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Abstract: Fuzzy topological topographic mapping (FTTM) is a mathematical model which consists
of a set of homeomorphic topological spaces designed to solve the neuro magnetic inverse problem.
A sequence of FTTM, FTTM,, is an extension of FTTM that is arranged in a symmetrical form.
The special characteristic of FTTM, namely the homeomorphisms between its components, allows
the generation of new FTTM. The generated FTTMs can be represented as pseudo graphs. A
graph of pseudo degree zero is a special type of graph where each of the FTTM components differs
from the one adjacent to it. Previous researchers have investigated and conjectured the number of
generated FTTM pseudo degree zero with respect to n number of components and k number of
versions. In this paper, the conjecture is proven analytically for the first time using a newly developed
grid-based method. Some definitions and properties of the novel grid-based method are introduced
and developed along the way. The developed definitions and properties of the method are then
assembled to prove the conjecture. The grid-based technique is simple yet offers some visualization
features of the conjecture.

Keywords: FTTM; graph; pseudo degree; sequence

1. Introduction

Fuzzy topographic topological mapping (FTTM) [1] was introduced to solve the neuro
magnetic inverse problem, particularly with regards to the sources of electroencephalogra-
phy (EEG) signals recorded from epileptic patients. Originally, the model was a 4-tuple
of topological spaces and mappings. The topological spaces are the magnetic plane (MC),
base magnetic plane (BM), fuzzy magnetic field (FM) and topographic magnetic field (TM).
The third component of FITM, FM, is a set of three tuples with the membership function of
its potential reading obtained from a recorded EEG. FTTM is defined formally as follows
(see Figure 1).

MC = {(x:y: O)I,Bz|x!y',82 € ]R}

= {(% )0, B, € R} — TM={(x,y,2)|x,y E R z € (—h,0)}

4

v

BM = {(x,y,h), B.1%,¥,B; € R} wrvrrrrvnen
={Cey %y, B; € R}

FM = {(x,y,h), tug|x,y,h € R,z € (0,1)}
= {6 Y gl v, b € R g € (0,1)}

Figure 1. The FTTM.

Definition 1. Ref. [1] Let FTTM; = (MC;, BM;, FM;, TM;) such that MC;, BM;, FM;, TM;
are topological spaces with MC; = BM; = FM; = TM,;. Set of FTTM,; is denoted by

Symmetry 2021, 13, 2203. https:/ /doi.org/10.3390/sym13112203

https:/ /www.mdpi.com/journal /symmetry


https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-2675-7952
https://orcid.org/0000-0002-3228-5413
https://doi.org/10.3390/sym13112203
https://doi.org/10.3390/sym13112203
https://doi.org/10.3390/sym13112203
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13112203
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym13112203?type=check_update&version=2

Symmetry 2021, 13, 2203

20f 15

FTTM = {FTTM;:i=1,2,3,...,n}. Sequence of nFTTM,; of FITM is FTTM,, FTTM,,
FTTM3,FTTMs,, ..., FTTM, such that MC; = MC;j,q, BM; = BM;,1,FM; = FM; 1 and
TM; = TM;.;.

Furthermore, a sequence of FTTM, FTTMj, is an extension of FTTM and illustrated
in Figure 2. It is arranged in a symmetrical form, since the model can accommodate
magnetoencephalography (MEG) signals as well as image data due to its homeomorphism.
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Figure 2. The sequence of FTTM,,.
2. Generalized FTTM

Generally, the FTTM structure can also be expanded for any n number of components.
Definition 2. Ref. [2] A FTTM is defined as
FTTM, = {{Ay, Ay, ..., Ay} : A=Ay ... 2 A} 1)
such that A1, Ay, ..., Ay are the components of FTTM,

The same generalization can be applied to any k number of FTTM versions as
well, denoted as FTTME. Without the loss of generality, the collection of the k ver-
sion of FTTM, in short FTTME, is now simply called as a sequence of FTTM unless
otherwise stated.

Definition 3. Ref. [2] A sequence of k versions of FTTM,, denoted by * FTTMY such that
x FTTMK = {FTTM}1 JFTTMZ, ..., PTTMﬁ} )

where FTTM} is the first version of FTTM,, the FTTM?2 is the second version of FTTM, and
so forth.

