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Abstract: In this paper, we study a boundary value problem involving (p, q)-integrodifference
equations, supplemented with nonlocal fractional (p, q)-integral boundary conditions with respect
to asymmetric operators. First, we convert the given nonlinear problem into a fixed-point problem,
by considering a linear variant of the problem at hand. Once the fixed-point operator is available,
existence and uniqueness results are established using the classical Banach’s and Schaefer’s fixed-
point theorems. The application of the main results is demonstrated by presenting numerical
examples. Moreover, we study some properties of (p, q)-integral that are used in our study.

Keywords: fractional (p, q)-integral; fractional (p, q)-difference; nonlocal boundary value problems;
existence

1. Introduction

Quantum calculus or q-calculus is the modern name for the study of calculus without
limits. q-calculus was first introduced by Jackson [1,2] in 1910. Quantum calculus has
many applications in mathematics and physics, for example, in orthogonal polynomials,
combinatorics, number theory, simple hypergeometric functions, dynamics and theory of
relativity, to name a few.

An extension of quantum calculus, the (p, q)-calculus or post-quantum calculus, was
introduced by Chakrabarti and Jagannathan in [3]. (p, q)-calculus is a generalization of q
calculus including two independent quantum parameters p and q, reduced to q-calculus
for the case p = 1 and to the classical q calculus when q→ 1. Furthermore, (p, q)-calculus
has many applications, such as physical sciences, combinatorics, hypergeometric functions,
number theory, mechanics, Bézier curves and surfaces, etc. (for instances, see [4–8]). Many
researchers have recently begun working on (p, q)-calculus and some results can be found
in [9–14] and references cited therein. Recently, in [15], the authors introduced the fractional
(p, q)-difference operators and studied their properties.

Recently, (p, q)-calculus was applied to establish several new types of inequalities
(see [16,17] and references cited therein). In the literature, there exist few papers studying
boundary value problems for (p, q)-difference equations, because the (p, q)-fractional oper-
ator has been introduced recently. In [18], the following (p, q) boundary value problem for
second order (p, q)-difference equations with separated boundary conditions was studied:
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
D2

p,qx(t) = f (t, x(p2t)), t ∈ [0, T/p2],

α1x(0) + α2Dp,qx(0) = α3,

β1x(T) + β2Dp,qx(T/p) = β3,

(1)

where 0 < q < p ≤ 1 are two quantum numbers, D2
p,q is the second order (p, q)-difference

operator and f ∈ C([0, T/p2]×R,R), T > 0, αi, βi, i = 1, 2, 3 are given real constants. A
variety of new existence and uniqueness results were established using Banach’s, Schaefer’s
and Krasnoselskii’s fixed-point theorems, as well as Leray–Schauder’s nonlinear alternative.

Some more results on (p, q) boundary value problems can be found in [19–21]. For
existence results for boundary value problems fractional (p, q)-difference Schrödinger
equations, we refer to [22].

Recently, in [15], the authors introduced the fractional (p, q)-integrodifference op-
erators and studied their properties. Boundary value problems for fractional (p, q)-
integrodifference equations with Robin boundary conditions were studied in [23], where
the authors established existence and uniqueness results for the following problem:

Dα
p,qu(t) = F

[
t, u(t), Ψγ

p,qu(t), Dν
p,qu(t)

]
, t ∈ IT

p,q,

λ1u(η) + λ2Dβ
p,qu(η) = φ1(u), η ∈ IT

p,q −
{

0,
T
p

}
, (2)

µ1u
(

T
p

)
+ µ2Dβ

p,qu
(

T
p

)
= φ2(u),

where IT
p,q :=

{
qk

pk+1 T : k ∈ N0

}
∪ {0}, 0 < q < p ≤ 1, α ∈ (1, 2]; β, γ, ν ∈ (0, 1],

λ1, λ2, µ1, µ2 ∈ R+, F ∈ C
(

IT
p,q ×R×R×R,R

)
is given function, φ1, φ2 : C

(
IT
p,q,R

)
→ R

are given functionals and

Ψγ
p,qu(t) :=

(
Iγ

p,q ϕ u
)
(t) =

1

p(
γ
2)Γp,q(γ)

∫ t

0
(t− qs)

γ−1
p,q ϕ(t, s) u

(
s

pγ−1

)
dp,qs, (3)

are (p, q)-integral operators defined for ϕ ∈ C
(

IT
p,q × IT

p,q, [0, ∞)
)
.

Motivated by the the aforementioned papers, our goal in this paper is to enrich the
literature on boundary value problems for fractional (p, q)-integrodifference equations.
More precisely, we introduce and study a nonlocal boundary value problem for (p, q)-
integrodifference equations subject to fractional (p, q)-integral boundary conditions of
the form

Dα
p,qu(t) = λF

[
t, u(t),

(
Ψγ

p,qu
)
(t)
]
+ µH

[
t, u(t),

(
Υν

p,qu
)
(t)
]
, t ∈ IT

p,q,

Iβ
p,qg1(η)u(η) = φ1(u), η ∈ IT

p,q −
{

0,
T
p

}
, (4)

Iβ
p,qg2

(
T
p

)
u
(

T
p

)
= φ2(u),

where IT
p,q :=

{(
q
p

)k
T
p : k ∈ N0

}
∪ {0}; 0 < q < p ≤ 1; α ∈ (1, 2], β, γ, ν ∈ (0, 1],

λ, µ ∈ R+, F, H ∈ C
(

IT
p,q ×R×R,R

)
and g1, g2 ∈ C

(
IT
p,q,R+

)
are given functions, φ1, φ2 :

C
(

IT
p,q,R

)
→ R are given functionals and

(
Ψγ

p,qu
)
(t) :=

(
Iγ

p,q ϕ u
)
(t) =

∫ t

0

(t− qs)
γ−1
p,q

p(
γ
2)Γp,q(γ)

ϕ

(
t,

s
pγ−1

)
u
(

s
pγ−1

)
dp,qs, (5)
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(
Υν

p,qu
)
(t) :=

(
Dν

p,qψ u
)
(t) =

∫ t

0

(t− qs)−ν−1
p,q

p(
−ν
2 )Γp,q(−ν)

ψ

(
t,

s
p−ν−1

)
u
(

s
p−ν−1

)
dp,qs. (6)

are operators defined for ϕ, ψ ∈ C
(

IT
p,q × IT

p,q, [0, ∞)
)
.

