The Hamstring/Quadriceps Ratio in Young Men and Its Relationship with the Functional Symmetry of the Lower Limb in Young Men
Abstract
:1. Introduction
2. Subjects and Methods
Statistical Method
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Golik-Peric, D.; Drapsin, M.; Obradovic, B.; Drid, P. Short-term isokinetic training versus isotonic training: Effects on asymmetry in strength of thigh muscles. J. Hum. Kinet. 2011, 30, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Baratta, R.; Solomonow, M.; Zhou, B.H.; Letson, D.; Chuinard, R.; D’Ambrosia, R. Muscular coactivation. Am. J. Sports Med. 1988, 16, 113–122. [Google Scholar] [CrossRef]
- Impellizzeri, F.M.; Rampinini, E.; Maffiuletti, N.; Marcora, S.M. A vertical jump force test for assessing bilateral strength asymmetry in athletes. Med. Sci. Sports Exerc. 2007, 39, 2044–2050. [Google Scholar] [CrossRef] [Green Version]
- Drid, P.; Drapsin, M.; Trivic, T.; Lukač, D.; Obadov, S.; Milosevic, Z. Asymmetry of muscle strength in elite athletes. Biomed. Hum. Kinet. 2009, 1, 3–5. [Google Scholar] [CrossRef]
- Makaruk, H.; Makaruk, B.; Sacewicz, T. Hamstring strength and flexibility asymmetry. Pol. J. Sport Tour. 2010, 17, 153–156. [Google Scholar]
- Rosene, J.M.; Fogarty, T.D.; Mahaffey, B.L. Isokinetic hamstrings: Quadriceps ratios in intercollegiate athletes. J. Athl. Train. 2001, 36, 378–383. [Google Scholar]
- Bennell, K.; Wajswelner, H.; Lew, P.; Schall-Riaucour, A.; Leslie, S.; Plant, D.; Cirone, J. Isokinetic strength testing does not predict hamstring injury in Australian rules footballers. Br. J. Sports Med. 1998, 32, 309–314. [Google Scholar] [CrossRef]
- Steindler, A. Kinesiology of the Human Body under Normal and Pathological Conditions; Charles C Thomas: Springfield, IL, USA, 1955. [Google Scholar]
- Nosse, L.J. Assessment of Selected Reports on the Strength Relationship of the Knee Musculature. J. Orthop. Sports Phys. Ther. 1982, 4, 78–85. [Google Scholar] [CrossRef] [Green Version]
- Kannus, P. Isokinetic Evaluation of Muscular Performance. Endoscopy 1994, 15, S11–S18. [Google Scholar] [CrossRef]
- Heiser, T.M.; Weber, J.; Sullivan, G.; Clare, P.; Jacobs, R.R. Prophylaxis and management of hamstring muscle injuries in intercollegiate football players. Am. J. Sports Med. 1984, 12, 368–370. [Google Scholar] [CrossRef] [PubMed]
- Knapik, J.J.; Bauman, C.L.; Jones, B.H.; Harris, J.M.; Vaughan, L. Preseason strength and flexibility imbalances associated with athletic injuries in female collegiate athletes. Am. J. Sports Med. 1991, 19, 76–81. [Google Scholar] [CrossRef]
- Nadler, S.F.; Malanga, G.A.; Feinberg, J.H.; Prybicien, M.; Stitik, T.P.; DePrince, M. Relationship between hip muscle imbalance and occurrence of low back pain in collegiate athletes. Am. J. Phys. Med. Rehabil. 2001, 80, 572–577. [Google Scholar] [CrossRef]