Obviously, a new FTTM can be generated from a combination of components from
different versions of FTTM due to their homeomorphisms.

Definition 4. Ref. [2] A new FTTM generated from * FTTME is defined as
F={Al" A2, ..., A"} e FTTM ®3)

where 0 < mq, my, ..., my < k and m; # m]-for at least one i, j.
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A set of elements generated by * FTTMZ is denoted by G (* F TTM’,‘Z). Mukaram

et al. [2] showed that the number of FTTM can be determined from * F TTM{Z using the
geometrical features of its graph representation.

Theorem 1. Ref. [2] The number of generated FTTM that can be created from x* FTTM5 is

’G(* FTTM{;) ] — Kk 4)

Theorem 1 is then extended to include n number of FTTM components.
Theorem 2. Ref. [2] The number of generated FTTM that can be created from *+ FTTME is

‘G(* FTTM)

— k" — k. )

The following example is presented to illustrate Theorem 2.

Example 1. Consider » FTTM3, with FTTM} = { A}, A}, Al} and FTTM3 = { A2, A}, A3},
then G(xFTTMZ) = {{Al A} AL}, {Al Al A3}, {A% AL AL}, {A2 A% ALY,
{A3, AL, A%}, {A], A3, A%}} that is |G (x FTTM3)| = 2°-2 = 6 as given by Theorem 2.

3. Extended Generalization of FTTM

There are many studies on ordinary and fuzzy hypergraphs available in the literature
such as [3,4]. However, * FTTME is an extended generalization of FTTM that is represented
by a graph of a sequence of k number of polygons with n sides or vertices. The polygon
is arranged from back to front where the first polygon represents FTTM]., the second
polygon represents FTTM? and so forth. An edge is added to connect FTTM}, to the
FTTM? component wisely. A similar approach is taken for FTTM2, FTTM3 and the rest
(Figure 3).
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Figure 3. Graph of * FTTME.

When a new FTTM is obtained from * FTTMZ, it is then called a pseudo-graph of
the generated FTTM and plotted on the skeleton of *x FTTMX. A generated element of
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a pseudo-graph consists of vertices that signify the generated FTTM and edges which
connect the incidence components. Two samples of pseudo-graphs are illustrated in
Figure 4.
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Figure 4. Pseudo graph: (a) {Al, A%, A%}; (b) {Al, A%, A%} of FTTM%.

Another concept related closely to the pseudo-graph is the pseudo degree. It is de-
fined as the sum of the pseudo degree from each component of the FTTM. The pseudo
degree of a component is the number of other components that are adjacent to that
particular component.

Definition 5. Ref. [2] The deg, : FTTM — Z defines the pseudo degree of the FTT M component.
It maps a component of F € G (* FTTMI;I) to an integer

. 0; mj_q 7 mj # mjiq
degp (A] ]) = 1; Tfl]'_l = m] or m] . Mj+1, (6)
; mj_1 =mj=mjpq

for AY7 € FTTM.

Definition 6. Ref. [2] The deg,G : G(* F TTMfZ) — Z defines the pseudo degree of the FTTM
graph. Let F € FTTM

n
degyG(F) =)  deg,A]" )
i=1

where F = {A{" A7, ..., A"} € G(x FTTMY).
Definition 7. Ref. [2] The set of elements generated by * FTTMY that have pseudo degree zero is

GO(* FTTMK ) = {F € G(* FTTMﬁ)

deg,G(F) =0 } ®)

From now on,
1. Gy (* FTTME ) is simply denoted by Gy (FTTMZ )
2. #Gg (F TTME ) denotes the cardinality of the set Gy (P TTMk ) .
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Example 2. (See Figure 5).
FTTMZ = {(A11A2/A3/A4)/ (B1/B21B3/ B4)/ (C1/C21C3/ C4)}
GO(FTTMZ) = {(Alr B21A3/C4)/ (A1/B2/C3/B4)/ (Alr C21A3/ B4)/ (A1/C2/ B3/C4)/
(BllAZ/ B31C4)/ (Bll A21C31A4>/ (BerZ/ B31A4)/ (Bll C21A3/ C4)r (9)
(C1/B2/C3/A4)/ (C1/B21A3/ B4)/ (CllAZI C3/ B4)/ (C11A2/ B3/A4)}
Go(FTTM3) = 12
A1
A4
Bi / A, As
B4
B, B3
Ci Cs
C3

C2

Figure 5. FTTM;.