We notice that the the boundary value problem (4) is of general type, concerning both
(p, q)-fractional integral and (p, q)-fractional derivative operators. In addition, it contains
nonlocal boundary conditions; it is well known that the study of nonlocal boundary value
problems is of significance, since they have applications in physics and other areas of
applied mathematics. We emphasize that the novelty of our paper lies in both the equation
and the boundary conditions, contributing significantly to the existing literature on the
topic. Our existence and uniqueness results rely on the standard tools of functional analysis.
The methods used in our analysis are standard; however, their exposition in the framework
of the boundary value problem (4) is new.

The remaining part of this manuscript is organized as follows. Section 2 contains
some basic notions and known results of (p, q)-calculus. Furthermore, an auxiliary result
is proved which plays a key role in transforming the given problem into a fixed-point
problem. In Section 3, we prove the existence of a unique solution for the boundary value
problem (4) via the Banach contraction mapping principle. An existence result is proved
in Section 4, by using Schaefer’s fixed-point theorem. Finally, examples illustrating the
applicability of the main results are presented in Section 5. The papers ends with a section
that illustrates the conclusions.

2. Preliminaries

In this section, some concepts regarding our study are recalled. Let 0 < q < p ≤ 1.
The following notations are used:

[k]q :=


1− qk

1− q
, k ∈ N

1, k = 0,

[k]p,q :=


pk − qk

p− q
= pk−1[k] q

p
, k ∈ N

1, k = 0,

[k]p,q! :=

[k]p,q[k− 1]p,q · · · [1]p,q =
k

∏
i=1

pi − qi

p− q
, k ∈ N

1, k = 0.

By

σk
p,q(t) :=

(
q
p

)k
t and ρk

p,q(t) :=
(

p
q

)k
t, for k ∈ N,

we denote, respectively, the (p, q)-forward jump and the (p, q)-backward jump operators.
For the power function (a− b)n

q with n ∈ N0 := {0, 1, 2, . . .}, the q-analogue is given by

(a− b)0
q := 1, (a− b)n

q :=
n−1

∏
i=0

(a− bqi), a, b ∈ R.

and

(a− b)0
p,q := 1, (a− b)n

p,q :=
n−1

∏
k=0

(apk − bqk), a, b ∈ R,

is the (p, q)-analogue of the power function (a− b)n
p,q, with n ∈ N0.
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For α ∈ R, we define a general form

(a− b)α
q = aα

∞

∏
i=0

1−
(

b
a

)
qi

1−
(

b
a

)
qα+i

, a 6= 0.

(a− b)α
p,q = p(

α
2)(a− b)α

q
p
= aα

∞

∏
i=0

1
pα

 1− b
a

(
q
p

)i

1− b
a

(
q
p

)i+α

, a 6= 0.

Note that aα
q = aα, aα

p,q =

(
a
p

)α

and (0)α
q = (0)α

p,q = 0 for α > 0.

The (p, q)-gamma and (p, q)-beta functions are defined by

Γp,q(x) :=


(p− q)

x−1

p,q

(p− q)x−1 =

(
1− q

p

)x−1

p,q(
1− q

p

)x−1 , x ∈ R \ {0,−1,−2, . . .}

[x− 1]p,q!, x ∈ N

Bp,q(x, y) :=
∫ 1

0
tx−1(1− qt)

y−1
p,q dp,qt = p

1
2 (y−1)(2x+y−2) Γp,q(x)Γq p, q(y)

Γp,q(x + y)
,

respectively.

Definition 1. For 0 < q < p ≤ 1 and f : [0, T]→ R, we define the (p, q)-difference of f as

Dp,q f (t) :=


f (pt)− f (qt)
(p− q)(t)

, for t 6= 0

f ′(0), for t = 0

if f is differentiable at 0. If Dp,q f (t) exists for all t ∈ IT
p,q, then f is called (p, q)-differentiable

on IT
p,q.

Definition 2. Let us assume that I is a closed interval of R containing a, b and 0 and f : I → R
is a given function. The (p, q)-integral of the function f from a to b is defined by

∫ b

a
f (s)dp,qs :=

∫ b

0
f (s)dp,qs−

∫ a

0
f (s)dp,qs,

where

Ip,q f (t) =
∫ t

0
f (s)dp,qs = (p− q)t

∞

∑
k=0

qk

pk+1 f

(
qk

pk+1 t

)
, t ∈ I,

provided that the series converges at t = a and t = b. If f is (p, q)-integrable on [a, b] for all
a, b ∈ I, then f is called (p, q)-integrable on [a, b].

Next, we define an operator IN
p,q as

I0
p,q f (x) = f (x) and IN

p,q f (x) = Ip,qIN−1
p,q f (x), N ∈ N.

The relations between (p, q)-difference and (p, q)-integral operators are given by

Dp,qIp,q f (x) = f (x) and Ip,qDp,q f (x) = f (x)− f (0).
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Next, we introduce the Riemann–Liouville type of fractional (p, q)-integral and frac-
tional (p, q)-difference.