- Beukeboom, C.; Birmingham, T.B.; Forwell, L.; Ohrling, D. Asymmetrical strength changes and injuries in athletes training on a small radius curve indoor track. Clin. J. Sport Med. 2000, 10, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Jordan, M.J.; Aagaard, P.; Herzog, W. Lower limb asymmetry in mechanical muscle function: A comparison between ski racers with and without ACL reconstruction. Scand. J. Med. Sci. Sports 2014, 25, e301–e309. [Google Scholar] [CrossRef]
- LoTurco, I.; Pereira, L.A.; Kobal, R.; Abad, C.C.C.; Rosseti, M.; Carpes, F.; Bishop, C. Do asymmetry scores influence speed and power performance in elite female soccer players? Biol. Sport 2019, 36, 209–216. [Google Scholar] [CrossRef]
- Tabor, P.; Mastalerz, A.; Iwańska, D.; Grabowska, O. Asymmetry Indices in female runners as predictors of running velocity. Pol. J. Sport Tour. 2019, 26, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sannicandro, I.; Rosa, R.; De Pascalis, S.; Piccinno, A. The determination of functional asymmetries in the lower limbs of young soccer players using the countermovement jump. The lower limbs asymmetry of young soccer players. Sci. Sports 2012, 27, 375–377. [Google Scholar] [CrossRef]
- Bishop, C.; Turner, A.; Read, P. Effects of inter-limb asymmetries on physical and sports performance: A systematic review. J. Sports Sci. 2017, 36, 1135–1144. [Google Scholar] [CrossRef]
- Bailey, C.; Sato, K.; Alexander, R.; Chiang, C.-Y.; Stone, M.H. Isometric force production symmetry and jumping performance in collegiate athletes. J. Trainol. 2013, 2, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Yoshioka, S.; Nagano, A.; Hay, D.C.; Fukashiro, S. The effect of bilateral asymmetry of muscle strength on the height of a squat jump: A computer simulation study. J. Sports Sci. 2011, 29, 867–877. [Google Scholar] [CrossRef]
- Bell, D.R.; Sanfilippo, J.L.; Binkley, N.; Heiderscheit, B.C. Lean mass asymmetry influences force and power asymmetry during jumping in collegiate athletes. J. Strength Cond. Res. 2014, 28, 884–891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, C.; Sato, K.; Burnett, A.; Stone, M.H. Force-production asymmetry in male and female athletes of differing strength levels. Int. J. Sports Physiol. Perform. 2015, 10, 504–508. [Google Scholar] [CrossRef]
- Lockie, R.G.; Callaghan, S.J.; Berry, S.P.; Cooke, E.R.A.; Jordan, C.A.; Luczo, T.M.; Jeffriess, M.D. Relationship between unilateral jumping ability and asymmetry on multidirectional speed in team-sport athletes. J. Strength Cond. Res. 2014, 28, 3557–3566. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, J.R.; Ratamess, N.A.; Klatt, M.; Faigenbaum, A.D.; Kang, J. Do bilateral power deficits influence direction-specific movement patterns? Res. Sports Med. 2007, 15, 125–132. [Google Scholar] [CrossRef]
- Moran, K.A.; Wallace, E. Eccentric loading and range of knee joint motion effects on performance enhancement in vertical jumping. Hum. Mov. Sci. 2007, 26, 824–840. [Google Scholar] [CrossRef]