Previously, Elsafi proposed a conjecture in [5] related to the graph of pseudo degree.

Conjecture 1. Ref. [5]

)Gg (PTTM)

_ { 4|G3(FTTM3_,)| + 12, when n is even

4|G® o(FTTM3_,) | + 6, when n is odd (10)

In order to observe some patterns that may appear from the proposed conjecture,
Mukaram et al. [2] have developed an algorithm to compute | Go (F TTM) | in order to
prove the conjecture analytically. A flowchart on |G (* FTTM}Y)| is sampled in Figure 6.
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/ Output count and RunTime /

v
( End )

Figure 6. Flowchart for determining |Gy (* FTTMY) |.

The researchers generated all FTTM combinations for 3 <k <4,4 < n < 15and
were able to isolate graphs with pseudo degree zero, which are listed below (Table 1).

Table 1. ’ Go (PTTMI,; ) ’ for4d < n < 15and k = 3, 4.

n | Go(FTTM )| | Go(FTTMZ )|
4 12 24

5 30 120

6 60 480

7 126 1680

8 252 5544

9 510 17,640
10 1020 54,960
11 2046 168,960
12 4092 515,064
13 8190 1,561,560
14 16,380 4,717,440
15 32,766 14,217,840
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The researchers then simulated ‘ Go (P TTM’,‘l ) ’ for some values of k as well [2]. The
number of graphs of pseudo degree zero for2 < k < 8and2 < n < 10 are listed in

Table 2.
Table 2. ’ Go(FTTM} )| for2 <k <8and2 < n < 10
kin 3 4 5 6 7 8 9 10
2 2 0 2 0 2 0 2 0 2
3 0 6 12 30 60 126 252 510 1020
4 0 0 24 120 480 1680 5544 17,640 54,960
5 0 0 0 120 1080 6720 35280 168,840 763,560
6 0 0 0 0 720 10,080 90,720 665,280 4,339,440
7 0 0 0 0 0 5040 100,800 1,239,840 12,096,000
8 0 0 0 0 0 0 40320 1,088,640 17,539,200

4. Grid of FTTM

An alternative presentation of a sequence of FTTM, called an FTTM grid, is briefly
overviewed. It provides a different perspective of the structure of FTTM. Instead of a
polygon representation for each version of FTTM, a straight line is now used. The compo-
nents of FTTM, are arranged on a horizontal line of vertices and the lines represent the
homeomorphisms between the components of FTTM,,. The only exception is the home-
omorphism between the first and last components of FTTM,, A; and A, respectively.
Two open segments on the left of A; and on the right of A, are used to represent the
homeomorphism between them. A vertical line is added to represent a homeomorphism
between two components of different versions; hence, a grid is created (see Figure 7).

Aoy A

n-1

Figure 7. A graph representation of * FTTMY as a grid.

There are four advantages when FITM is represented as a grid instead of a sequence
of polygon.

It is represented in two dimensions; therefore, it reduces the complexity of the structure.
The process of adding a new component is easier than in a sequence of polygon.

It can take any number of components by adding the number of vertices at the end of
the grid.

e  The homeomorphism between two components of the same version is presented as
a horizontal edge, whereas the homeomorphism between two components of two
different versions is represented by a diagonal edge (see Figure 8). These arrangements
are necessary to produce the graph of pseudo degree zero.
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Horizontal Edge

Diagonal Edge

Figure 8. Generated element {Al, A%, A%} onx F TTM% grid.

Furthermore, Zilullah et al. [2] introduced some operations and properties with respect
to the FTTM grid. They are recalled, summarized and listed below for convenience. Then,
we will move on to the next main section of the paper wherein Conjecture 1 is finally
proven as a theorem.

Definition 8. Let F € G (* FTTM’,‘l) and F = { A", A3?, ..., Aj"}. Ablock B, where B C F
is defined as

B={ Al Al AN, ALY 1<i<n 0<j<n—1 (11)
B (G (* FTT Mﬁ)) is the set of FTTM blocks that can be generated from G (* F TTM’,;).
Definition 9. The function C{ is defined as C : G (* FTTMﬁ) — B(G (* FTTMfl)) for F €
G(* PTTM’;),

B={Al", Al AL, Al 1<i<n 0<j<n-1 (12)
forl <i<j<mn,whereF={A", A)? A3, ..., Ay"}.

. _ege . . . . k k

Definition 10. The operation @ is a mapping @ : B(G (* FTTM,J) xB (G(* PTTMn)) —
B(G (* FTTMﬁ)) such that

e A W Y D VO e Vil S ()

i+l p17 j i+1 7 j
m; mi m;
when k = p and my. = my, then B3 = B; ® By = {Ai ,Aiﬁl, ...,Aj ’}.
Definition 11. An indexed FTTM ,G’(* F TTMﬁ) is defined as
j=i
k) _ kY| o™i i
mfiz(* FTTM}) = {F € G(+ FTTM) | A" € Fmy =i } (14)



Symmetry 2021, 13, 2203 9 of 15

A generated FTTM is then divided into blocks of three components. A set of blocks is
defined as follows.

Definition 12. A set of blocks B;j is defined as

Biji = {B c G(* FTTMLj)

m m . .
B= {A?”,Apﬂl,Ap_’Sz},mp =i, Mps1 =, Mpsp = k} (15)

Since this study is concerned with graphs of pseudo degree zero, the sets that need to
be taken into consideration are the ones with diagonal paths, namely, B121, B121, B123, B131,
Bi32, Bo12, B213, B3z, Bas1, Bao1, Bsiz, Baos and Bsss.

Lemma 1. Let F € * FTTMY and F = { A", A}2, ..., A" }. For any A]’.”f eFl1<j<n,
m; Lo, mi_q miq .
then deg,, (A]. ]) =0if A; !"is connected to A].jl and Ajfl' by a diagonal path.

Theorem 3. If F € G;(x FTTMS), where G;(* FTTMS3) is the set of generated FTTMs with a
diagonal path, then deg,G(F) = 2 or 0.

Corollary 1. The element of Gy (F TTMﬁ) has a FTTM path with the following properties:

1.  All the edges connecting the path are diagonal.
2. The starting and the end points of the path belong to different versions of FTTM.

Theorem 4. If x € B (GO (* FTTMﬁ) ) , then all the paths for x are diagonals.
Proposition 1. If F € G(* FTTM’;Z), then C'2(F) € G(* FTTM§72>.

Lemma 2. If F € G(* FTTMfl), then dx,y such that x € G(* FTTM’;_Z),
yeCr,(G(+ FTTMY)) and F = x @ y.

Lemma3.If F € G(* FTTM’;Z), then 3 unique tuple (x,y) such that x € G(* FTTMﬁ?Z),
yeCly(G(+ FTTM}) ) and F = x @y,

Theorem 5. If H C G(* FTTMﬁ) and K = {(x,y)|lx®y € H, x € G(xFTTM3_,),
y€C! ,(G(x FTTM3))}, then |K| = |C|.

Lemma 4.

(*FTTMf,): G (*PTTMz)u G (*PTTMz)u G (*FTTM?;). (16)

my—p=1 My _p=2 my =3

Lemma 5.
G (* PTTM%) n G (* FTTM,%) .y (17)

my—2=4a my_p=b

foranya,b € Zand a # b.

Theorem 6.

‘G (* FTTM%) + + (18)

G_(xFTTM)

my—p=1

G_ (+FTTM})

My =2

G_ (+FTTM})

my =3
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5. The Theorem

All the materials laid down in previous sections are assembled to produce the analyti-
cal proof of Conjecture 1. The first step is to find |G, (* FTTMS;) | since Go(x FTTM;) is a
subset of G4 (* FTTM3) by Theorem 2.

Theorem 7. s .
e )| - { 30 2
Proof of Theorem 7. (By mathematical induction)
Let w3 ’
o= fec )| - BSOS e
For odd numbers, P(3) : n = 3,
P(3) = ’Gd(* FTTM%)‘ =12.47 =12. (21)

There are exactly 12 combinations, namely

(AL, A3 A3), (AL A3 AL, (AL A3 A2), (A} A3, ALY, (A3 AL, A3}, (43, 43, ),
{AL Ay A3} (AT, A3, A3} { A, A3, A3 ), { AT, A3, A3} {AY, Ay A3 { AL, AL, A5

Now assume P(m = 2k +1) : n = 2k + 1 is true with

Pm) = |G+ FTTM, )| = 12,4757 =124 (22)
for P m+2=2k+1+2
2k +3 '
By using Theorem 4, P(m + 1) = ‘Go (* FTTM%(H) ‘ = |K| such that

K={(xy)l|royeH xeG(« FITTM}.,), y € Ci,(G(x FTTM},5) )} (29)

By using Theorem 5,

Pom+1)| = |G FTTMS, 5 ) |

Ga [+ FTTM3 ;) @)

My _p=2

+| Gy (x FTTM, )

my_»=3

=| Ga (x FTTM%HS)'-F

ny_p=1

The set Gy (xFTTMj,.,
mn_zzl

x € Gy (* FTTMng
m,,,z:l

for Y, namely BlZl/ B123, 3131, and Bl32. Hence,

) can be constructed from (x,y) where

) andy € oy (Ga(+ FTTM}

ok +3>). There are four options

Gy (* FTTMS, +3) —4 . (25)

my—p=1

Ga (+ FTTM3.,)

my =1

The same process can be applied to and

Ga (+FTTM3,,,)

My =2

Ga (+FTTM3,,)

my =3

Thus,
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|P(m +1)|

— |Ga(+ FTTMS, 5 ) |

—1 m,,(,;f:1<* FTTM}, ;)| +4 mff:2<* FTTM3, ;)| +4 mffzs(* FTTM3, ;) 26)
—4 mf;”ﬂ(* FTTM,,, )|+ mgﬂ@ FTTM,., )|+ mff:3<* FTTMS, ) )

= 4[Gq(+ FTTM], )| = 4 .12 451 =12 .45,
Similarly, the same induction process can be used as proof for even parts. [

The set G;(* FTTM3) has only two possible subsets, namely Gy (* FTTM;) and
H, = {x € Gy(* FTTM3) deg,x = 2}. To find Go(* FTTM3), the relation between
Go(* FTTM3), G4(* FTTM;) and H, must be investigated.

Lemma 6. If Hy = {x € Gy( FTTM})
|Go(*x FTTM)|.

deg,x = 2}, then |Hy| = |Gy(x FTTM3)| —

Proof of Lemma 6. Let x € G4 (* FTTM3), then deg,(x) = 0or degp(x) = 2by Theorem 5.
Thus, x € Go(* FTTM3) or x € Hy, ie., |Gy(x FTTM3)| = |Go(* FTTM3)| + |Hy| or
|Hu| = |G4(* FTTM;)| — |Go(* FTTM;)|. O

Finally, | Gy (x FTTM3)

My _p=i

is determined using Lemma 6 and Theorem 5.

Theorem 8.

Go (* FTTM,%)

My —p=i

=3 Gy (* FTTM%,Z)

my_p=i

+2|Hy_p|, n >4 (27)

Proof of Theorem 8. By Theorem 5,| Gy (* FTTMS3)| can be determined by the combina-

my_p=i

tion of (x,y) where x &y € Go (xFTTM3),x € G (*FTTM%?Z),

My _p=i my_p=i

yecCl, <m G (x FTTM22)>. By Theorem 4, all x edges must be diagonal; hence,

n—2=1

x € Gz (xFTTM3_,). There are two possibilities for the value of x, namely x €

mn,zii
Go (+ FTTM}_,) or x € [H, |, where Hy 5 = {x € Gy(x FTTM}_,)| deg, x = 2}
m,/,,2=l'
from Theorem 3. Casei = l: ifx € Gy (* FTTM3_,), then A{" € x, my # 1 which

My =1
implies m; = 2 or m; = 3 by Corollary 1.

Let X, = {x € Gy (xFTTM3_,) my =3 3, then for

my_p=1

my =2 } X3 = {x € Gy (xFTTM3_,)

ny_p=1

any x € X, then y € Byy1, Bigs, Biz1 and also for any x € X3, then y € By, Biaz, Bis1 by Corollary 1.

Thus, fore Gy (x FITM3_,), there are 3

ny_p=1

Go (* FTTMi?Z)

my_p=1

If x € Hy_p, then A" € x, m; =1 whenx € H,_, and y € Byp3, Bi3 by Corollary

combinations of tuple (x,y).

1. Thus, there are 3|H,_»| combinations of tuple (x,y) Hence, ’ Go (xFTTM3)

My =1
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3| Gy (xFTTM3_,)|+2|H,_2|, n > 4. Using the same procedure as for i = 1, the same

m,,,2=1
result can be obtained fori = 2,3. O

Theorem 9.

B {GO(* FTTM2_2)| +3.2"2 pisodd, n>3

3
‘GO <* FTTM”) - { |Go(* FTTMS_,)| +3.2", niseven, n > 4

(28)

where |Go(x FTTM3)| = 6,

Go(x FTTM3)| = 12.

Go(x FTTM3)| = | Gy (xFTTM3)

my =1

Proof of Theorem 9. Using Theorem 6,

+ . From Theorem 8 and Lemma 6,

Go (xFTTM3)|+

mn_Z:Z

Go (xFTTM3)

My =3

|Go(+ FTTM3)|

:‘ Go (x FTTMi,Z)‘H + +2 + +2

my_2=1

Gy (*FTTM3_,)

=3

Gy (*FTTM3_,)

my_p=3

Gy (+FTTM; ;)

my_p=1

Go (xFTTM; ;)

My _p=2

Ga (x FTTM; ;)

My _p=2

= (| Go (+FTTM3_,)|+| Go (*FTTM3_,)|+| Go (x FTTM3_,) ) +2< Gi (*FTTM3_))|+| Gy (xFTTM3,)|+| G4 (x FTTM3_,) > (29)
=1 My =2 ny_p=3 My_p=3 my_p=1 My _p=2
= |Go(* FTTM; ;)| +2 |Gy(» FTTM;)|.
Hence by Theorem 7,
\| _ J |Go(x FTTM3_,)|+3.2""2, nisodd, n>3
‘GO (* FTTM”) - { |Go(* FTTM;_,)| +3.2", niseven, n > 4 (30)

such that |Gy (x FTTM3)| =6,

Go(x FTTM3)| =12. O

Theorem 9 is another version of the earlier conjecture. A simple algebraic manipulation
is needed to show their equivalence. We formally state and prove this as the final theorem.

Theorem 10.
3 3 [ 4|G3(FTTMS_,)| + 12, where nis even
|GO (FTTM;) | - { 4|G3 O(FTT1}\/I§_2) | + 6, wheren is odd 31)
[ |Go(x FTTM3_,)| +3.2"72, nisodd, n >3
| |Go(x FTTM? )| +3.2", niseven, n >4
where | Go (+ FTTM3 ) | = 6,|Go ( FTTM3)| = 12
Proof of Theorem 10. By Theorem 9,
s\| _ [ 4|Go(FTTM?_,)| 412, where n is even
‘GO (FTTM”) - { 4|Go (FTT]\n/Iz_Z) | +6, wherenis odd (32)

and |Go(FTTM3)| = 6,

Go(FTTM] )| = 12.
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However, when n is odd,

|Go(FTTMZ)| =4.6+6
=41 .6+4%.6
|Go(FTTM3)| =4(4.6+6)+6
=4 .6+4".6+4".6 33)
|Go(FTTM3)| =4(4(4.6+6)+6)+6
=4 .6+4.6+4'.6+4%.6
|Go(FTTM3,)| =4(4(4(4.646)+6)+6)+6
=4' 6+4.6+4%.6+4'.6+4%.6
Thus, GO(FTTMg)}:z,ﬁsz.é.
Notice that
?
Go(FTTM3)| = ¥ 4F.6
k=0
n=5
—4"° 6+ v 4.6 (34)
k=0
=273 6+ |Go(FTTM3_,)|
=2""2 .3+ |Go(FTTM;_,)|
When 7 is even,
|Go(FTTM3)| =4.12+12
=41 12+4%. 12
|Go(FTTM3)| =4(4.12+12)+12
=42, 12441 .12+4°.12 35)
|Go(FTTM3,)| =4(4(4.12+12) +12) + 12
=4%.12+4%2 12 +41 12 +4° .12
|Go(FTTM3,)| =4(4(4(4.12412) +12) +12) + 12
=44 124+4%.12+42.12+41 12440 .12
g
Thus, |Go(FTTM3)| = ) 4°.12.
k=0
Notice that,
%
|Go(FTTM3)| = } 4F.12
k=0 %
— 4% k
=47 .12+k§04 12 (36)
n—6

k=0
=2""2 .3+ |Go(FTTM3_,)|

It shows that the equation in Theorem 9 is exactly the statement of the conjecture. In
other words, the conjecture is proven by construction. J

The whole process of proving Conjecture 1 is summarized below in Figure 9.
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Conjecture 1. [5]
4|G3(FTTM: ;)| + 12, when n is even

GJ(FTTM3 ={
|63 2l 4|G3 o(FTTMZ )| + 6, when n is odd

Simulation to obtain the pattern
FTTM Grid
The Algorithm and
Simulation
Developed method for
proving
' Simulation and verification
Theorem 10
]GE(FTTM3}i {4]503 (FTTMg_Z)l + 12, where nis even
9 M7 463 o(FTTM3_,)| + 6, where nis odd

> {iao(* FITME_)|+3.2"2,  nisodd,n >3
U |G+ FTTM3.,)| +3.2", niseven,n >4

where |Gy (x FTTM3)| = 6,|Go (= FTTM?)| = 12

Figure 9. Outline of proving Conjecture 1 by construction.

6. Conclusions

The developed grid-based method of proof is new; some definitions and properties
were introduced, whereas others were investigated along the way. The originality and
advantages of this method can be summarized in the point forms below.

e It provides a different perspective to the structure of FTTM. Instead of a polygon
representation for each version of FTTM, a straight line is now used. The components
of FTTM, are arranged on a horizontal line of vertices and the lines represent the
homeomorphisms between the components of FTTM,,.

e Avertical line is added to represent a homeomorphism between two components of
different versions; hence, a grid is created.

It is represented in two dimensions; therefore, it reduces the complexity of the structure.
The process of adding a new component is easier than in a sequence of polygon.

It can take any number of components by adding the number of vertices at the end of
the grid.

e  The homeomorphism between two components of the same version is presented as
a horizontal edge, whereas the homeomorphism between two components of two
different versions is represented by a diagonal edge (see Figure 8).

e  This grid-based technique offers an edge in proving the conjecture; in particular, it
enables one to visualize a given problem in a 2-dimensional space.

e  Finally, the conjecture that spells the number of the generated FTTM graph of pseudo
degree zero with respect to n number of components and k number of versions is
proven analytically for the first time using this method.

However, the lengthy computing time for simulation needs to be resolved for larger
k and n, accordingly. This may be overcome by employing parallel computing, and the
grid-based technique can be very handy for such enumerative combinatorics problems in
the near future.
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The following abbreviations are used in this manuscript.

BM
EEG

FM
FTTM
FTTM,
MC
MEG

™

« FTTMK

Go(* FTTME )
Go PTTMﬁ)

Base magnetic plane

Electroencephalography

Fuzzy magnetic field

Fuzzy topological topographic mapping

Sequence of FTTM

Magnetic plane

Magnetoencephalography

Topographic magnetic field

Sequence of k versions of FTTM,

Set of elements generated by * FTTMX that have pseudo degree zero

Set of elements generated by * FTTMY. that have pseudo degree zero
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