

0

t
1
8 (
√

2−8)x
1
8 (
√

2−8)e−t
1√
2−x

1√
2
(

t
1

2
√

2 − x
1

2
√

2

)
log
(

t
1√
2 x−

1√
2

) dxdt = 4 sinh−1(1) (16)

Proof. Use Equation (15) and set m =
2 cot−1(1+

√
2)

π , p =
2 tan−1(1+

√
2)

π and simplify. Note
this is a double integral representation for the Universal Parabolic constant, P, given in [15].
This integral has similarities with the generalized hyperterminants in [6].

Example 8. ∫ ∞

0

∫ ∞

0

x3/2e−t2−x5

4 log2
(

t2

x5

)
+ π2

dxdt =
π + log

(
3− 2

√
2
)

20
√

2π
(17)

and ∫ ∞

0

∫ ∞

0

x3/2e−t2−x5
log
(

t2

x5

)
log2

(
t2

x5

)
+ π2

4

dxdt = 0 (18)

Proof. Use Equation (8) and set k = −1, a = i, c = 2, e = 5, b = 1, d = 1, m = 1/2 and
simplify using entry (1) in table below (64:12:7) in [12]; then, rationalize the denominator
and equate real and imaginary parts.

Example 9. ∫ ∞

0

∫ ∞

0

√
tx3/2e−t3−x5

(
log2

(
t3

x5

)
− π2

)
(

log2
(

t3

x5

)
+ π2

)2 dxdt = − π

360
(19)

and ∫ ∞

0

∫ ∞

0

√
tx3/2e−t3−x5

log
(

t3

x5

)
(

log2
(

t3

x5

)
+ π2

)2 dxdt = 0 (20)

Proof. Use Equation (8) and set k = −1, a = −1, c = 3, e = 5, b = 1, d = 1, m = 1/2 and
simplify using entry (1) in table below (64:12:7) in [12]; then, rationalize the denominator
and equate real and imaginary parts.

Example 10. ∫ ∞
0

∫ ∞
0
√

xe−5t2−5x3
log
(
− t2

x3

)
log
(

log
(
− t2

x3

))
dxdt

= 1
30 iπ2 log(2iπ)− 2

15 iπ2 log
(

A3
3√2 4√e

) (21)

Proof. Use Equation (8) and take the first partial derivative with respect to k and set
m = 1/2, k = 1, b = d = 5, a = −1, c = 2, e = 3 and simplify using Equation (8) in [14].

Example 11.

∫ ∞

0

∫ ∞

0

√
xe−5t2−5x3

log2
(
− t2

x3

)
log
(

log
(
− t2

x3

))
dxdt =

7πζ(3)
15

(22)

Proof. Use Equation (8) and take the first partial derivative with respect to k and set
m = 1/2, k = 2, b = d = 5, a = −1, c = 2, e = 3 and simplify using Equation (9) in [14].
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Example 12.

∫ ∞

0

∫ ∞

0

√
te−t3−x2√
log
(

it3

x2

)dxdt =
1
6
(−1)3/4√π

(
ζ

(
1
2

,
7
8

)
− ζ

(
1
2

,
3
8

))
(23)

Proof. Use Equation (8) and set m = 1/2, k = −1/2, b = 1, a = i, c = 3, d = 1, e = 2 and
simplify using entry (4) in the table below (64:12:7) in [12].

Example 13.∫ ∞
0

∫ ∞
0

√
te−x2+(−1−i)t3

log
i
2

(
it3

x2

)
dxdt

= 1
3 (−1)

7
8+

i
4 2−

1
4+iπ1+ i

2

(
ζ
(
− i

2 , 13
16 +

i log(2)
8π

)
− ζ
(
− i

2 , 5
16 +

i log(2)
8π

)) (24)

Proof. Use Equation (8) and set m = 1/2, k = −i/2, b = 1 + i, a = i, c = 3, d = 1, e = 2
and simplify using entry (4) in the table below (64:12:7) in [12].

Example 14.

∫ ∞

0

∫ ∞

0

te−t3−x2

3
√

x log
(

it3

x2

)dxdt = −2
9

(
−1

2
+

i
√

3
2

)
2F1

(
3
4

, 1;
7
4

;−1
2
− i
√

3
2

)
(25)

Proof. Use Equation (8) and set m = 2/3, k = −1, b = 1, a = i, c = 3, d = 1, e = 2 and
simplify using Equation (9.559) in [8].

Example 15. ∫ ∞
0

∫ ∞
0 t3m−1x1−2me−d(t3+x2) logk

(
− t3

x2

)
dxdt =

− i(2i)kπk+1e−iπmLi−k(e2imπ)
3d

(26)

Proof. Use Equation (8) and set b = d, a = −1, c = 3, e = 2 and simplify using Equation
(25.14.3) in [9].

Example 16.

∫ ∞

0

∫ ∞

0

√
te−d(t3+x2) logk

(
− t3

x2

)
dxdt = −

(2i)k
(

2k+1 − 1
)

πk+1ζ(−k)

3d
(27)

Proof. Use Equation (26) and set m = 1/2 and simplify using

Example 17. ∫ ∞

0

∫ ∞

0

√
te−t3−x2

(
π2 − 3 log2

(
t3

x2

))
(

log2
(

t3

x2

)
+ π2

)3 dxdt =
ζ(3)
32π3 (28)

and ∫ ∞

0

∫ ∞

0

√
te−t3−x2

log
(

t3

x2

)(
log2

(
t3

x2

)
− 3π2

)
(

log2
(

t3

x2

)
+ π2

)3 dxdt = 0 (29)

Proof. Use Equation (27) and set k = −3, d = 1, rationalize the denominator and compare
real and imaginary parts and simplify.
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Example 18.

∫ ∞

0

∫ ∞

0

√
te−t3−x2

(
5 log4

(
t3

x2

)
− 10π2 log2

(
t3

x2

)
+ π4

)
(

log2
(

t3

x2

)
+ π2

)5 dxdt =
5ζ(5)
512π5 (30)

and ∫ ∞

0

∫ ∞

0

√
te−t3−x2

log
(

t3

x2

)(
log4

(
t3

x2

)
− 10π2 log2

(
t3

x2

)
+ 5π4

)
(

log2
(

t3

x2

)
+ π2

)5 dxdt = 0 (31)

Proof. Use Equation (27) and set k = −5, d = 1, rationalize the denominator and compare
real and imaginary parts and simplify.

Example 19.

∫ ∞

0

∫ ∞

0

√
te−t3−x2

√
log
(
− t3

x2

)
dxdt =

(
1

12
+

i
12

)(
2
√

2− 1
)√

πζ

(
3
2

)
(32)

Proof. Use Equation (27) and set k = 1/2, d = 1 and simplify.

Example 20.

∫ ∞
0

∫ ∞
0

√
te−t3−x2

log
(

log
(
− t3

x2

))
log
(
− t3

x2

) dxdt =

1
12 (π log(2) + i(γ log(4)− log(2)(log(8) + 2 log(π))))

(33)

Proof. Use Equation (27) to take the first partial derivative with respect to k and apply
l’Hopital’s rule as k→ −1 and simplify using Equation (37) in [16].

7. Discussion

In this work, we derived a double integral in terms of the Hurwitz–Lerch zeta function.
We then used this integral to derive special cases in terms of other special functions and
fundamental constants. We were also able to derive double integral representations for
geometric constants [15] and double integrals associated with with generalized hyperter-
minants in [6]. We will be using our method to derive more double integrals in terms of
special functions. We checked our results numerically using Mathematica by Wolfram.
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