- Maloney, S.J.; Richards, J.; Nixon, D.G.D.; Harvey, L.J.; Fletcher, I.M. Vertical stiffness asymmetries during drop jumping are related to ankle stiffness asymmetries. Scand. J. Med. Sci. Sports 2016, 27, 661–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Todorov, E. Optimality principles in sensorimotor control. Nat. Neurosci. 2004, 7, 907–915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, R.A. A schema theory of discrete motor skill learning. Psychol. Rev. 1975, 82, 225–260. [Google Scholar] [CrossRef]
- Dounskaia, N. Control of human limb movements: The leading joint hypothesis and its practical applications. Exerc. Sport Sci. Rev. 2010, 38, 201–208. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, K.R.; Miller, L.S.; Sutherland, D.H. Gait asymmetry in patients with limb-length inequality. J. Pediatr. Orthop. 1996, 16, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Herzog, W.; Nigg, B.M.; Read, L.J.; Olsson, E. Asymmetries in ground reaction force patterns in normal human gait. Med. Sci. Sports Exerc. 1989, 21, 110–114. [Google Scholar] [CrossRef]
- Gajewski, J.; Michalski, R.; Buśko, K.; Mazur-Różycka, J.; Staniak, Z. Countermovement depth—A variable which clarifies the relationship between the maximum power output and height of a vertical jump. Acta Bioeng. Biomech. 2018, 20, 127–134. [Google Scholar] [CrossRef]
- Nigg, S.; Vienneau, J.; Maurer-Grubinger, C.; Nigg, B.M. Development of a symmetry index using discrete variables. Gait Posture 2013, 38, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Tabor, P.; Iwańska, D.; Grabowska, O.; Karczewska-Lindinger, M.; Popieluch, A.; Mastalerz, A. Evaluation of selected indices of gait asymmetry for the assessment of running asymmetry. Gait Posture 2021, 86, 1–6. [Google Scholar] [CrossRef]
- Chan, K.M.; Maffulli, N.; Korkia, P.; Li, C.T. Principles and Practice of Isokinetics in Sports Medicine and Rehabilitation; Williams & Wilkins: Hong Kong, China, 1996; pp. 117–122. ISBN 9623560168. [Google Scholar]
- Sato, K.; Heise, G.D. Influence of weight distribution asymmetry on the biomechanics of a barbell back squat. J. Strength Cond. Res. 2012, 26, 342–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mertz, K.H.; Reitelseder, S.; Jensen, M.; Lindberg, J.; Hjulmand, M.; Schucany, A.; Andersen, S.B.; Bechshoeft, R.L.; Jakobsen, M.D.; Bieler, T.; et al. Influence of between-limb asymmetry in muscle mass, strength, and power on functional capacity in healthy older adults. Scand. J. Med. Sci. Sports 2019, 29, 1901–1908. [Google Scholar] [CrossRef] [PubMed]
- LaRoche, D.P.; Villa, M.R.; Bond, C.W.; Cook, S.B. Knee extensor power asymmetry is unrelated to functional mobility of older adults. Exp. Gerontol. 2017, 98, 54–61. [Google Scholar] [CrossRef]
Parameter | Left | Right | F; p |
---|---|---|---|
VGRFmax [N] | 832 ± 174.6 | 822 ± 168.8 | F = 0.111; p = 0.739 |
SI VGRFmax [%] | 10 ± 7.5 | ||
Iver [Ns] | 433 ± 70.7 | 430 ± 65.2 | F = 0.032; p = 0.858 |
SIR(t) [%] | 5 ± 2.3 | ||
Text [Nm] | 246 ± 52.4 | 248 ± 55.0 | F = 0.033; p = 0.856 |
SIext [%] | 9 ± 9.7 | ||
Tflex [Nm] | 132 ± 37.7 | 128 ± 34.3 | F = 0.405; p = 0.529 |
SIflex [%] | 11 ± 8.5 | ||
H/Q ratio [%] | 47 ± 14.7 | 46 ± 14.6 | F = 0.187; p = 0.666 |
RoMpas [°] | 156 ± 11.6 | 157 ± 10.7 | F = 0.20; p = 0.658 |
SIpas [%] | 2 ± 2.6 | ||
RoMact [°] | 118 ± 15.0 | 121 ± 9.7 | F = 1.33; p = 0.251 |
SIact [%] | 6 ± 7.2 | ||
DIFpas-act [°] | 38 ± 24.4 | 36 ± 16.7 | F = 0.209; p = 0.648 |
SIDIF [%] | 20 ± 13.2 |
Parameter | D. L-R Iver | D. L-R Text | D. L-R Tflex | D. L-R RoMpas | D. L-R RoMact |
---|---|---|---|---|---|
D. L-R VGRFmax | 0.531 p = 0.000 | −0.02 | 0.12 | −0.21 | −0.09 |
D. L-R Iver | −0.05 | 0.002 | −0.13 | −0.23 p = 0.072 | |
D. L-R Text | 0.10 | 0.0001 | 0.12 | ||
D. L-R Tflex | −0.09 | −0.04 | |||
D. L-R RoMpas | −0.31 p = 0.013 |
Parameters | Clusters | ||
---|---|---|---|
1 (n = 6) | 3 (n = 24) | 4 (n = 27) | |
Body height | 188.5 ± 6.72 | 182.9 ± 4.51 | 180.5 ± 4.89 |
BMI | 23.4 ± 2.56 | 24.3 ± 2.60 | 23.6 ± 2.95 |
hmax [m] | 0.42 ± 0.043 | 0.43 ± 0.052 | 0.44 ± 0.053 |
hmin [m] | 0.38 ± 0.064 | 0.40 ± 0.068 | 0.39 ± 0.082 |
Pmax [W/kg] | 31.4 ± 5.13 | 30.4 ± 5.60 | 31.1 ± 4.84 |
Pav [W/kg] | 7.4 ± 1.48 | 6.6 ± 1.57 | 6.2 ± 1.98 |
VGRFmax [N] | 1788 ± 254.4 | 1686 ± 314.2 | 1624 ± 362.3 |
SI VGRFmax [%] | 3 ± 18.7 | 1 ± 13.6 | 1 ± 10.3 |
Iver [Ns] | 878 ± 131.3 | 878 ± 156.6 | 854 ± 109.6 |
SIR(t) [%] | 7 ± 3.1 | 6 ± 2.3 | 4 ± 1.8 |
Ifront [Ns] | −14.4 ± 14.21 | −7.3 ± 14.70 | −2.5 ± 10.49 |
Text left [Nm] | 210 ± 48.4 | 247 ± 45.2 | 253 ± 57.1 |
Text right [Nm | 218 ± 54.2 | 255.3 ± 47.7 | 254.8 ± 59.7 |
SIext [%] | −4 ± 10.0 | −3 ± 10.4 | −0.3 ± 9.9 |
Tflex left [Nm] | 187 ± 38.9 | 136 ± 22.8 | 107 ± 22.6 |
Tflex right [Nm] | 188 ± 51.0 | 140 ± 28.2 | 111 ± 27.7 |
SIflex [%] | 0.2 ± 12.3 | −2 ± 13.3 | −3 ± 13.7 |
RoMpas left [°] | 155 ± 5.3 | 157 ± 12.5 | 155 ± 11.1 |
RoMpas right [°] | 156 ± 5.3 | 157 ± 11.0 | 156 ± 11.1 |
SIpas [%] | −0.5 ± 0.5 | −0.5 ± 4.2 | −0.5 ± 2.7 |
RoMact left [°] | 125 ± 7.6 | 117.7 ± 16.1 | 118 ± 14.5 |
RoMact right [°] | 126 ± 4.4 | 122 ± 9.9 | 119 ± 10.2 |
SIact [%] | −0.9 ± 4.1 | −4 ± 9.1 | −1.19.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tabor, P.; Iwańska, D.; Mazurkiewicz, A.; Urbanik, C.; Mastalerz, A. The Hamstring/Quadriceps Ratio in Young Men and Its Relationship with the Functional Symmetry of the Lower Limb in Young Men. Symmetry 2021, 13, 2033. https://doi.org/10.3390/sym13112033
Tabor P, Iwańska D, Mazurkiewicz A, Urbanik C, Mastalerz A. The Hamstring/Quadriceps Ratio in Young Men and Its Relationship with the Functional Symmetry of the Lower Limb in Young Men. Symmetry. 2021; 13(11):2033. https://doi.org/10.3390/sym13112033
Chicago/Turabian StyleTabor, Piotr, Dagmara Iwańska, Anna Mazurkiewicz, Czesław Urbanik, and Andrzej Mastalerz. 2021. "The Hamstring/Quadriceps Ratio in Young Men and Its Relationship with the Functional Symmetry of the Lower Limb in Young Men" Symmetry 13, no. 11: 2033. https://doi.org/10.3390/sym13112033
APA StyleTabor, P., Iwańska, D., Mazurkiewicz, A., Urbanik, C., & Mastalerz, A. (2021). The Hamstring/Quadriceps Ratio in Young Men and Its Relationship with the Functional Symmetry of the Lower Limb in Young Men. Symmetry, 13(11), 2033. https://doi.org/10.3390/sym13112033