Definition 3. For α > 0, 0 < q < p ≤ 1 and f defined on IT
p,q, the fractional (p, q)-integral is

defined by

Iα
p,q f (t) :=

1

p(
α
2)Γp,q(α)

∫ t

0
(t− qs)α−1

p,q f
(

s
pα−1

)
dp,qs

=
(p− q)t

p(
α
2)Γp,q(α)

∞

∑
k=0

qk

pk+1

(
t−
(

q
p

)k+1
t

)α−1

p,q

f

(
qk

pk+α
t

)
,

and (I0
p,q f )(t) = f (t), where the notation (α

2) is a combination.

Definition 4. For α > 0, 0 < q < p ≤ 1 and f defined on IT
p,q. The Riemann–Liouville type

fractional (p, q)-difference operator of of order α is defined by

Dα
p,q f (t) := DN

p,qIN−α
p,q f (t)

=
1

p(
−α
2 )Γp,q(−α)

∫ t

0
(t− qs)−α−1

p,q f
(

s
p−α−1

)
dp,qs,

and D0
p,q f (t) = f (t), where N − 1 < α < N, N ∈ N.

Next, we introduce lemmas that are used in the main results.

Lemma 1 ([15]). Let α ∈ (N − 1, N), N ∈ N, 0 < q < p ≤ 1 and f : IT
p,q → R. Then,

Iα
p,qDα

p,q f (t) = f (t) + C1tα−1 + C2tα−2 + · · ·+ CNtα−N

for some Ci ∈ R, i = 1, 2, . . . , N.

Lemma 2 ([15]). Let 0 < q < p ≤ 1 and f : IT
p,q → R a continuous at 0 function. Then, we have

∫ x

0

∫ s

0
f (τ) dp,qτ dp,qs =

∫ x
p

0

∫ x

pqτ
f (τ) dp,qs dp,qτ.

Lemma 3 ([15]). Let α, β > 0, 0 < q < p ≤ 1. Then,

(a)
∫ t

0
(t− qs)α−1

p,q sβ dp,qs = tα+βBp,q(β + 1, α),

(b)
∫ t

0

∫ x

0
(t− qx)α−1

p,q (x− qs)
β−1
p,q dp,qs dp,qx =

Bp,q(β + 1, α)

[β]p,q
tα+β.

Lemma 4 ([23]). Let α, β > 0, 0 < q < p ≤ 1 and n ∈ Z. Then,

(a)
∫ t

0
(t− qs)α−1

p,q dp,qs = p(
α
2)

Γp,q(α)

Γp,q(α + 1)
tα,

(b)
∫ t

0
(t− qs)

−β−1
p,q

(
s

p−β−1

)α−n
dp,qs = p(

−β
2 ) Γp,q(α− n + 1)Γp,q(−β)

Γp,q(α− β− n + 1)
tα−β−n.

We employ the above lemmas to obtain the new results as follows.
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Lemma 5. Let α, β > 0, 0 < q < p ≤ 1 and n ∈ Z. Then,

∫ t

0

∫ x
pβ−1

0
(t− qx)

β−1
p,q

(
x

pβ−1 − qs
)α−1

p,q
dp,qs dp,qx = p(

α
2)+(β

2)
Γp,q(α)Γp,q(β)

Γp,q(α + β + 1)
tα+β.

Proof. From Lemma 3 (a) and the definition of the (p, q)-beta function, we have

∫ t

0

∫ x
pβ−1

0
(t− qx)

β−1
p,q

(
x

pβ−1 − qs
)α−1

p,q
dp,qs dp,qx =

Bp,q(1, α)

pα(β−1)

∫ t

0
(t− qx)

β−1
p,q xα dp,qx

=
Bp,q(1, α)

pα(β−1)
Bp,q(α + 1, β) tα+β

= p(
α
2)+(β

2)
Γp,q(α)Γp,q(β)

Γp,q(α + β + 1)
tα+β.

The proof is complete.

The following lemma, concerning a linear variant of problem (4), plays a significant
role in the forthcoming analysis.

Lemma 6. Let Λ 6= 0, α ∈ (1, 2], β ∈ (0, 1], 0 < q < p ≤ 1, h ∈ C
(

IT
p,q,R

)
and g1, g2 ∈

C
(

IT
p,q,R+

)
be given functions and φ1, φ2 : C

(
IT
p,q,R

)
→ R be given functionals. Then, the

boundary value problem

Dα
p,qu(t) = h(t), t ∈ IT

p,q, (7)

Iβ
p,qg1(η)u(η) = φ1(u), η ∈ IT

p,q −
{

0,
T
p

}
, (8)

Iβ
p,qg2

(
T
p

)
u
(

T
p

)
= φ2(u), (9)

has the unique solution

u(t) =
1

p(
α
2)Γp,q(α)

∫ t

0
(t− qs)α−1

p,q h
(

s
pα−1

)
dp,qs

− tα−1

Λ

{
BTOη [φ1, h]− BηOT [φ2, h]

}
(10)

+
tα−2

Λ

{
ATOη [φ1, h]−AηOT [φ2, h]

}
where the functionals Oη [φ1, h],OT [φ2, h] are defined by

Oη [φ1, h] := φ1(u)−
1

p(
α
2)+(β

2)Γp,q(α)Γp,q(β)
× (11)

∫ η

0

∫ x
pβ−1

0
(η − qx)

β−1
p,q

(
x

pβ−1 − qs
)α−1

p,q
g1

(
x

pβ−1

)
h
(

s
pα−1

)
dp,qs dp,qx,

OT [φ2, h] := φ2(u)−
1

p(
α
2)+(β

2)Γp,q(α)Γp,q(β)
× (12)

∫ T
p

0

∫ x
pβ−1

0

(
T
p
− qx

)β−1

p,q

(
x

pβ−1 − qs
)α−1

p,q
g2

(
x

pβ−1

)
h
(

s
pα−1

)
dp,qs dp,qx,

and the constants Aη , AT , Bη , BT and Λ are defined by

Aη :=
1

p(
β
2)Γp,q(β)

∫ η

0
(η − qs)

β−1
p,q g1

(
s

pβ−1

)(
s

pβ−1

)α−1
dp,qs (13)
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AT :=
1

p(
β
2)Γp,q(β)

∫ T
p

0

(
T
p
− qs

)β−1

p,q
g2

(
s

pβ−1

)(
s

pβ−1

)α−1
dp,qs (14)

Bη :=
1

p(
β
2)Γp,q(β)

∫ η

0
(η − qs)

β−1
p,q g1

(
s

pβ−1

)(
s

pβ−1

)α−2
dp,qs (15)

BT :=
1

p(
β
2)Γp,q(β)

∫ T
p

0

(
T
p
− qs

)β−1

p,q
g2

(
s

pβ−1

)(
s

pβ−1

)α−2
dp,qs (16)

Λ :=ATBη −AηBT . (17)

Proof. Taking fractional (p, q)-integral of order α for (7) and using Lemma 1, we have

u(t) =C1tα−1 + C2tα−2 +
1

p(
α
2)Γp,q(α)

∫ t

0
(t− qs)α−1

p,q h
(

s
pα−1

)
dp,qs. (18)

Then, we take fractional (p, q)-integral of order β for (18); we have

Iβ
p,qu(t) =

C1tα+β−1

Γp,q(α + β)
+

C2tα+β−2

Γp,q(α + β− 1)
+

1

p(
α
2)+(β

2)Γp,q(α)Γp,q(β)
× (19)

∫ t

0

∫ x
pβ−1

0
(t− qx)

β−1
p,q

(
x

pβ−1 − qs
)α−1

p,q
h
(

s
pα−1

)
dp,qs dp,qx.

Substituting t = η into (19) and employing the condition (8), we have

C1Aη + C2Bη = Oη [φ1, h]. (20)

Taking t =
T
p

into (19) and employing the condition (9), we have

C1AT + C2BT = OT [φ2, h]. (21)

Solving (20) and (21), we find that

C1 =
BηOT − BTOη

Λ
and C2 =

ATOη −AηOT

Λ
,

where Oη [φ1, h],OT [φ2, h], Aη , AT , Bη , BT and Λ are defined by (11)–(17), respectively.
Substituting the constants C1, C2 into (18), we obtain (10). We can prove the converse by
direct computation. This completes the proof.

3. Existence and Uniqueness Result

In this section, an existence and uniqueness result for the problem (4) is proved, via
the Banach contraction mapping principle. By C = C

(
IT
p,q,R

)
, we denote the Banach space

furnished with the norm
‖u‖C = ‖u‖+

∥∥∥Dν
p,qu

∥∥∥,

where ‖u‖ = max
t∈IT

p,q

{
|u(t)|

}
and ‖Dν

p,qu‖ = max
t∈IT

p,q

{∣∣∣Dν
p,qu(t)

∣∣∣}.

By Lemma 6, replacing h(t) by λF
[
t, u(t),

(
Ψγ

p,qu
)
(t)
]
+ µH

[
t, u(t),

(
Υν

p,qu
)
(t)
]
, we

define an operator A : C → C by

(Au)(t) :=
1

p(
α
2)Γp,q(α)

∫ t

0
(t− qs)α−1

p,q

(
λF
[

s
pα−1 , u

(
s

pα−1

)
,
(
Ψγ

p,qu
)( s

pα−1

)]



Symmetry 2021, 13, 2212 8 of 15

+ µH
[

s
pα−1 , u

(
s

pα−1

)
,
(

Υν
p,qu

)( s
pα−1

)])
dp,qs

− tα−1

Λ

{
BTO∗η [φ1, Fu + Hu]− BηO∗T [φ2, Fu + Hu]

}
+

tα−2

Λ

{
ATO∗η [φ1, Fu + Hu]−AηO∗T [φ2, Fu + Hu]

}
(22)

where the functionals O∗η [φ1, Fu + Hu], O∗T [φ2, Fu + Hu] are defined by

O∗η [φ1,Fu + Hu]

:= φ1(u)−
1

p(
α
2)+(β

2)Γp,q(α)Γp,q(β)

∫ η

0

∫ x
pβ−1

0
(η − qx)

β−1
p,q

(
x

pβ−1 − qs
)α−1

p,q
×

g1

(
x

pβ−1

)(
λF
[

s
pα−1 , u

(
s

pα−1

)
,
(
Ψγ

p,qu
)( s

pα−1

)]

+ µH
[

s
pα−1 , u

(
s

pα−1

)
,
(

Υν
p,qu

)( s
pα−1

)])
dp,qs dp,qx, (23)

O∗T [φ2,Fu + Hu]

:= φ2(u)−
1

p(
α
2)+(β

2)Γp,q(α)Γp,q(β)

∫ T
p

0

∫ x
pβ−1

0

(
T
p
− qx

)β−1

p,q

(
x

pβ−1 − qs
)α−1

p,q
×

g2

(
x

pβ−1

)(
λF
[

s
pα−1 , u

(
s

pα−1

)
,
(
Ψγ

p,qu
)( s

pα−1

)]

+ µH
[

s
pα−1 , u

(
s

pα−1

)
,
(

Υν
p,qu

)( s
pα−1

)])
dp,qs dp,qx, (24)

and the constants Aη , AT , Bη , BT , Λ are defined by (13)–(17), respectively.

Notice that a fixed point of the operator A is a solution of the problem (4).

Theorem 1. Let us assume that F, H : IT
p,q ×R×R → R are continuous, ϕ, ψ : IT

p,q × IT
p,q →

[0, ∞) are continuous with ϕ0 = max
{

ϕ(t, s) : (t, s) ∈ IT
p,q × IT

p,q
}

and ψ0 = max
{

ψ(t, s) :
(t, s) ∈ IT

p,q × IT
p,q
}

. In addition, we suppose that:

(H1)There exist constants Mi > 0 such that, for each t ∈ IT
p,q and ui, vi ∈ R, i = 1, 2∣∣F[t, u1, u2]− F[t, v1, v2]

∣∣ ≤ M1
∣∣u1 − v1

∣∣+ M2
∣∣u2 − v2

∣∣.
(H2)There exist constants Ni > 0 such that, for each t ∈ IT

p,q and ui, vi ∈ R, i = 1, 2∣∣H[t, u1, u2]− H[t, v1, v2]
∣∣ ≤ N1

∣∣u1 − v1
∣∣+ N2

∣∣u2 − v2
∣∣.

(H3)There exist constants ω1, ω2 > 0 such that, for each u, v ∈ C

|φ1(u)− φ1(v)| ≤ ω1‖u− v‖C and |φ2(u)− φ2(v)| ≤ ω2‖u− v‖C .

(H4)For each t ∈ IT
p,q, g1 ≤ g1(t) ≤ G1 and g2 ≤ g2(t) ≤ G2.

(H5)X := L

Φ +
G1ηα+βΘ∗T + G2

(
T
p

)α+β
Θ∗η

Γp,q(α + β + 1)

+ ω1Θ∗T + ω2Θ∗η < 1,
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where

L := λ

M1 + M2 ϕ0

(
T
p

)γ

Γp,q(γ + 1)

+ µ

N1 + N2ψ0

(
T
p

)−ν

Γp,q(1− ν)

, (25)

Φ :=

(
T
p

)α

Γp,q(α + 1)
+

(
T
p

)α+γ

Γp,q(α + γ + 1)
+

(
T
p

)α−ν

Γp,q(α− ν + 1)
, (26)

Θ∗T := ΘT + Θ̄T , (27)

Θ∗η := Θη + Θ̄η , (28)

ΘT :=
1

min |Λ|

[
max|BT |

(
T
p

)α−1
+ max|AT |

(
T
p

)α−2
]

, (29)

Θ̄T :=
1

min |Λ|

max|BT |

(
T
p

)α−ν−1

Γp,q(α− ν)
+ max|AT |

(
T
p

)α−ν−2

Γp,q(α− ν− 1)

, (30)

Θη :=
1

min |Λ|

[
max

∣∣Bη

∣∣(T
p

)α−1
+ max

∣∣Aη

∣∣(T
p

)α−2
]

, (31)

Θ̄η :=
1

min |Λ|

max
∣∣Bη

∣∣
(

T
p

)α−ν−1

Γp,q(α− ν)
+ max

∣∣Aη

∣∣
(

T
p

)α−ν−2

Γp,q(α− ν− 1)

. (32)

Then, the boundary value problem (4) has a unique solution on IT
p,q.

Proof. For each t ∈ IT
p,q and u, v ∈ C, we have

∣∣∣(Ψγ
p,qu)(t)− (Ψγ

p,qv)(t)
∣∣∣ ≤ ϕ0

p(
γ
2)Γp,q(γ)

∫ t

0
(t− qs)

γ−1
p,q

∣∣∣∣u( s
pγ−1

)
− v
(

s
pγ−1

)∣∣∣∣ dp,qs.

≤ ϕ0

p(
γ
2)Γp,q(γ)

∥∥u− v
∥∥ ∫ T

p

0

(
T
p
− qs

)γ−1

p,q
dp,qs.

=
ϕ0

(
T
p

)γ

Γp,q(γ + 1)

∥∥u− v
∥∥.

Similarly, we have
∣∣∣(Υν

p,qu)(t)− (Υν
p,qv)(t)

∣∣∣ ≤ ψ0

(
T
p

)−ν

Γp,q(1−ν)

∥∥u− v
∥∥.

We set

F|u− v|(t) :=
∣∣∣F[t, u(t), (Ψγ

p,qu)(t)
]
− F

[
t, v(t), (Ψγ

p,qv)(t)
]∣∣∣,

H|u− v|(t) :=
∣∣∣H[t, u(t), (Υν

p,qu)(t)
]
− H

[
t, v(t), (Υν

p,qv)(t)
]∣∣∣.

Then, we obtain∣∣∣O∗η [φ1, Fu + Hu]−O∗η [φ1, Fv + Hv]
∣∣∣

≤
∣∣φ1(u)− φ1(v)

∣∣+ 1

p(
α
2)+(β

2)Γp,q(α)Γp,q(β)

∫ η

0

∫ x
pβ−1

0
(η − qx)

β−1
p,q

(
x

pβ−1 − qs
)α−1

p,q

g1

(
x

pβ−1

)[
λF|u− v|

(
s

pα−1

)
+ µH|u− v|

(
s

pα−1

)]
dp,qs dp,qx
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≤ ω1‖u− v‖C +

λ

M1 + M2 ϕ0

(
T
p

)γ

Γp,q(γ + 1)

+ µ

N1 + N2ψ0

(
T
p

)−ν

Γp,q(1− ν)


×

G1ηα+β

Γp,q(α + β + 1)
‖u− v‖C

≤
[

ω1 +
LG1ηα+β

Γp,q(α + β + 1)

]
‖u− v‖C .

Similarly, we obtain

∣∣∣O∗T [φ1, Fu + Hu]−O∗T [φ1, Fv + Hv]
∣∣∣ ≤

ω2 +
LG2

(
T
p

)α+β

Γp,q(α + β + 1)

‖u− v‖C ,

and ∣∣(Au)(t)− (Av)(t)
∣∣

≤ 1

p(
α
2)Γp,q(α)

∫ T
p

0

(
T
p
− qs

)α−1

p,q

[
λF|u− v|

(
s

pα−1

)
+ µH|u− v|

(
s

pα−1

)]
dp,qs

+

(
T
p

)α−1

|Λ|

{
|BT |

∣∣∣O∗η [φ1, Fu + Hu]−O∗η [φ1, Fv + Hv]
∣∣∣

+|Bη |
∣∣∣O∗T [φ2, Fu + Hu]−O∗T [φ2, Fv + Hv]

∣∣∣}
+

(
T
p

)α−2

|Λ|

{
|AT |

∣∣∣O∗η [φ1, Fu + Hu]−O∗η [φ1, Fv + Hv]
∣∣∣

+|Aη |
∣∣∣O∗T [φ2, Fu + Hu]−O∗T [φ2, Fv + Hv]

∣∣∣}

≤

L


(
T
p

)α

Γp,q(α + 1)
+

G1ηα+βΘT + G2

(
T
p

)α+β
Θη

Γp,q(α + β + 1)

+ ω1ΘT + ω2Θη

‖u− v‖C . (33)

Next, we consider (Dν
p,qAu). We have

(Dν
p,qAu)(t)

=
1

p(
α
2)+(−ν

2 )Γp,q(α)Γp,q(−ν)

∫ t

0

∫ x
p−ν−1

0
(t− qx)−ν−1

p,q

(
x

p−ν−1 − qs
)α−1

p,q
× (34)(

λF
[

s
pα−1 , u

(
s

pα−1

)
,
(
Ψγ

p,qu
)( s

pα−1

)]
+ µH

[
s

pα−1 , u
(

s
pα−1

)
,

(
Υν

p,qu
)( s

pα−1

)])
dp,qs dp,qx−

{
BTO∗η [φ1, Fu + Hu]− BηO∗T [φ2, Fu + Hu]

}
Λ p(

−ν
2 )Γp,q(−ν)

×

∫ t

0
(t− qs)−ν−1

p,q

(
s

p−ν−1

)α−1
dp,qs +

{
ATO∗η [φ1, Fu + Hu]−AηO∗T [φ2, Fu + Hu]

}
Λ p(

−ν
2 )Γp,q(−ν)

×

∫ t

0
(t− qs)−ν−1

p,q

(
s

p−ν−1

)α−2
dp,qs.

Similarly as above, we have∣∣(Dν
p,qFu)(t)− (Dν

p,qFv)(t)
∣∣

≤

L


(
T
p

)α−ν

Γp,q(α− ν + 1)
+

G1ηα+βΘ̄T + G2

(
T
p

)α+β
Θ̄η

Γp,q(α + β + 1)

+ ω1Θ̄T + ω2Θ̄η

‖u− v‖C . (35)
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From (33) and (35), we obtain

‖Fu−Fv‖C ≤ X‖u− v‖C .

Thus, by (H5) the operator A is a contraction. By the Banach contraction mapping
principle we deduce that A has a fixed point which is the unique solution of problem (4)
on IT

p,q. The proof is finished.

4. An Existence Result

In this section, we present an existence result for the boundary value problem (4) by
using the Schaefer’s fixed-point theorem [24].

Theorem 2. Let us assume that F, H : IT
p,q ×R×R→ R are continuous functions and ϕ1, ϕ2 :

C
(

IT
p,q,R

)
→ R are given functionals. Let us suppose that the following conditions hold:

(H6)There exist positive constants F, H such that, for each t ∈ IT
p,q and ui ∈ R, i = 1, 2,∣∣∣F[t, u1, u2]

∣∣∣ ≤ F and
∣∣∣H[t, u1, u2]

∣∣∣ ≤ H.

(H7)There exist positive constants O1, O2 such, that for each u ∈ C,

|ϕ1(u)| ≤ O1 and |ϕ2(u)| ≤ O2.

Then, the boundary problem (4) has at least one solution on IT
p,q.

Proof. We need to show that the operator A is compact by applying the well-known
Arzelá–Ascoli theorem. So, we show that the operator A(BR) is a uniformly bounded set,
where BR = {u ∈ C : ‖u‖C ≤ R, R > 0} and an equicontinuous set.

(i) For each t ∈ IT
p,q and u ∈ BR, we have∣∣∣O∗η [φ1, Fu + Hu]

∣∣∣
≤ O1 +

[λF + µH]

p(
α
2)+(β

2)Γp,q(α)Γp,q(β)

∫ η

0

∫ x
pβ−1

0
(η − qx)

β−1
p,q

(
x

pβ−1 − qs
)α−1

p,q
g1

(
x

pβ−1

)
dp,qs dp,qx

≤ O1 +
G1ηα+β[λF + µH]

Γp,q(α + β + 1)
. (36)

Similarly, we have∣∣∣O∗T [φ2, Fu + Hu]
∣∣∣ ≤ O2 +

G2

(
T
p

)α+β
[λF + µH]

Γp,q(α + β + 1)
. (37)

From (36) and (37) and for each t ∈ IT
p,q, we find that∣∣(Au)(t)

∣∣
≤ [λF + µH]

p(
α
2)Γp,q(α)

∫ T
p

0

(
T
p
− qs

)α−1

p,q
dp,qs

+

(
T
p

)α−1

|Λ|

{
|BT |

∣∣∣O∗η [φ1, Fu + Hu]
∣∣∣+ |Bη |

∣∣∣O∗T [φ2, Fu + Hu]
∣∣∣}

+

(
T
p

)α−2

|Λ|

{
|AT |

∣∣∣O∗η [φ1, Fu + Hu]
∣∣∣+ |Aη |

∣∣∣O∗T [φ2, Fu + Hu]
∣∣∣}

≤ [λF + µH]


(

T
p

)α

Γp,q(α + 1)
+

G1ηα+βΘT + G2

(
T
p

)α+β
Θη

Γp,q(α + β + 1)

+ O1ΘT + O2Θη . (38)
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In addition, we obtain

∣∣(Dν
p,qAu

)
(t)
∣∣ ≤[λF + µH]


(

T
p

)α−ν

Γp,q(α− ν + 1)
+

G1ηα+βΘ̄T + G2

(
T
p

)α+β
Θ̄η

Γp,q(α + β + 1)


+ O1Θ̄T + O2Θ̄η . (39)

Form (38) and (39) we obtain

‖Au‖C ≤ [λF + µH]

Φ +
G1ηα+βΘ∗T + G2

(
T
p

)α+β
Θ∗η

Γp,q(α + β + 1)

+ O1Θ∗T + O2Θ∗η < ∞,

which implies that A(BR) is uniformly bounded.
(ii) We show that A(BR) is equicontinuous. For any t1, t2 ∈ IT

p,q with t1 < t2, we have∣∣(Au)(t2)− (Au)(t1)
∣∣ ≤ [λF + µH]

Γp,q(α + 1)

∣∣∣tα
2 − tα

1

∣∣∣
+

∣∣∣tα−1
2 − tα−1

1

∣∣∣
|Λ|

{
|BT |O∗η [φ1, Fu + Hu] + |Bη |O∗T [φ2, Fu + Hu]

}

+

∣∣∣tα−2
2 − tα−2

1

∣∣∣
|Λ|

{
|AT |O∗η [φ1, Fu + Hu] + |Aη |O∗T [φ2, Fu + Hu]

}
, (40)

and ∣∣(Dν
p,qAu)(t2)− (Dν

p,qAu)(t1)
∣∣

≤ [λF + µH]

Γp,q(α− ν + 1)

∣∣∣tα−ν
2 − tα−ν

1

∣∣∣
+

Γp,q(α)
∣∣∣tα−ν−1

2 − tα−ν−1
1

∣∣∣
|Λ|Γp,q(α− ν)

{
|BT |O∗η [φ1, Fu + Hu] + |Bη |O∗T [φ2, Fu + Hu]

}

+
Γp,q(α− 1)

∣∣∣tα−ν−2
2 − tα−ν−2

1

∣∣∣
|Λ|Γp,q(α− ν− 1)

{
|AT |O∗η [φ1, Fu + Hu] + |Aη |O∗T [φ2, Fu + Hu]

}
. (41)

The right-hand side of (40) and (41) tends to zero as t1 → t2, independently of u,
which implies that A(BR) is an equicontinuous set. By using the Arzelá–Ascoli theorem,
the set A(BR) is compact.

(iii) Finally, we show thatW = {u ∈ C : u = ξAu, 0 < ξ < 1} is a bounded set. Let
u ∈ W . Then, as in (i), we have

|u(t)| ≤ ξ‖Ax‖C

≤ [λF + µH]

Φ +
G1ηα+βΘ∗T + G2

(
T
p

)α+β
Θ∗η

Γp,q(α + β + 1)

+ O1Θ∗T + O2Θ∗η , (42)

which yields

‖Au‖C ≤ [λF + µH]

Φ +
G1ηα+βΘ∗T + G2

(
T
p

)α+β
Θ∗η

Γp,q(α + β + 1)

+ O1Θ∗T + O2Θ∗η .

Therefore,W is bounded.
Hence, by Schaefer’s fixed-point theorem, we deduce that the operator A has a fixed

point, which is a solution of boundary value problem (4). The proof is finished.
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5. Examples

Example 1. Let us consider the fractional (p, q)-integrodifference equation

D
4
3
2
3 , 1

2
u(t) =

[
e−[cos2(2πt)+π]

200 + esin2(2πt)

] |u(t)|+ e−(10t+π)|Ψ
1
3
2
3 , 1

2
u(t)|

1 + |u(t)|

+

[
e−[sin2(2πt)+10]

(t + 20)2

] |u(t)|+ e−(5t+ π
2 )|Υ

1
4
2
3 , 1

2
u(t)|

1 + |u(t)| , t ∈ I10
2
3 , 1

2
(43)

subject to fractional (p, q)-integral boundary condition

I
1
2
2
3 , 1

2

(
e + cos

1215
256

)2
u
(

1215
256

)
=

∞

∑
i=0

Ci|u(ti)|
1 + |u(ti)|

, ti = σi
2
3 , 1

2
(10),

I
1
2
2
3 , 1

2
(π + sin 15)2u(15) =

∞

∑
i=0

Di|u(ti)|
1 + |u(ti)|

, ti = σi
2
3 , 1

2
(10), (44)

where ϕ(t, s) =
e−|t−s|

(2t + π)3 , ψ(t, s) =
e−|t−s|

(t + e)3 and Ci, Di are given constants, with
1

1000
≤

∞

∑
i=0

Ci ≤
e

1000
and

1
500
≤

∞

∑
i=0

Di ≤
π

500
.

Here, p = 2
3 , q = 1

2 , α = 4
3 , β = 1

2 , γ = 1
3 , ν = 1

4 , T = 10, η = σ4
2
3 , 1

2
(10) = 1215

256 , λ =

e−π , µ = e−10, φ1(u) =
∞

∑
i=0

Ci|u(ti)|
1 + |u(ti)|

, φ2 =
∞

∑
i=0

Di|u(ti)|
1 + |u(ti)|

, g1(t) = (e + cos t)2, g2(t) =

(π + sin t)2,

F
[
t, u(t), Ψγ

p,qu(t)
]
=

[
e− cos2(2πt)

200 + esin2(2πt)

] |u(t)|+ e−(10t+π)|Ψ
1
3
2
3 , 1

2
u(t)|

1 + |u(t)|

and

H
[
t, u(t), Υν

p,qu(t)
]
=

[
e− sin2(2πt)

(t + 20)2

] |u(t)|+ e−(5t+ π
2 )|Υ

1
4
2
3 , 1

2
u(t)|

1 + |u(t)| .

For all t ∈ I10
2
3 , 1

2
and u, v ∈ R, we have∣∣F[t, u, Ψγ

p,qu
]
− F

[
t, v, Ψγ

p,qv
]∣∣ ≤ 1

201
|u− v|+ 1

201eπ

∣∣Ψγ
p,qu−Ψγ

p,qv
∣∣,∣∣∣H[t, u, Υν

p,qu
]
− F

[
t, v, Υν

p,qv
]∣∣∣ ≤ 1

400
|u− v|+ 1

400e
π
2

∣∣∣Υν
p,qu− Υν

p,qv
∣∣∣.

Thus, (H1) and (H2) hold with M1 = 0.004975, M2 = 0.0002145, N1 = 0.0025 and
N2 = 0.0005197.

For all u, v ∈ C,

|φ1(u)− φ1(v)| ≤
e

1000
‖u− v‖C ,

|φ2(u)− φ2(v)| ≤
π

500
‖u− v‖C .

So, (H3) holds with ω1 = 0.00272 and ω2 = 0.00628.

Moreover, (H4) holds with g1 = 2.9525, G1 = 13.8256, g2 = 4.5864 and G2 = 17.1528.
After calculating, we find that
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|Aη | ≤ 20.9307, |AT | ≈ 32.7815, |Bη | ≈ 39.839, |BT | ≈ 62.3957,
|Λ| ≥ 410.0706, ϕ0 = 0.0323 and ψ0 = 0.04979.

We can show that

L ≈ 0.0002159, ΘT ≈ 0.38884, Θη ≈ 0.24799, Θ̄T ≈ 0.19883, Θ̄η ≈ 0.12504,
Θ∗T ≈ 1.5769 and Θ∗η ≈ 1.0066.

So, (H5) holds with
X ≈ 0.64592 < 1.

Hence, by Theorem 1, the boundary value problem (43) and (44) has a unique solution on I10
2
3 , 1

2
.

Example 2. Let us consider the fractional (p, q)-integrodifference equation

D
4
3
2
3 , 1

2
u(t) =

1
10

(
t +

1
3

)
e
−(t+π)

[
u(t)+

∣∣∣∣∣Ψ 1
3
2
3 , 1

2
u(t)

∣∣∣∣∣
]

+
1

15

(
t +

2
5

)
e
−(t+10)

[
u(t)+

∣∣∣∣∣Υ 1
4
2
3 , 1

2
u(t)

∣∣∣∣∣
]

, t ∈ I10
2
3 , 1

2
(45)

with fractional (p, q)-integral boundary condition

I
1
2
2
3 , 1

2

(
e + cos

1215
256

)2
u
(

1215
256

)
=

∞

∑
i=0

Cie−|u(ti)|, ti = σi
2
3 , 1

2
(10),

I
1
2
2
3 , 1

2
(π + sin 15)2u(15) =

∞

∑
i=0

Die−|u(ti)|, ti = σi
2
3 , 1

2
(10), (46)

where Ci and Di are given constants with 1
1000 ≤ ∑∞

i=0 Ci ≤ π
1000 and 1

500 ≤ ∑∞
i=0 Di ≤ e

500 .

Here, p = 2
3 , q = 1

2 , α = 4
3 , β = 1

2 , γ = 1
3 , ν = 1

4 , T = 10, η = σ4
2
3 , 1

2
(10) = 1215

256 ,

λ = e−π , µ = e−10.
It is clear that

∣∣F[t, u, Ψγ
p,qu

]∣∣ ≤ 23
15 = F,

∣∣∣H[t, u, Υν
p,qu

]∣∣∣ ≤ 77
75 = H for t ∈ I10

2
3 , 1

2
and

|ϕ1(u)| ≤ π
1000 = O1, |ϕ2(u)| ≤ e

500 = O2 for u ∈ C.

Hence, (H5) and (H6) hold. Therefore, the boundary value problem (45) and (46) has at least
one solution on I10

2
3 , 1

2
by Theorem 2.

6. Conclusions

A nonlocal fractional (p, q)-integral boundary value problem for separate fractional
(p, q)-integrodifference Equation (4) is studied. Our problem contains two fractional (p, q)-
difference operators and two fractional (p, q)-integral operators. The existence of a unique
solution is established via the Banach contraction mapping principle, while the existence
result is proved using the Schaefer’s fixed-point theorem. In addition, some properties of
the (p, q)-integral are also studied. It is imperative to mention that our results are new in
the given configuration and enrich the literature on boundary value problems involving
(p, q)-integrodifference equations. In the future, we plan to extend this work by considering
new boundary value problems.
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