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Abstract: Path planning plays an essential role in mobile robot navigation, and the A* algorithm is
one of the best-known path planning algorithms. However, the conventional A* algorithm and the
subsequent improved algorithms still have some limitations in terms of robustness and efficiency.
These limitations include slow algorithm efficiency, weak robustness, and collisions when robots are
traversing. In this paper, we propose an improved A*-based algorithm called EBHSA* algorithm.
The EBHSA* algorithm introduces the expansion distance, bidirectional search, heuristic function
optimization and smoothing into path planning. The expansion distance extends a certain distance
from obstacles to improve path robustness by avoiding collisions. Bidirectional search is a strategy
that searches for a path from the start node and from the goal node at the same time. Heuristic
function optimization designs a new heuristic function to replace the traditional heuristic function.
Smoothing improves path robustness by reducing the number of right-angle turns. Moreover, we
carry out simulation tests with the EBHSA* algorithm, and the test results show that the EBHSA*
algorithm has excellent performance in terms of robustness and efficiency. In addition, we transplant
the EBHSA* algorithm to a robot to verify its effectiveness in the real world.

Keywords: path planning; A* algorithm; expansion distance; bidirectional search; heuristic func-

tion; smoothing

1. Introduction

Robots have been rapidly developed and widely used in the past decades, especially
in typical transportation application scenarios such as airports, ports, warehousing, and
logistics. In addition to traditional fixed industrial robots, mobile and humanoid robots
have developed the fastest. Autonomous navigation is a basic ability of mobile and hu-
manoid robots. Achieving reliable, safe, and efficient autonomous navigation is a popular
research topic in the field of robotics, and it is also a challenge. The four general problems
of navigation are perception, localization, motion control, and path planning [1-3]. Among
these areas, it may be argued that path planning is the most important for navigation
processes. Symmetry is widely used in the research of path planning. A*is a path planning
algorithm based on graph search, with the search process based on the current node as
the center to search for surrounding nodes; this search process is symmetrical. In this
manuscript, bidirectional search is one of the optimization strategies of the A* algorithm.
Bidirectional search is also a symmetrical path search method. This symmetrical search
method can double the efficiency of the algorithm.

Path planning is the determination of a collision-free path in a given environment,
which may often be cluttered in the real world [4]. The planned path determines whether a
mobile robot can achieve reliable and efficient autonomous navigation. Therefore, path
planning plays an essential role in mobile robot navigation. With the widespread applica-
tion of mobile robots, research on path planning is becoming increasingly popular.
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Path planning algorithms can be divided into multiple classifications according to
different ways. Graph search-based planners include the Dijkstra algorithm [5], the A-star
algorithm (A*) [6], the state lattice algorithm [7] etc. Sampling-based planners include
rapidly-exploring random trees (RRT) [8], interpolating curve planners, including lines
and circles, clothoid curves, polynomial burves, Bezier curves, spline curves; function
optimization planners, including the genetic algorithm [9], swarm particle optimization,
etc. Other path planning methods include vision-based path planning, artificial intelligence
path planning, etc.

For application scenarios such as warehousing and logistics, path planning in a static
environment assumes that the robot perceives the environment and uses local path plan-
ning algorithms when the environmental information is not fully grasped. A* is used for
shortest path evaluation based on the information regarding the obstacles present in the
static environment [10], The shortest path evaluation for the known static environment is a
two-level problem which comprises a selection of feasible node pairs and a shortest path
evaluation based on the obtained feasible node pairs [11]. Both of the above-mentioned
criteria are not available in a dynamic environment, which makes the algorithm ineffi-
cient and impractical in dynamic environments. The A* algorithm was chosen because
it is among the foundational algorithms used in contemporary real-time path planning
solutions in a static environment. Novel research builds on the algorithm to find additional
performance and efficiency.

Robustness and efficiency are the two essential factors of the path planning algorithms.
Robustness reflects the reliability of the algorithm and is a prerequisite for the safe, stable
and fast travel of mobile robots. The path closely fitting obstacles and right-angle turns is
among the essential factors that affect the reliability of a mobile robot’s path. Efficiency
reflects the speed of the algorithm for path planning and searching, and is one of the basic
necessities for high work efficiency in mobile robots. