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Abstract: Recently, 5G networks have emerged as a new technology that can control the advancement
of telecommunication networks and transportation systems. Furthermore, 5G networks provide
better network performance while reducing network traffic and complexity compared to current
networks. Machine-learning techniques (ML) will help symmetric IoT applications become a signifi-
cant new data source in the future. Symmetry is a widely studied pattern in various research areas,
especially in wireless network traffic. The study of symmetric and asymmetric faults and outliers
(anomalies) in network traffic is an important topic. Nowadays, deep learning (DL) is an advanced
approach in challenging wireless networks such as network management and optimization, anomaly
detection, predictive analysis, lifetime value prediction, etc. However, its performance depends on
the efficiency of training samples. DL is designed to work with large datasets and uses complex
algorithms to train the model. The occurrence of outliers in the raw data reduces the reliability
of the training models. In this paper, the performance of Vehicle-to-Everything (V2X) traffic was
estimated using the DL algorithm. A set of robust statistical estimators, called M-estimators, have
been proposed as robust loss functions as an alternative to the traditional MSE loss function, to
improve the training process and robustize DL in the presence of outliers. We demonstrate their
robustness in the presence of outliers on V2X traffic datasets.

Keywords: 5G networks; V2X; deep learning; M-estimators; outliers

1. Introduction

The evolution of 5G networks is characterized by a multilayer nature, high complexity,
low latency, large bandwidth, high capacity, and heterogeneity. Moreover, 5G networks
need to maintain continuous connectivity to meet QoS requirements for many devices
and must process a large amount of information about the natural environment. Artificial
intelligence (AI) technologies in 5G networks achieve intelligent performance, realistic com-
plex learning, organizational structure, and complex decision making due to their robust
ability to analyze patterns, learn, progress, and intelligently detect. Recent developments
in AI technologies have created new opportunities for intelligent transportation systems
(ITS). Vehicle sensors have become more intelligent over time, allowing vehicles to assess
their surroundings better. Advances in smart transport systems can improve the security
and performance of vehicle communications at all levels. They can provide drivers with
all kinds of information to avoid accidents, reduce traffic congestion, and reduce human
error [1,2].
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AI plays a critical role in 5G networks to extract and quickly gain insights from
data. Machine learning (ML) can automatically detect patterns and discover outliers in
information generated by sensors and smart devices. AI technologies extend ML strategies
applied to smart IoT devices to make complex decisions based on pattern recognition,
self-learning, self-healing, context awareness, and autonomous decision making. These
will influence future dual digital models and continuous learning in autonomous vehicle
applications, IoT, and predictive maintenance. ML has used techniques to evaluate the
effectiveness of internal communications to significantly improve the wireless network
performance and the ability of technology to process and learn from the massive amount
of data collected through various methods, topologies, and mobility scenarios. The ML
technology enables more flexible and reliable vehicular networks. It also provides access to
information and a high level of understanding of wireless communication systems and
proposes to manage the operational aspects of more heterogeneous networks. Adding
ML to wireless networks supports opening up new possibilities for implementing and
improving the networks and creating a reliable, intelligent, sustainable, inclusive, and
robust network that operates without human intervention [3–6].

Symmetry is a widely studied pattern in various research areas. In computer science
and telecommunication networks, symmetric network structures and symmetric algorithms
are often studied. The study of symmetric and asymmetric faults and outliers (anomalies)
in network traffic is also important. Moreover, many systems are symmetric because
the data speed or volume is the same in both directions; improving QoS in the network
depends on symmetry.

The technology of ML can be used in various symmetric IoT applications and makes
it possible that it will be an essential source of information in the future. Therefore, the net-
working environment can access experimental symmetric data through different network
devices, explore the current data, extract information, and make conscious decisions based
on the available data. ML is an essential platform for realizing intelligent IoT applications.
Wide-ranging, intelligent, ML-based IoT systems will be more efficient and effective if they
exploit the properties of “symmetry” and “asymmetry.” This will be helpful in various IoT
applications [7–10], for example:

• Network monitoring improves security and efficiency, where network monitoring that
identifies and fixes problems in applications is much more valuable to an organization
to prevent unwanted system failures.

• Detect intrusions, errors, and anomalies to monitor raw data, such as user records,
devices, networks, and servers. Quickly detect attacks and unclear security risks.

• Improving QoS requirements can be achieved by monitoring the control and manage-
ment of network resources, reducing interference such as packet loss, latency, and jitter
in the network. Network resources are managed through QoS by providing advan-
tages for particular classes of data on the network. Prediction of quality Characteristics
such as throughput, resource allocation, or timing issues. Model enabled accuracy
prediction is a kind of prediction that applies a model as input for the prediction.
Enterprise networks should provide expected and measured services for video confer-
encing that use real-time audio and video communications. Both are delay-sensitive
and bandwidth-intensive forms of communication. Enterprises use QoS to efficiently
manage sensitive applications, such as real-time voice, video, and critical data, and to
avoid degradation of QoS parameters. Enterprises can achieve QoS by using certain
features, such as jitter buffers and bandwidth management. For many enterprises,
QoS is part of SLA with their NSP to ensure a specific stage of network performance.

• Health applications. Recently, medical IoT systems have become one of the most
essential modern medical advancements. This technique can reach a critical benefit by
improving the distance control of healthcare. It can also support detecting medical
problems rapidly, therefore protecting patients’ lives and health. Nevertheless, many
networked medical devices in the IoT healthcare space have security flaws that make
them susceptible to malicious threats. The above challenges can cause serious conse-
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quences that influence patients’ lives by disrupting medical equipment. Therefore,
it is necessary to overcome these challenges to maintain the efficiency and accuracy
of medical IoT systems. At the same time, the wide distribution of sensitive medical
information in IoT healthcare systems leaves them vulnerable to complex attacks that
aim at main security aspects such as privacy and safety. This will harm the reliability,
acquisition, and widespread use of IoT healthcare systems.

• Smart cities are becoming more and more of a reality, thanks to the enormous tech-
nological research enabling the development of IoT, which offers a wide range of
applications around different types of sensors. More sustainable, environmentally
friendly, and economical smart cities and technologies are needed to cope with the
growing population in cities. For smart-city management, numerous sensors, cameras,
and actuators are installed everywhere. These sensors collect and send a bulk of data
in actual time. The analysis and processing of the collected data should be almost
instantaneous for efficient management of city operations. Additionally, for instant
processing, high-speed internet connectivity is essential. With the advent of smart-city
devices, internet-connected devices will transmit large amounts of data in real time.
While this data contributes to the efficiency of city functions, it also poses serious
security risks that cannot be ignored. Data from parking lots, security cameras, electric
vehicle charging stations, and GPS systems contain citizens’ confidential information.
Not every networked device is already cyber-resistant. If it is, criminals can easily
access the data and use it for illegal purposes. Therefore, governments and IT profes-
sionals should strengthen the security perimeters of smart devices and supporting
infrastructure. Identifying and solving smart-city challenges is a collaborative ap-
proach. Governments and IT professionals, private organizations, and citizens should
join together to work for a common goal—the success of the smart city

• Smart farming. With the world’s population growing and climatic changes resulting
in unpredictable weather in the world’s food chains, the race for the sustainability of
farming and the efficient use of dwindling resources such as water is a global challenge
for countries worldwide. Smart farming uses sensors implanted in plants and fields to
take measurements that assist make decisions and plant protection. Precision farming
is an essential part of the smart-farming paradigm, in which sensors are implanted
in plants to take a certain measure to allow targeted care measurement. Precision
farming will be needed to ensure food protection in the future; therefore, it is essential
for farming sustainability. The primary use cases of AI in IoT for farming are plant
health and disease identification and data-based crop protection.

In the computer science and symmetry domain [11], IoT can support various applica-
tions and services in different fields such as healthcare, home automation, security, and
vehicles. The massive increase in data generated by vehicular networks makes vehicular
communication vulnerable to attacks such as anomalies or outliers. These are critical factors
that affect traffic flow and network security and impact the global economy. Robustness to
outliers is a critical issue in modern machine-learning systems for many practical reasons,
such as adversarial attacks, data corruption, etc. AI is a field of computer science that deals
with developing intelligent machines, and complex and novel communication systems to
maximize the chances of success. Nowadays, AI is a critical component to realize a vast
amount of data collected by IoT devices. AI helps in analyzing the wireless network and
data volume for data processing, detection, flow, accuracy, and timing reliability.

Robust intelligent techniques will be needed for adapting the network and managing
resources of 5G for several facilities in multiple schemes. The ML is ideal for working on a
5G network because it requires a lot of data to make predictions and helps ensure that the
5G network can transmit a large amount of information. One of the best ML methods used
for simulating nonlinear optimization functions is Deep Learning (DL). Recent advances in
DL and ML techniques are promising for solving previously intractable and challenging
problems. DL is a technique that uses the hierarchy of ANN to simulate ML activity
during data processing in decision making, the human brain, and the nodal structures
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of the nervous system. In the traditional method, the program analyzes the information
linearly, while the functionality of a DL system allows the devices to process the data using
a nonlinear method [1–16].

V2X technology enables information exchange between moving elements of the trans-
portation network that can affect vehicles and the main components of V2X, such as V2V
and V2I communication technologies, etc. The main benefits of the V2X network, include
improved road safety, energy efficiency, transportation efficiency, and management of the
road. V2X technology allows vehicles to communicate over a WANET using the IEEE
802.11p standard. WANET has several classes such as MANET, VANETs, FANETs, etc. The
requirements of ad hoc networks are becoming more reliable and valuable for all their
possible applications. However, the network requires establishing a mechanism to detect
and mitigate security issues, as they are crucial in the network, and their failure leads to
undesirable results. Wireless networks are typically vulnerable to interference caused by
outliers or noisy data [17].

The presence of outliers or noise causes problems in the transport network as they
affect the network’s performance and lead to unsafe and unreliable connections. In recent
research, various techniques have been used to reduce the impact of outliers in wireless
networks. Among these techniques, the algorithms of ML are the most promising method
that can be improved by reducing the effects of outliers in vehicular communications. The
ML model can be adapted to the new network model depending on the data collection.
Many researchers have been proposed robust learning algorithms to overcome the possibil-
ity of outliers in training data; these algorithms are insensitive to outliers and can detect
unseen observations. However, in implementing the robust algorithms, ML requires close
monitoring and the necessary measures to narrow down the scope, understanding, and
threat model [18,19].

In many fields, such as industrial modeling, multilayer feedforward neural networks
(MFNNs) or deep neural networks (DNNs) are used as approximators of nonlinear func-
tions to provide advanced solutions for various applications. For training DNNs, a standard
backpropagation algorithm based on minimizing the traditional MSE loss function is usu-
ally used. Unfortunately, this algorithm is prone and sensitive to outliers that distort
the training data. As a result, the training data is contaminated with outliers, making
the resulting model less reliable and potentially generating incorrect models, resulting in
unacceptable performance.

Outliers are observations that deviate significantly from other values in a random
sample of mass information. Examples of these outliers include the information population
with gross errors caused by critical measurement errors, incorrect decimals, transcription
errors, accidental scaling of a member from another population, rounding errors, grouping
errors, and hypothetical deviation.

This article is about the performance estimation of V2X using DNNs. A set of robust
statistical estimators, called M-estimators, have been proposed as robust loss functions to
substitute the conventional MSE loss function, improve the training process, and robustize
DL at the occurrence outliers in training data. The robustness in the presence of many
outliers in V2X traffic datasets was illustrated in this work—finally, a comparative study
with traditional and robust neural networks in terms of RMSE and MAPE.

The motivations behind this study include:

• Optimize quality of service (QoS) requirements and network monitoring to manage
resources and ensure security.

• Monitor network availability and activity to identify and eliminate outliers (anoma-
lies), including security and operational issues.

• One of the primary approaches to obtain a robust learning algorithm that is more
robust to outliers is to replace the traditional loss function of the performance measure
MSE with another robust function, to improve performance in the presence of outliers.
In this approach, robustness against outliers has been satisfied by minimizing the
effect of significant training errors due to outliers.
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• The lack of accurate machine-learning analysis to achieve adequate performance.
• The computational complexity of challenging problems in optimizing QoS measures.

The research contributions have been summarized as follows:

• A novel DL algorithm has been proposed to estimate the performance of V2X using
robust M-estimator loss functions instead of the standard MSE loss function.

• A new comparison of the M-estimator approach and the conventional MSE loss
function has been applied in terms of RMSE and MAPE, and under different sets of
outliers on V2X traffic datasets used to verify the efficiency of the proposed method.

• Finally, the results of the simulation-based tests show that:

4 The robust M-estimator loss functions have the best performance in all cases
and outperform the conventional MSE loss function when data is clean or
contains Gaussian noise or outliers.

4 When using noise-free data, the robust Fair loss function performs well and
has the best performance compared to its peers.

4 When using data corrupted by Gaussian noise, the robust Cauchy loss function
shows the best performance compared to the others.

4 Even on training data contaminated with outliers, the robust Fair loss function
performs better than its competitors.

Outline of the article: The article is structured accordingly: the related literature review
is presented in Section 2; the proposed work is explained in Section 3; the robust learning
and outliers are introduced in Section 4; the basic concepts of M-estimator loss function
are defined in Section 5; V2X simulation environment is introduced in Section 6; Deep
Neural Network Learning is presented in Section 7; our theoretical results are illustrated in
Section 8; and finally, in Section 9 we conclude.

2. Relevant Works

Many researchers focus on improving V2X communication performance using ML
techniques to significantly improve traffic safety, energy efficiency, and traffic efficiency in
establishing reliable communication. One of the primary approaches to obtain a robust
learning algorithm that is more robust to outliers is to replace the loss function of the
performance measure MSE with another robust function to enhance the training process
and robustize DL in the presence of outliers. In this approach, robustness against outliers
is satisfied by minimizing the effect of significant training errors due to outliers.

Moreover, there have been some previous efforts to develop robust learning algorithms
to improve performance in the presence of outliers. Moreover, many researchers have
focused on estimating and detecting outliers in wireless networks using ML techniques. In
this work, we studied the performance of V2X traffic using DNNs based on M-estimator
loss functions as a replacement for the standard MSE loss when the data contains outliers.

Abdellah et al. [20] presented robust ANN learning algorithms that enabled robust
statistical methods, called M-estimators, as a robust loss function to substitute the con-
ventional MSE loss function for studying VANET traffic performance. The research [21]
addressed the estimation of energy for VANET performance using robust NN training
algorithms and proposed robust M-estimator loss functions for the case of noise-free in-
formation. Liang et al. [22] investigated the applicability of machine learning to address
problems in highly mobile vehicular communication and prompting ML to manage the
resultant difficulties in vehicular networks. The research [23] presented a set of robust,
statistical M-estimators as a replacement for the conventional MSE loss function using
good, noise-free information. Furthermore, new transfer functions that depend on robust
statistical m-estimators proposed alternatives to traditional transfer functions using a
dataset containing outliers [24].

The DL algorithm has addressed detecting an anomaly in 5G networks regarding
network latency [25]. In [26], the robustness of different ANNs training algorithms has been
investigated using the robust M-estimators as a loss function in order to robustize learning
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in the presence of outliers. Maimó et al. [27] studied DL’s performance for abnormality
discovery in 5G networks. Reddy et al. [28] examined anomaly detection by DNN in
tracking IoT traffic for future smart-city applications.

Abdellah et al. [29] proposed an approach based on a robust estimation technique
called M-estimator as a robust loss function to improve the robustness of the ANN training
procedure. Rusiecki [30] introduced a novel robust performance measure depending on
SoftMax Loss for DNN training in the presence of noisy data and showed its robustness
for different sets of contaminated data. Zahra et al. [31] presented robust NN classifiers
using a novel robust loss function known as M-estimator in the presence of corrupted data.
Alpha et al. [32] combined the advantages of the assumed τ-estimates of the Nonlinear
Regression Model (NRM) and the Backpropagation Algorithm depending on M-estimators
as a robust loss function, in order to create the TAO robust learning algorithm that handles
the problems of model fitting with outliers.

Moreover, Noor-A-Rahim et al., 2021 and Liu et al., 2020 have presented 5G and 6G
technology components for V2X communication [33,34]. In particular, in [33], the authors
discussed the evolution from the existing cellular V2X technology to New Radio-V2X,
focusing on the main features and functions of the physical layer, sidelink communication,
and its resource allocation, precise positioning techniques, security, privacy mechanisms,
and architecture flexibility. On the other hand, several critical technologies from different
areas, such as new tools, algorithms, and system structures, are presented [34].

3. Proposed Work

In this proposed work, the performance of the V2X network using a deep neural
network (DNN) was estimated with new robust loss functions, a set of robust statistical
techniques called M-estimators. The robustness of DNNs for different levels of outliers on
V2X datasets was demonstrated.

The training datasets were created from the V2X network. The V2X network was
simulated using MATLAB software. The collected data was analyzed and processed before
the training phase. After loading the dataset as input to the network, the dataset was
divided into two subsets: Input (I) and Output (O) columns. Then, it was also divided into
training, testing, and validation subsets. The normalization of the input data must be in
the interval [−1, 1], compatible with the actual maximum or minimum values. The ANN
was generally trained using a standard backpropagation (BP) learning algorithm. This
technique is the most popular supervised learning algorithm, where I/O pairs are provided
to the network, and weights are adapted to minimize the error between the network’s
actual and estimated outputs using a loss function based on delta rules. During training,
the training model was adjusted, the gradient of the loss function was calculated, and then
the network weights and biases were updated in response to the gradients. This process
was repeated until the minimum output error was reached.

In the next stage, the test network requires test groups to assess the estimated model
performance. The initial training stage generally reduces the validation error as an error
of the training set. However, when the network overfits the training, the validation error
always begins to increase. In this case, the network parameters were stored with the
minimum error of the validation set.

However, the traditional BP algorithm is not robust when data contains outliers that
can contaminate the training data. To overcome the potential of outliers, a robust BP
algorithm was used in this work. A robust performance measurement function, i.e., the
well-known M-estimator loss function, was proposed as a replacement for the conventional
MSE loss function to improve the robustness of DNNs and obtain the optimal performance
on contaminated data in V2X datasets. DNNs can estimate the optimal performance of
a V2X network based on the collected V2X dataset; V2X throughput was used as input
and packet loss rate as output (desired output). A comparative study between robust and
traditional DNN performance using RMSE and MAPE shows that the proposed algorithm
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provides outstanding results for the desired application. Figure 1 illustrates the flowchart
of the proposed DNN for estimating V2X performance.
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4. Robust Learning and Outliers

In statistics, outliers are observations that deviate dramatically from other data points.
Outliers can result from measurement error, rounding error, human error, long-tailed
noise distribution, etc. Outliers are a general feature of several realistic datasets; their
likelihood in raw data varies between 1–10% [35,36]. However, it is hard to identify
outliers even though there are many of them in actual data, and it is not easy to detect
such multiple outliers; moreover, it is sometimes impossible to tell whether a point is an
outlier or not. Furthermore, defining outliers in multivariate or methodological data can be
difficult or even impossible, and testing for such various deviations is fully involved and
sometimes leads to extensive computations. There is usually no need to disregard these
observations when implementing a data-driven model, only to reduce their impact on the
design parameters.

Training DNNs with the traditional backpropagation learning algorithm minimizes
the training data’s traditional performance measurement function (MSE loss function).
However, this conventional backpropagation learning algorithm is sensitive to outliers that
can distort the training data. It can be considered optimal only for noise-free data or for
data corrupted by errors from the Gauss distribution when the mean is zero [35,36]. When
gross errors or outliers contaminate the data, it leads to an unreliable method. To overcome
the problem of outliers, several robust statistical estimators that are not severely affected
by deviations from observations, such as M-estimators [20,21,23,24,26,29,31], R-estimators,
L-estimators, and LTS [30], and LMedS [37], have been used in recent research papers. In
this paper, we address the robust training of DNN based on using M-estimators as robust
loss functions to substitute the conventional MSE loss function, which loses robustness in
the presence of outliers in the V2X dataset.

5. M-Estimators Loss Function

M-estimators play a vital role in NN society and constitute a broad group of estimators;
maximum likelihood estimation and nonlinear least-squares methods are special cases.
M-estimators are an effective mechanism in robust statistics that is resistant to outliers. M-
estimators are robust statistical estimators usually used as an alternative to the least-squares
estimator (LS) when the data contain outliers or extreme observations or do not conform to
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a normal distribution. The M-estimator is advantageous when the data have outliers and
are contaminated by a single outlier (or an error with a strong tail). Even a single outlier
can destroy the least-squares estimator and lead to its breakdown. Therefore, there are two
options: 1. eliminate outliers that give a bad result; 2. use the robust M-estimators.

Recently, several researchers have proposed M-estimators as loss functions to improve
the learning process of NNs. The M-estimators use multiple loss functions that are less
increasing than the LS estimators. The M-estimator restricts the response once the fitting
error surpasses a threshold, i.e., the fitting error is not zero. Hence, the M-estimator loss
function has greater reliability, robustness, and flexibility when the data contains outliers
than the conventional MSE loss function, which is highly susceptible to outliers; thus, this
set of estimators should be a suitable replacement for the MSE loss function outliers.

In this work, the traditional MSE loss function has been replaced by M-estimator
loss functions to improve the training process and increase the learning of NNs. Assume
that ei is the residual of the ith data point that is the difference between the observed
and estimated values. The least-squares method attempts to reduce the error ∑ ie2

i that is
unstable with outliers. Outlier data has extreme values that can spoil the estimation of the
parameters. The M-estimators attempt to minimize the effects of outliers by exchanging
the squared residuals e2

i with various fitting error functions, resulting in:

min ∑
i

ρ(ei) (1)

• ρ(e) is a positive-definite symmetric function, where ρ(e) = ρ(−e) for all e.
• ρ(e) ≥ 0 for all e and has a unique minimum at e = 0.
• ρ(e) increases when e increases from 0 but does not become too large when e increases

and is selected to be less increasing than square.

Table 1 illustrates the used M-estimators, and their influence function can be repre-
sented as follows [36,38].

Table 1. Commonly used M-estimators.

Type P (e) Ψ (e) ω (e)

L2 e2/2 e 1

Fair c2
[
|e|
c − log

(
1 + |e|

c

)]
e

1+|e|/c
1

1+|e|/c

Cauchy c2

2 log
(

1 + (e/c)2
)

e
1+(e/c)2

1
1+(e/c)2

6. V2X Simulation Environment

In this section, V2X in a smart city has simulated using MATLAB environment. First,
the mobility map for V2X has been created. The AODV routing protocol was prepared in a
virtual mobility map to study and evaluate its work. The road network is developed when
creating mobility maps containing basic entities: simulation domain, connection point
(node), and RSU (roadside unit). The simulation domain needs to define the connection
points that move in arbitrary directions to implement AODV. Implementing the AODV
routing protocol requires a maximum city size and many nodes; you also need to install
multiple RSUs. If the simulation domain is larger than the simulation time, this will be
automatically expanded and assumed that the simulation domain is 100 × 100 for the x–y
axis. In the mobility model, the desired connection points in the boundary can move in any
direction along fixed routes.

Figure 2 shows that the dots represent the individual connection points and RSU
locations by the ID numbers assigned to them by the network design and configuration.
The beginning and end of this model are indicated sequentially by the connection point
numbers 20 and 70. This unit causes the arrangement of multiple connection points; the
flow of connection points assigns groups of connection-point activities that flow over the
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simulation and the turn ratio that determines the probability of routes at every intersection.
The simulation module visualizes the network architecture and selects the start and end
times of the simulation. The position of the RSU in the simulation map helps connection
points that move randomly to communicate with other connection points far away from
other connection point areas. The RSU allows for connecting and exchanging messages
with moving vehicles, including safety alerts and traffic information, and they can also
connect directly or through multihop connections. Figure 2 illustrates the V2X simulation
in a smart city.
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7. Deep Neural Network Learning

Deep learning is an ML method that depends on the architecture and function of
artificial neural networks (ANNs). For this reason, DL, also known as DNN, consists of
multiple hidden layers. DL has usually been implemented to deal with massive amounts
of data and complex algorithms to train the model. Every layer has neurons connected
to the neurons of the previous layer by a set of weights. As shown in Figure 3, there are
many different layers, but the most common is the dense layer, which connects all modules
directly to each neuron in the previous layer. The neurons in each subsequent layer can
represent increasingly complex aspects of the original input by stacking layers.

The DNN consists of many units, so the output of one unit becomes the input for
the following units in the network, as shown in Figure 3. The first and last layers are the
input and output layers, respectively, and the last layer is the output layer. The input layer
contains several neurons corresponding to the input samples from the V2X dataset. In this
work, V2X performance has been estimated for a particular traffic dataset; the output layer
also contained a single neuron, considered the output or estimated output value since there
was only one output.

During DNN training, the weights are initialized randomly. Then, sample data is
added one by one. The learning rule has been applied to adjust the connections’ weights
considering the input data and the expected result. The efficiency of DNN, i.e., the accuracy
and the results, largely depends on the data examples used in training. An extensive set of
data examples with high content variability is the key to more accurate inference results.
When the training depends on similar or repetitive data, the DNN will not analyze the
basic information differently from the example data. In this case, the DNN will retrain.
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In this work, the architecture of DNN consists of three layers with a hidden layer
containing 100 hidden neurons, as shown in Figure 3. The most appropriate architectural
parameters (e.g., batch size, epochs, activation function, loss function, learning rate, and
performance goal) have been selected for the proposed model DL.

The model was trained using both the traditional loss-function MSE and the robust
loss-function M-estimator. For all neurons in the hidden layer, the activation function
Tansig was chosen, and Purlin was selected for the neuron in the output layer. We chose a
batch size of 32, a number of epochs of 1000, a learning rate of 1 × 10−3, and a performance
goal (minimum loss) of 1 × 10−3. The model DL was trained several times with different
configurations. We created different combinations of the input dataset with minor changes
to the network parameters and ran them with all possible topologies. However, this is
only the initial phase; once the input dataset is prepared, only this dataset is used, and the
number of data type values is fixed.

8. Simulation Results

In this section, the V2X traffic dataset was collected and processed after simulating the
V2X environment. The dataset was split into 70% training, 15% validation, and 15% testing.
A DNN model was built to estimate the performance of the V2X traffic. DNN trained with
the robust BP algorithm uses both M-estimators as robust loss functions and the traditional
MSE loss function. All the above loss functions try to find the optimal V2X performance
in the presence of outliers—comparing the performance of robust and traditional DNNs
using RMSE and MAPE for each model.

The performance of DNNs was examined for the percentage of outliers in three cases
as follows:

(1) Set A: The DNN is trained with noise-free, high-quality, clean data.
(2) Set B: The network is trained with perfect data contaminated with slight Gaussian

noise (GN): G2~N (0, 0.1).
(3) Set C: DNN is trained with data contaminated with GN, G2~N (0,0.1), in addition to

very good, randomized outliers of the form:

H1~N (+15, 2), H2~N (−20, 3), H3~N (+30, 1.5), H4~N (−12, 3).
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The training data used in this case is as follows:

Data = (1− ε)G2 + ε(H1 + H2 + H3 + H4)

Data are error distribution, and G2, H1, H2, H3, and H4 are probability distributions
occurring on probability 1− ε and ε, respectively, where ε is fixed and H random. In this
case, the outliers were included in the training data with a percentage ε = 10% of the data.
We assigned the outliers randomly to the desired percentage of data (percent outliers) (25%
of this percentage will have outlier H1 type, the other 25% will have H2 type, and so on . . .
H3 and H4). The dataset used for this experiment was generated from the V2X network.
The dataset is then contaminated in the x–y axis by Gaussian noise with a mean of zero and
a standard deviation of 0.1, G2~N (0, 0.1). A variable percentage, ε, of data was randomly
selected and then replaced with probability, ε, by background noise uniformly distributed
in the specific range [24,26,29,31,32].

In this work, a DNN architecture is MFNN consisting of three layers with one hidden
layer containing 100 hidden neurons. The network was trained using the robust BP
algorithm based on the robust loss functions mentioned earlier. The training function is
Traincgf, the max epoch for training is 1000 epochs. Moreover, the performance goal (min
loss) is 1 × 10−3. The normalization of the input data must be in the interval [−1, 1], which
is compatible with the actual maximum to minimum values. DNN can estimate the optimal
performance of a V2X network based on the collected V2X dataset; it used V2X throughput
as input and packet loss rate as output (desired output). The goal is to develop a robust
DNN that can estimate V2X performance when the data contains outliers. We conducted a
comparative study between robust and traditional DNN performances regarding RMSE
and MAPE, to prove which algorithm gives excellent results for the considered application.

RMSE =

√
1
n

n

∑
i=1

(xi − x̂i)
2 (2)

MAPE =
100
n

n

∑
i=1

∣∣∣∣ xi − x̂i
xi

∣∣∣∣ (3)

where n is the number of data points, xi is the observed value, and x̂i is the estimated value.
The subscript i denotes the corresponding individual values of the observed and estimated
values.

Table 2 shows the performance values for networks trained with MSE, Fair, and
Cauchy loss functions for estimating V2X traffic.

Table 2. Performance scores for networks trained with MSE, Fair, and Cauchy loss functions for
estimating V2X traffic.

Loss Function
Set A Set B Set C

RMSE MAPE% RMSE MAPE% RMSE MAPE%

MSE 0.0156 1.3 0.1786 10.6 0.5179 16.7
Cauchy 0.0194 1.5 0.0630 5.4 0.0923 9.8

Fair 0.0132 1.1 0.0740 6.2 0.0756 8.6

Table 2 shows the performance predicted by robust and traditional DNN loss functions
for robust estimation of V2X traffic in the presence of outliers. The performance has been
estimated using RMSE and MAPE in three cases according to the percentage of outliers.

The loss function Fair has the best performance, as shown by the tabulated results,
compared to its competitors in RMSE and MAPE in the case of set A with noise-free data.
The maximum average performance improvement, in this case, is 0.4%. Moreover, the
traditional MSE loss function has approximately the same performance as the Fair loss
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function, and the maximum average improvement is 0.2% in this case. On the other hand,
the Cauchy loss function provides the lowest performance compared to the other functions.

Looking at the tabulated results using set B, it is found that the robust Cauchy loss
function has the best performance compared to the others in both RMSE and MAPE. The
maximum average of performance improvement, in this case, is 5.2%. Additionally, the
robust Fair loss function has semi-equal performance to the robust Cauchy loss function,
and the maximum average of performance improvement is 4.4%. On the other hand, the
traditional MSE loss function performs poorly compared to the others.

As the table shows in the case of set C with contaminated data, the robust neural
networks are insensitive to outliers. The robust loss function Fair has the best performance
compared to the others. The average performance improvement, in this case, is 8.1%. In
addition, the robust Cauchy loss function performs approximately the same as the robust
Fair loss function, and the average performance improvement is 6.9% in this case. However,
the traditional MSE loss function offers poor performance compared to its peers.

Figure 4 shows, using Set A with high-quality noise-free data, that all models trained
with robust and traditional loss functions have approximately equivalent responses to the
ideal model. We noted that the estimated model gradually decreases with an increase in
the input pattern.
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Figure 4. The predicted models in the robust loss functions Cauchy and Fair and the traditional loss
function MSE in Set A.

Figure 5 illustrates the validation loss of each model over the number of epochs during
DNN training in three cases according to the loss function used—MSE, Cauchy, and Fair,
respectively. It was found that the error gradually decreases after more training epochs in
all cases. The best validation performance is 0.015838 at the 63rd epoch, 0.0012387 at the
45th epoch, and 0.018973 at the 43rd epoch of the training network using the traditional
loss functions MSE, Cauchy, and Fair, respectively.
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Figure 5. The best validation performance of DNN training in the case of Set A.

In Figure 6, it can be seen that in the case of using set B on the data corrupted with
Gaussian noise, the predicted models using Cauchy and Fair robust loss functions have
responses that are semi-equal and close to the ideal model, except that the model predicted
using the conventional MSE loss function deviates from the ideal model. The performance
of the training, in this case, is shown in Figure 7. We noticed that the loss decreases as
the number of epochs increases. The best validation performance using the traditional
MSE loss function is 0.06399 at the 46th epoch. The best validation performance in the
case of robust Fair loss function is 0.07479 at the 44th epoch. Moreover, the best validation
performance using the robust Cauchy loss function is 0.0040613 at the 54th epoch.
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Figure 6. The predicted models in robust loss functions Cauchy and Fair and traditional loss function
MSE in set B.
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Figure 7. The best validation performance of DNN training in the case of set B.

As illustrated in Figure 8, when using set C with data corrupted with outliers, the
robust neural networks are immune to outliers and produce approximately ideal results.
Otherwise, the model generated by traditional neural networks (MSE) has been strongly
affected by the outliers.
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Figure 8. Predicted models in the robust loss functions Cauchy and Fair and the traditional loss
function MSE in the set C case.

The performance of the training, in this case, is shown in Figure 9. We noted that the
loss decreases with the increasing number of epochs. The best validation performance
when using the traditional MSE loss function is 0.069745 at the 65th epoch; the best
validation performance when using the robust, fair loss function is 0.047096 at the 50th
epoch. Moreover, the best validation performance when using the robust Cauchy loss
function is 0.0027879 at the 71st epoch.
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In Figure 10, the relationship between the performance represented by RMSE and
the percentage of outliers is depicted. It can be observed that RMSE increases with an
increasing percentage of outliers, which is significant when using the conventional MSE
loss function.
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9. Conclusions

In this work, V2X performance was estimated using DNN learning based on robust
M-estimators as robust loss functions for performance measurement (a robust statistical
technique), in order to replace the traditional MSE loss function in the presence of outliers
in V2X datasets. The simulation results show that the deep-learning approach with M-
estimator loss functions provides excellent results for the V2X network in the presence
of outliers. The proposed robust M-estimator loss functions were compared with the
conventional MSE loss function for different percentages of outliers. The results show
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that the robust M-estimator loss functions have the best performance in all cases and
outperform the conventional MSE loss function. When using noise-free data, the robust
Fair loss function performs well and has the best performance compared to its peers. When
using data corrupted by Gaussian noise, the robust Cauchy loss function shows the best
performance compared to the others. Even on training data contaminated with outliers, the
robust Fair loss function performs better than its competitors. Based on the above results,
the robust M-estimator loss functions are a promising solution for the highly corrupted
datasets in wireless networks.
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Abbreviations
M-estimators Maximum-likelihood estimators
LMedS Least Median of Squares
L-estimators Linear combination of order statistics
R-estimators Estimates based on rank transformations
MSE Mean square error
DNN Deep neural networks
DL Deep Learning
BP Backpropagation
RMSE Root Mean square error
MAPE Mean absolute percentage of error
LTS Least Trimmed Squares
LMLS Least mean log square
QoS Quality of service
ITS Intelligent Transportation Systems
AI Artificial Intelligence
IoT Internet of Things
ML Machine Learning
ANN Artificial Neural Networks
MFNNs Multilayer feedforward neural networks
V2X Vehicle to Everything
WANET Wireless ad hoc network
MANET Mobile ad hoc network
VANETs Vehicular ad hoc networks
FANETs Flying ad hoc networks
LMLS The least mean log squares
Traincgf Conjugate gradient backpropagation with Fletcher-Reeves updates
SLA Service level agreement
NSP Network service provider
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