symmetry

Article

Initial Coefficient Estimates and Fekete-Szeg6 Inequalities for
New Families of Bi-Univalent Functions Governed by
(p — q)-Wanas Operator

Abbas Kareem Wanas 1t

check for

updates
Citation: Wanas, A K,; Cotirlg, L.-I.
Initial Coefficient Estimates and
Fekete-Szego Inequalities for New
Families of Bi-Univalent Functions
Governed by (p — g)-Wanas Operator.
Symmetry 2021, 13,2118. https://
doi.org/10.3390/sym13112118

Academic Editor: Alina Alb Lupas

Received: 1 October 2021
Accepted: 1 November 2021
Published: 8 November 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Luminita-Ioana Cotirla

2,%,1

1 Department of Mathematics, College of Science, University of Al-Qadisiyah, Al-Qadisiyah 58001, Irag;
abbas. kareem.w@qu.edu.iq

Department of Mathematics, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania

*  Correspondence: luminita.cotirla@math.utcluj.ro or luminita.cotirla@yahoo.com

t These authors contributed equally to this work.

Abstract: The motivation of the present article is to define the (p — q)-Wanas operator in geometric
function theory by the symmetric nature of quantum calculus. We also initiate and explore certain new
families of holormorphic and bi-univalent functions Ag (A, 0,d,s,t, p,q; ¢) and Sg(u,y,0,9,s,t,p,q; 9)
which are defined in the unit disk U associated with the (p — q)-Wanas operator. The upper bounds
for the initial Taylor-Maclaurin coefficients and Fekete-Szego-type inequalities for the functions in
these families are obtained. Furthermore, several consequences of our results are pointed out based
on the various special choices of the involved parameters.

Keywords: holormorphic function; bi-univalent function; upper bounds; Fekete-Szego functional;
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1. Introduction

Indicate by A the family of all holomorphicfunctions of the form

fl2)=z+ ) b2 (1)
k=2
in the open unitdisk U = {z € C : |z| < 1}.
We also denote by T the subfamily of A consisting of functions which are also univa-
lent in U.
The famous Koebe one-quarter theorem [1] ensures that the image of U under each

univalent function f € A contains a disk of radius ;. Furthermore, each function f € T
has an inverse f~! defined by f~!(f(z)) = z and

f ) =, (ol < rolf)mo(H) = )
where
g(w) = fF Y (w) = w — byw?* + (2b3 — b3)w> — (565 — 5bobs + by)w* + - - -

A function f € A is named bi-univalent in U if both f and f~! are univalent in U.
The family of all bi-univalent functions in U is denoted by E.
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From the work of Srivastava et al. [2], we choose to recall the following examples of
functions in the family E:

z 1 14z
T—5 —log(1l—z) and Zlog(lz>.

In fact, Srivastava et al. [2] have actually revived the study of analytic and bi-univalent
functions in the recent years. This was followed by works such as those by Frasin and
Aouf [3], Ali et al. [4], Bulut et al. [5], Srivastava and et al. [6] and others (see, for
example, [7-15]).

We notice that the family E is not empty. However, the Koebe function is not a member
of E.

The problem to obtain the general coefficient bounds on the Taylor-Maclaurin coeffi-
cients

by  (neEN; n>3)

for functions f € E is still not completely addressed for many of the subfamilies of E.
The origin of the Fekete-Szegd functional |bs — nb%‘ for f € T was in the disproof [16] by
Fekete and Szego of the Littlewood-Paley conjecture that the coefficients of odd univalent
functions are bounded by unity. Researchers in the Theory of Geometric Function have
recently obtained remarkable results on this topic (see, for example, [17-21]).

With a view to recalling the principle of subordination between holomorphic functions,
let the functions f and g be holomorphic in U. The function f is subordinate to g, if there
exists a Schwarz function w, which is analytic in U with

w(0)=0 and lw(z)] <1 (zel),

such that

The subordination is denoted by

f=<g or  f(z) <g(z) (zel).

It is well known that (see [22]), if the function g is univalent in U, then

f=<g (zel) < f(0)=g(0) and f(U) < g(l).

For 0 < g < p <1, the (p,q)-derivative operator or (p, q)-difference operator for a
function f is defined by
z) — f(gz .
Dpaf(e) = LD ZLEL G cur—u o, @

and
Dypqf(0) = f(0).

For more details on the concepts of (p, g)-calculus see [20,23-27].
For function f € A, we deduce that

Dpqf(z) =1+ Z [k}p,qbkzk_l/ 3)
k=2
where the (p, g)-bracket number or twin-basic [k], 4 is given by

k _ .k
[klpq = % =P ey g TP P (0 £ 0),
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which is a natural generalization of the g-number, that is, we have (see [28-30])

. 1—gq
1 kl,s = k|, = .
pi}r{LHp,q [ ]q 1-¢

It is clear that the notation [k], 4 is symmetric, that is,

[k] pqg = [k} q,p-

In 2019, Wanas [31] introduced the following operator, which can also be called Wanas
operator Wy, 2. A — A defined by
6
i T+l T+ kt*
— ST+ 17

wheres € R, t € Rj withs+t>0,k—1,0 € Nand 6 € N.
Now, for f € A, we define the (p — q)-difference Wanas operator as given below

Wotyof (2) = f(2)
Wot paf (2) = 2Wp e f(2)
W&;f,p,,,ﬂz) = 2Wp (Wi f(2))

W‘T‘S —Z+i

bz, 4)

where

P
Wp,qf —Z—FE p—q

k o—1
I/V(S1 —Z+Z< q) kak,

Hiles0) = 1 (7) (076 k0, s = 1 (7)0ms e,

=1\T AN

seRteRf withs+t>0k—-1,0eN,6eNy,0<g<p<landzelU.

Remark 1. The operator W, f g is a generalization of several known operators studied in earlier
investigations which are being recalled below.

1. Forp=c=t=16=—v,R(v) > 1lands € C\ Z, the operator Ws‘fqu reduces to the
q-Srivastava—Attiya operator J5 s [32];

2. Forp=oc=t=10= —1ands > —1, the operator Wsafp g Teduces to the q-Bernardi
operator [33];

3. Forp=0=s=1t=1and § = —1, the operator Wstpq
operator [33];

Fors =0and p = o =t =1, the operator Wsafp g reduces to the q-Saliagean operator [34];

Forq — 17 and p = o = 1, the operator Ws;pq
introduced and studied by Swamy [35];

6. Forgq—1,p=c=t=16=—v,R(v)>1lands € C\Z;, theoperatorwg;pq
reduces to the operator J! that was investigated by Srivastava and Attiya [36]. The operator
J¢ is now popularly known in the literature as the Srivastava—Attiya operator;

7. Forq— 1" ,p=0c=t=1lands > —1, the operator W'}, reduces to the operator I¢

s, t P4
that was investigated by Cho and Srivastava [37];

reduces to the q-Libera

reduces to the operator If, ; that was
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8. Forq—17,p=0=s=t=1,the operator Wg;fsp,q reduces to the operator I° that was
considered by Uralegaddi and Somanatha [38];

9. Forq —1",p=0c=s=t=1,0= —¢and { > 0, the operator W;T,Zt,sp,q reduces to

the operator 1¢ that was introduced by Jung et al. [39]. The operator I¢ is the Jung—Kim—
Srivastava integral operator;

10. Forq — 1", p=0c=t=1,0= —1ands > —1, the operator Wg;"sp’q reduces to the
Bernardi operator [40];

11. Forq — 17,5 =0,p =0 =1t = 1and 6 = —1, the operator ngp,q reduces to the
Alexander operator [41];

12. Forq—1",p=0=15s=1—tandt > 0, the operator Ws‘j,{‘,ép,q reduces to the operator
D? that was given by Al-Oboudi [42];

13. Forqg—1",p=0=1,5s =0andt =1, the operator ngp/q reduces to the operator S°
that was considered by Saldgean [43].

We shall need the following Lemma in our investigation.
Lemma 1 ([44], p. 41 and [45], p. 41). Let the function x € P be given by the following series:
x(z) =1+xz+ 022+ (zel).

The sharp estimate given by
x| =2 (n €N)

holds true.

2. A Set of Main Results
Indicate by ¢(z) the holomorphic function with positive real part in U such that

8(0)=1, ¢(0)>0
and #(U) is symmetric with respect to the real axis, which is of the type:
8(z) =1+ Biz+ Boz? + B3z® + - - (5)

where By > 0.
Using the (p — q)-Wanas operator, we now provide the following subfamilies of
holomorphic and bi-univalent functions.

Definition 1. For 0 =< A < 1, a function f € E is said to be in the family Ag(A,0,5,s,t,p,q;9)
if it fulfills the subordinations:

) ! 0,0 "
(1 _ )\) z (Ws,t,p,qf(z)) i Al 4 z (Ws,t,p,qf(z)) < 19(2)
0,0 R !
Ws,t,p,qf(z) (ngp,qf(z))
and ) Y
7,0 7,0
(1 _ )L) w(ws,t,p,qg(w>) i Al i w(ws, ,p,qg(w>) < ﬂ(w)
W, a8 (w) o0 ' '
s,t,p,q WS,t,p,qg(w)
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Definition 2. For y =2 1 and v 2 0, a function f € E is said to be in the family
Se(p,v,0,6,s,t,p,q;9) if it fulfills the subordinations:

,0
Wgt,p,qf(z)
z

(1-p) (W, f@) +r2(WEE, £ ()" < 8(2)

and
+ 1 (WE g8 (w )), +w (Wéffp,qg(W))” < 8(w),
where g(w) = f~1(w).

In particular, if we choose

ﬁ(z):<1i—§> (0<a<1) and 19(2):#__22‘8) (0=p<1),

the family Ag(A,0,9,s,t,p,q;9) reduces to the families Hg(A,0,6,s,t,p,q;0) and
Hg(A,0,6,s,t,p,q; B) which are families of the functions f € E satisfying

o ! 1
2(Woipf (2) 2(Wiiopaf (2)
arg<(1_A)(,;,p,q)H 1+M >‘<"‘”

Windl (Wt o)) 2
arg(“‘” (W) ) (st )‘ <
W. tpqg( w) ( tpqg )
and
%<(1—A)W+A 1+Z( Shpaf 2 ), )
il (Wethat )
§R<(l_)\) huste )),H\ 1+w(wgfmg(w)>,ﬂ ) > B,
thqg( ) (Wgtpqg( ))
respectively.

In addition, the family Sg(p, v, 0,9,s,t, p,q; 9) reduces to the families Te (i, 7, 0,9, s,
t,p,q;«) and Tg(u,y,0,90,s,t, p,q; B) which are families of the functions f € E satisfying

7,0 2
arg<(1ﬂ)W+u(wgfpqu(z)) +yz< tqu( )) )‘ %

<1x7r
2

arg(a— >W”’f() + (W, g8 >)’+vw(w;',fp,qg<w>)”)

and
Wg"s (2) / "
%<<1V>W+y(w;zfp,qf<z>) +92(WiE,0f (2)) ) > B,

%((1 —u>wg”’;g() + (W, g8 >)’+vw(w;i;fp,qg<w>)"> >,

respectively.
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Remark 2. The families Ap(A,0,0,s,t,p,q;0) and Sg(u,y,0,6,s,t,p,q; ®) are a generalization
of several known families studied in earlier investigations which are being recalled below.

1. Ford =0and 9(z) = M +1—a,reR, ab, pyand qq are real constants, the

1-pirz—q12z
family Ap(A,0,9,s,t,p,q;0) reduces to the family Mg (A, r) which was studied by Abirami
etal [1];
2. Foré=0,A=1and ®(z) = % +1—a,r €R,a,b,p; and qq are real constants,

the family Ap(A,0,6,s,t,p,q;0) reduces to the family ICg(r) which was introduced by
Abirami et al. [1];

3. Foréd=vy=0pu=1and¥(z) = (”Z) 0 < wa =1, the family Sg(u,7,0,6,s,t,p,4;9)
reduces to the family Hg(«) which was investigated by Srivastava et al. [2];

4. Ford=vy=0,pu=1and 0(z) = H(ll%zﬁ)z, 0 = B < 1, the family Sg(u,v,0,9,s,t,p,

z

q; ®) reduces to the family Hg(pB) which was defined by Srivastava et al. [2].

5. Foré=y=0andd(z) = (H'Z) 0 < a £ 1, the family Sg(u,y,0,6,s,t,q;9) reduces
to the family B («, u) which was considered by Frasin and Aouf [3];

6. Ford = =0andd(z) = %, 0 < B < 1, the family Sg(p,v,0,6,s,t,p,;9)
reduces to the family Bg (B, i) which was studied by Frasin and Aouf [3];

7. Foré = 0, the family Ap(A,0,9,s,t,p,q;9) reduces to the family Mg(A; ®) which was
introduced by Ali et al. [4];

8. Ford=A=0and9(z) = m, t € (,1), the family Ag(A,0,6,s,t, p,q; ) reduces
to the family S (t) which was introduced by Bulut et al. [5];

9. Foré=A=0andd(z) = % +1—a,r €R, a,b,pyand gy are real constants, the
family Ap(A,0,6,s,t,p,q;0) reduces to the family We (r) which was defined by Srivastava
etal. [10];

10.  Foré = 0and 9(z) = (H'Z) 0 <wa £1, the family Ap(A,0,6,s,t, p,q; ) reduces to the
family Mg («, A) which was considered by Liu and Wang [46];

11. Foré =0and 8(z) = %, 0 < B < 1, the family Ag(A,0,6,s,t,p,q;0) reduces to
the family Mg (A) which was studied by Liu and Wang [46];

12. Foré = A =0and 9(z) = (1+Z) 0 < a £ 1, the family Ag(A,0,9,s,t,p,q; ) reduces
to the family Sy (a) which was considered by Brannan and Taha [47];

13. Foré = A = 0and 8(z) = M 0 = B < 1, the family Ag(A,0,9,s,t,p,q;09)
reduces to the family St ( ﬁ) which was mvestzgated by Brannan and Taha [47];

14. Foré = 0and 9(z) = m, te (\[ 1], the family Ap(A,0,9,s,t, p,q;9) reduces to
the family Hg (A, t) which was studied by Altinkaya and Yalgin [48];

15. Ford =0,y = land 9(z) = (”Z) 0 < a =1, the family Sg(u,v,0,0,s,t,p,q;9)
reduces to the family Hg(a, ) which was considered by Frasin [49];

16. Ford =0, = 1land 8(z) = %, 0 = B < 1, the family Sg(p,7y,0,6,s,t,p,4; )
reduces to the family Hg (v, B) which was studied by Frasin [49];

17. Foré = 0and 9(z) = M ,0 £ B < 1, the family Sg(u,7y,0,9,s,t,p,q;9) reduces
to the family Ng(B, u, ) whlch was defined by Bulut [50];

Theorem 1. Let f given by (1) be in the family Ag(A,c,6,s,t,p,q;0). Then,

5
|ba] = min{ Bif%1(05,t)]pq

(A +D[¥2(0,5,1)]5,

3
[¥1(o,s, t)]‘;,,fo

\/‘ZB%(ZA +1)[¥1(0,5, D14 [¥3(0,5, D30 + [¥a(o, 5,01, (A +1)%(By — By) — (31 +1)B}) \ }
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and
B [‘Yl ((7', s, t)](;lli B, [lljl (0" 5 t”%&q
‘b3‘ g min z 3 5 ,‘5 25 7
224+ 1)[¥3(0,s,0)]5,  2QA+ DA+ 15[¥1(0,5,1)]04[¥3(0,s,D)]5  — (BA +1)[Fa(o,s, )2,

Bi[¥1(0,s, )5, B2[¥1(0,s,1)55, }
220+ D[¥s(0,s, D0 (A+1)7[¥a(0,s,1)]%,

where the coefficients By and B, are defined as in (5).

Proof. Let f € Ap(A,0,0,s,t,p,q;8)and g = f ~1 Then, there are holomorphic functions
S,T:U — Uwith 5(0) = T(0) = 0, which fulfill the following conditions:

5 ! 5 "
2(WH,0f(2) 2(WEH,af(2))
(1-A) =T +A T+ ————7 =10(5(z)), zelU (6)
Ws,t,p,qf(z) (Wg;,p’qf(z»
and
/ 1
w (W, 8 (w) w (W, 8(w)
(1-A) ( o ) +Al14 ( 5’5”’” ), —9(T(w)), wel. (7)
Wpa8 (1) (Wg;f,p,qg (w))
Define the functions x and y by
_1+S5(z) 5
x(z) = 1=5() 1+ x1z + x02° +
and 4 T()
_ 1z 24 ...
y(z)—l_T(z)—l—i—ylz—i-yzz 4o

Then, x and y are analytic in U with x(0) = y(0) = 1. Since we have S, T : U — U, each
of the functions x and y has a positive real part in U.
Solving for S(z) and T(z), we have

_ i 2
S(z)—m—; xlz+<x2—le>zz +--- (zel) 8)

and _ )
T(z):m:;_ylz—i—(yz—yzl)zz +--- (zel). )

By substituting (8) and (9) into (6) and (7) and applying (5), we obtain

5 / 5 "
z (Wgt,p,qf(z)) z (Wgt(,)p,qf(z))
Weipaf (@) (Wg;f,p,qf (Z)>
o fx(z)—-1\ 1 1 x2 1. 5l
= ﬁ(}(f(z)—i—l) =1+ §B1X1Z + §Bl <x2 7 + ZBle z°+ (10)
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and
o !/ "
" A)w(w;',;i’,,,qgw)) ) Hw(w;',zfp,qgw))
- ,0 /
Ws,t,p,qg(w) (Ws‘fg,&p,qg(w))
(v =1y 1 1 R DR Y ES
Equating the coefficients in (10) and (11), yields
A+1)[¥a(o,s,1)]5
( ¥ 5 ﬂmbz = %leh (12)
[¥1(0,s,1)] o4
e ) T T FL R
[Y1(o,s,1)]9,4 [¥1(o,s,1)]2% 2 2 4
(/\—Fl)[‘i"z(a,s,t)]‘;q 1
- ~by = 5Biy1 (14)
[¥1(0,s, t)}‘;,,q 2o

and

222+ 1)[¥3(o, s, t)
[Y1(o,s, t”g,q

5 26 2
From (12) and (14), we have
X1 = —Y1 (16)
and
2(A+1)[¥2 (0, s,t)]f,‘fq , 1
[¥1(0,s,1)]%, 274

If we add (13) to (15), we obtain

B?(x1 + y}). (17)

4021 +1)[¥3(o,s,1)15, 2 2(3A +1)[¥a(o, s, 1)]%, .
[Tl (‘7/ 5, t)}?),q [Tl (‘Tr 5 t)]%(,sq

X2 12
x2+y2_< 12]/1>

Substituting the value of x + y2 from (17) in the right-hand side of (18), we deduce that

1
+ 2Bt +yi] (18)

1
:—B
1 4

2

i B0, O3 (52 + v2) a9

 42B2 A+ 1) (¥ (0,5, D)3, [¥3 (0,5, 1)]3,, + [Fa(os, 2 ((/\ +1)%(By — By) — (BA + 1)3{)]

Applying Lemma 1 for the coefficients x1, x2, y1,y2 in (17) and (19), we obtain

3
[¥1(0,5,1)]5,,B7

|ba] <

’

\/‘ZB%(ZA F1)[¥1(0,5, 03, [¥3(0,5, 8]0, + [F2(0,s, 1)]2, ((A +1)%(By — By) — (BA + 1)3%) )

Bl [IFl ((T, S, i’)]i,q
A+1)[¥a(o,s,1)]5,"

|ba| <
(

which gives the estimates of |by|.
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Furthermore, in order to find the bound on |b3|, we subtract (15) from (13) and also
apply (16). We obtain x7 = 2, hence,

420 +1)[¥3(0,s,1))5
[¥1(o,s,1)]5,

(b3 —b3) = %Bl(x2 —12), (20)

then, by substituting the value of b% from (17) into (20), gives

Bi[¥1(0,s,t)]50(x2 —y2)  Bi[¥1(o,s, 1|35 (x] +u7)

by = .
82A+D[¥a(0,s,H)l5,  8(A+1)7[¥a(o,s,1)]2,
So, we have
5 2 26
bs| < Bi[Y1(o,s,t)]5, Bi[¥1(o,s, 1))

2@+ D[Ys(e,s, )]0, (A+1)*[¥a(o,s, 1)),

In addition, substituting the value of b% from (18) into (20), we obtain

. Bil¥i(05 00,00 — o) (Bl(xz +y2) +3(xF +17)(Ba — Bl))[‘i’l(ms,t)]%%
° T 8A+)[¥s(o,s, D)5, | 8A+ D1+ 1[¥1(0,s H]5,,[¥a (0,5, 1)]5,, — 4BA+1)[¥2(0,5, )],

and we have

|b ‘ < Bl[Tl(O',S, t)]i,q BZ[YI(U/S/ t)};zﬂt,sq
U= 22+ )[¥a(o,s,0]5, | 2Q@A+ D[+ 5[¥1 (0,5, 0)]5,[¥3(0,5, 00, — (3A + 1) [¥a(o,5, )],

which gives us the desired estimates of the coefficient |b3|. [

Taking 9(z) = (%)a =1+2az+2a%z2+--- (0 < a £ 1) in Theorem 1, we obtain
the next corollary.

Corollary 1. Let f given by (1) be in the family Hp(A,,9,s,t,p,q;«), where (0 < a < 1).

Then,
|ba| = min{ 2u[¥1(,s, t)]‘;,,q& ,
(A+1D)[¥a(o,s,1)]5,
20v/2a[¥1 (0, s, t)]‘;w }
\/‘4042(2/\ + D[¥1(0,5,6)]9,4[¥3(0,5,8)]9,4 + [F2(0,s,1)]3 (2,,((1 C)(A+1)2 — 42(3A + 1)) ’
and
|b3] < min a[¥1(o,s,1)]5, 262 [¥1(0,5,1)]%,
3| = A+ D[¥3(0,5,0)]5,  2@A+ DA +H5[F1(0,s,1)]5,[F3(0,s, 8]0, — BA+1)[Fa(0,s, )12,

a[¥ (o, s,t)]‘;,/q 402[¥1 (0,5, 1) %,‘fq
A+ D[¥a(ors,D)]55 (A +1)°[¥a(o,s, 1)),

Taking 8(z) = =262 — 1421 —B)z+2(1—B)22+--- (0 < B < 1)in
Theorem 1, we obtain the next corollary.

Corollary 2. Let the function f given by (1) be in the function family Hg (A, 0,6,s,t, p,q; B), where
(0 < B <1). Then,

by < mm{ 2(1-B)[¥1(0,s,1))5, 2(T— B)[¥:1(e,5, D)3, }

A+ D[¥2(0,5,018, \/‘2(2/\ +1)[¥1(0,5, D3, [¥a(0,5, D15, — [¥as, )35 31 +1)|
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and
(1-B)¥1(o,5,1)), 2(1- B)[¥:1(0,s, 1)),
QA+ 1)[¥3(0,5,0)]5,  2QA+ D[+ H3[¥1(0,s, )13 ,[¥3(0,5,8)]5,, — (BA+ 1) [¥2(0,s, 1),

(1 - .B)[‘Pl (U/ S/t) fo,q 4(1 - .B)Z[‘Yl (‘7/ S't) %{sq
CA+D[¥s(os, D)5 (A+1)2[¥a(o,s, )%, |

|bs] Smin{

Theorem 2. Let f given by (1) be in the family Sg(u,y,0,6,s,t,p,q; ). Then,

Bi[¥1(0,5, )5,
(1+p+27)[¥a(o,s, )],

|ba| Smin{

3
[¥1(0,s,1)]% 4B7

\/’B%(l + 21+ 67)[¥1(0,5,1)]5,4[¥3(0,5,)]05 + [F2(0,5, )13 (1 + 1 +27)* (By — Bz)‘ }

and
) <P,
3= (1+2p +67)[¥3(0,5,0]
B1[¥1(0,s, t)}f,lq B3[¥1(o,s, t)]%‘fq
(I+2u+67)[¥s(ors, )5 (1+ p+27)*[Fa(o,s,1)]%,

where the coefficients By and By are defined as in (5).

Proof. Let f € Se(u,v,0,6,s,t,p,q;%)and g = f —1. Then, there are holomorphic functions
S,T:U — U such that

,0
Wgt,p,qf(z)

(1= ) =2 (e, f@) + 72(WE,, f) =8(s2)), zeu (@
and
Wsafp qg(w) ) ! o8 "
(1= )22 (WS, (@) + v (WP, 8(w)) = 9(T(w), wel, (22

where S(z) and T(z) have the forms (8) and (9). From (21), (22) and (5), we deduce that

ngs f(2) ’ "
(1= )= (W f (2)) 2 (Wi 0f (2))
o (x(z)—-1\ 1 1 x2 1. 5l
_l9<x(z)+1) —1+§B1X1Z+ EBl <x2 7 _“ZBZ.X] z° 4+ (23)
and
Wafs g(w) / " "
(1= )= o (W g (@) )+ v (WS 8())
_gfyw) =1y 1 1 VY o 1p 2
= ﬂ(y(w) 1) = 1+ 231y1w+ 2B1 Y2 > + 432]/1 W+ (24)
Equating the coefficients in (23) and (24), yields
(1+V+27)[‘P2(U/S/t)]iq 1
~by = 5Bixy, (25)
[¥1(0o,s, t)}‘;w 2
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(142p+67)[¥3(0,5,1)]5,, 1 3 1.,
¥, (o,s, t)](;sw 3= EBl -5 + ZBlel (26)
(14 p+27)[Ya(os,0]5, 1
— “b, = =B 27
[¥1(0,5, 015, 2= 5B @7)
™ ¥a(o,5, 1))
L+2u+67)[¥3(0,8,t)]5, -, 1 y3 1. ,
et R A
From (25) and (27), we have
X1 =~y (29)
and ) 05
2(1+.u+27) [IIIZ(O'rS/t)]p,q > 1,5, 5 2
sy o aner) .

If we add (26) to (28), we obtain

21+ 2u+67)[¥3(o,s, )%, , 1
¥ 3 by = 5B
[ 1(015/t)]p,q

1
+ 5B +vi] (31

2 4

X2 4+ 12
x2+y2—< 123/1

Substituting the value of x% + y% from (30) in the right-hand side of (31), we deduce that

2= BI[¥1(0,5, )3 (x2 + y2) @)
4 [B§(1 + 2+ 67)[¥1(0, 5, 1)]9 4 [¥3 (0,5, )13, + [¥a(o,s, ]2, (1+ p+27)2(By — Bz)]

Applying Lemma 1 for the coefficients x1, x, 1, y2 in (30) and (32), we obtain

3
[¥1(o,s, t)}‘i,/fo

|ba| =

’

\/’B%(l +2u+67)[¥1(0,s, t)]i,q [Y3(o,s, t)]‘;,,q +[¥2(c,s,t) %,‘fq(l +u+ 27)2(81 —By)

B, [IFl (J/ 5, t)]i,q _
14+ u+27)[¥a(o,s, t)]%,q'

|ba| <
(

which gives the estimates of |by|.
Furthermore, in order to find the bound of |b3|, we subtract (28) from (26) and also
apply (29). Then, we obtain x? = 2, and hence,

2(142p+67)[¥3(0,s,8)] 4
[¥1(o,s,1)],

(by — B) — %Bl (x2— 1), (33)

then, by substituting the value of b% from (30) into (33), gives

Bi[¥1(0o,s, t)]‘;;,q(xz —Y2) Bi[¥1(0,s, f)]%fq(x% +y7)

by = .
4(1+2p+67)[¥s(0,5, )50 8(1+ p+27)°[¥a(o,s,1))%,

So, we have

Bi[¥1(0,s,8)]4, Bi[¥1(o,s, D)3,
14+ 2u+ 6')’) ["IIB(U'r S, t)](;sz,q (1 +u+ 2')’)2[?2(0'1 S, t)]%?q

|bs] = (
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In addition, substituting the value of b% from (31) into (33), we obtain

. _ 2Bt 5, B)]5,q%2 + 5 (B2 — BY[¥1(0,5, )]0 (47 +17)
3 4(1+2p+67)[¥3(0,5,1)]5,

and we have
By[¥1(o, s, t)](;,q

1+2u+67)[¥3(0,s,1)]

|bs| =
(
which gives us the desired estimates of the coefficient |b3|. O

Taking 9(z) = (%)a =1+2az+2a%22+--- (0 < a < 1) in Theorem 2, we obtain
the next corollary.

Corollary 3. Let f given by (1) be in the family Tg(u,y,0,8,s,t,p,q;«), where (0 < a < 1).
Then,

2a[¥q (U/S/t)}g,q
(14 p+27)[¥a(0,5,1)]8,4
ZIX\/ZTX[Yl ((7/ 5 t)}i,q }

\/ [402(1 + 20 4+ 67)[¥1(0,5,1)]34 [¥3(05, )13 +20(1 = ) (14t +27)°[¥a (05, £)]3 |

|ba| §min{

and
202 [¥1(0,s, t”i,q
(14 2u+67)[¥s3(0,s, t)]‘;’q ’

2[¥1(0,5, )5, 4’ [¥1(o,s, )3,
(+2u+67)[¥s(ors, )]0 (1+ p+27)°[Fa(o,s,1)]%,

|bs| Smin{

Taking 8(z) = S0=282 — 1121 —B)z+2(1—-B)22+--- (0 £ B < 1)in
Theorem 2, we obtain the next corollary.

Corollary 4. Let the function f given by (1) be in the function family Tg (i, y,0,96,s,t, p,q; B), where
(0= B <1). Then,

2(1 = B)[¥1(o,s,1)]5, 21 p)[¥1(o,5,1)5, }
(1 tu+ 2’)’) [‘YZ(U/ 5 tﬂ?},q, \/‘(

|b2| = min{
1424+ 67)[¥1 (0,5, 1)), [F3(0, 5, t)]‘;,,q‘

and

|bs| < min 2(1 - B)[¥1(o,5,1)]p,
3 = (1+2p+67)[¥a(o,s, 1)l

2(1-B)[¥1(0,5, D)y 4(1- B)*[¥i(o,s, B2, }
(142p+67)[¥3(0,s, t)]g,q (1+pu+ 27)2[T2(a, S, t)]%)(/sq .

Remark 3. The problem of maximizing the absolute value of the functional |by — nb3| is called
the Fekete—Szego problem. Many authors obtained Fekete-Szego inequalities for different classes of
functions. Obtaining Fekete—Szeg0 inequalities for different classes of functions defined by operators,
the study of bi-univalent functions using operators and the study on coefficients of the functions is a
topic of interest at this time (see [1-5,7,10,11,14,46-51]).
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In [1], the authors obtained Fekete—Szego inequalities and coefficient inequalities for certain
classes of bi-univalent functions defined by Horamad Polynomials;

In [8], the authors obtained Fekete—Szeg0 inequalities for classes of analytic and bi-univalent
functions defined by (p, q)-derivative operator;

In [23], the authors obtained Fekete—Szego inequalities for subclasses of analytic and bi-
univalent functions defined by subordinations using the Siligean operator;

In [52], the author obtained Fekete—Szeg0 inequalities for analytic and bi-univalent functions
subordinate to (p,q)-Lucas Polynomials;

In [53], the authors obtained Fekete-Szeg0 inequalities for analytic and bi-univalent functions
subordinate to Gegenbauer polynomials;

In [54], the authors obtained Fekete—Szeg0 inequalities for analytic and bi-univalent functions
subordinate to Cebyshev polynomials;

In [55], the authors obtained Fekete—Szego inequalities and coefficients bounds for new classes
of bi-univalent functions defined by the Siligean integro-differential operator;

In [56], the author obtained Fekete—Szeg0 inequalities for classes of bi-univalent functions
defined in terms of subordinations.

In the next theorems, we provide the Fekete-Szego type inequalities for the functions

of the families Ag(A,0,6,s,t,p,q;9) and Se(u,7,0,96,s,t,p,4; 9).

Theorem 3. Fory € R, let f € Ag(A,0,6,s,t,p,q;0) be of the form (1). Then,

‘53 —771’%‘ =

Bilf1(osh)]h,
2(2A+1)[¥3(05,8)]5,4
1| < [‘Iﬁ(trst ]p,,|2B2 2A+1)[‘I’1((rst)]pq[‘l’3((rst) o H¥2(050)13, (A+1)*(B1—B2)— (3A+1)B}) |
= - tZ]I;‘?[\Yl(llet)] [‘Y3<ﬂst)]m(22\+1) !
1(0,8 U
|2B2 (2A+1)[¥1(0,5,4)19, [‘I’3(Ust)]pq+[‘i’2((rst)] 7 (A+1)*(B1—By)— (3/\+1 §)|
1| = [‘1’1(05t]pq|282 (2A+1)[¥1(o50)]5, [‘I’3(Lrst)]‘5q+[‘l’2(zrst) o (A+1)?(B1—By)—(3A+1)B?) |
= QBz[Yl(ast)] [‘I’3(Ust)]pq(2)\+1) :

Proof. It follows from (19) and (20) that

by — b3 =

By [Tl (‘71 5 t)]‘;,q(XZ - ]/2)
8(2A +1)[¥3(0,5,1)]94

+(1=n)b3

_ Bi[¥i(0ys,1)]5 (22 — )

+

8(2A + 1)[¥3(0,s,1)]94
B3[¥1(0,s,£)12% (x2 + y2) (1 = 1)
4[2B22A + 1) [¥1(0,5,1)]3, [¥3 (0,5, 1)]5,0 + [Fa(o5, )3 (A +1)° (By — Bo) — (34 + 1)B3) |

B, [¥1(o,s, t”fz,q [¥1(0o,s,t) i,q
1 KYW) s 0B, )2 T Y T i es 0, )12

where

- B2[¥1(0,5,1)]%,(1— 1)
2B22A+ 1)[¥1(0,5,8)]3,,[Fa (05, D)3, + [ (0,5, 1)) ((A+l) (Bi — By) — (3A+1)B§)'

According to Lemma 1 and (5), we find that

By [‘Yl (0, t)]pq < [‘Yl (Ursrt)]g,q
b2 < 2(2A+1)[¥3(05.1)]5, 0= [Y(m) 202A41)[¥3(05,1)],”
by — b3 [¥1(05,8)]5

Iy
BuY(nl, Y2 s e,

A
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After some computations, we obtain

Bi[f1(osh))5, .
2(2A+1)[¥3(o,s,1)10,”
W1 (0,5,4)]5,4 283 QA+1)[¥1(0,5,4)15, 4 [¥3(0,5,8)15, g+ [¥2 (0,5,8) 128, (A+1)? (By—B2) —(3A+1) B2 |

[
=1 = 7 ) 5 ’
_ 2| < 2B2[¥1(0,5,4)]50 [¥3(05,8)]9,4 (2A+1)
b5 — 3| < N " ,
|2B2(2A+1)[¥1(0,5,6)19 4 [‘If3(o,s,t)]‘;,,ﬁ[‘Pz(a,s,t)]gf,, ((A+1)2(B1 —By)—(3A+1)B2)|”
=12 [¥1(0,5,1)]5,4|2B2 (2A4+1)[¥1 (0,5,1)]5, 4 [¥3 (0,5,1)]5, g+ [ Y2 (05,8) %‘fq((/\ﬂ)z(&782)7(3/\+1)B]2)|
U = 2B2¥, (0,012 [(¥3(0,5,0)]5 0 (2A+1) :
]

Putting # = 1 in Theorem 3, we obtain the following result.

Corollary 5. If f € Ap(A,0,9,s,t,p,q;09) is of the form (1), then

)
by — 83| < BiNe5 g
= 2Q2A +1)[¥3(0,s,1)]3,

Theorem 4. Forn € R, let f € Sg(u,,0,96,s,t,p,q;0) be of the form (1). Then,

By [‘Y] (U’S’t)]fl,q .
(1+2u+67)[¥3(o,s,t)];,7
Iy —1] < [¥1 (Ursrf)]i,q|B%(1+274+6“§)[‘f'1 (@58)4[¥s(0,5 )]}, + 2 (5.) 2 (1+p+27)* (Bi—By)| )
T R o

= 3 (W1 (080120 11— )

| B2 (1+4+2p+67) [F1 (05,815, [‘I’3(a,s,t)]‘;yq+[‘I’z(a,s,t)]%‘fé(lJr}HrZy)z(B] -By)|” _
=1 = [¥1(0,5,0)]5,4 | B (1420 +67)[¥1(0,5,1)]5,4[¥3 (05,15 + [Fa(0,5,8)|%, (1+u-+27) (B1—Bo) |
U = B2[¥1(0,5,1)]2, (3 (0,5,1)]5 , (1+ 25+ 67) :

Proof. It follows from (32) and (33) that
2 Bl [‘}rl (U,S, t)](;,q(XZ - yZ)
b3 — 17b2 = s
41421 +67)[¥3(0,s,t)]pq

_ Bi[Yi(oys, 1154 (x2 = v2)
41421 +67)[¥3(0,5,1)]54

B3[¥1(0,s,£)12% (x2 +y2) (1 = 1)
4[B3(1+ 20+ 67)[F1(05,1)]3,4[¥a(0,5,1)]5,4 + [Fa(os, )] (1+ i+ 27)* (By — Bo) |

2
1 q
B [¥1(0,5, 118, sl
= {(QWH_(1+2y+6’y)[‘1’3(0,s,t)]‘;lq X2+ | 00 (1420 + 67)[¥a(0,5, 015, ) 2|’

+(1-n)b3

_|_

_ Bi[¥1(o,s, )31 — 1)
BY (142 +67)[¥1(0,5,1)]0,4[¥3 (0,5, )50 + [F2(0,5,1)]35 (1 +  +27)*(By — By)

According to Lemma 1 and (5), we find that

By [¥:1 (055, < < [¥1(056))5
be — 12| < ) OF2mr6)[¥s(0s )]y, 0= 0] = (142p+67)[¥3(0,5,0)]pe
3 noy | = [‘Fl(afsrt)]?a,q

Bil ()], 00 2 Tz o,
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After some computations, we obtain

Bl [‘Yl (U,S,t)]f}lq

(20 +67)[Fa (505,

¥1(0,5,0)]5,| B (42067 [¥1(0,5,)]3 0 [¥3.(0,5,8)13, , +[¥2(0,5,8))%, (1+p+27) (B1—Bo)|

-1 <!

, B [Y1(0s,4)1%, [¥3(0,5,4)5, , (142p467) ’
[ba = o3 < s
Bi[¥1(os.8)]5 |11 )
|B2 (142p+67)[¥1(05,t)]5,, [‘P3(U,S,t)]‘f,,q-s—[‘Yz(cr,s,t)]%‘il(1+y+2'y)2(Bl —By)|”
‘V] 1 > (¥, (J,s,t)]‘;,q‘B%(l+2y+6’y)[‘f’1 (O',S,f)]f?lll [¥s(os.t) “;,qu[‘I’z(U,s,t) f,i’q(l+]4+2ry)2(BlfBz)| .
= Bi[¥1(0,5,1)]2,[¥3(0,5,1)]5 ,(1+2u+67)
O

Putting 7 = 1 in Theorem 4, we obtain the following result.
Corollary 6. If f € Sg(u,7,0,9,s,t,p,q;0) is of the form (1), then

Bl [Tl((f, S, t)](;’q
14 2p+67)[¥3(0,5,1)]5,

b3 — 13| < (

3. Conclusions

As future research directions, the symmetry properties of this newly introduced
operator can be studied.
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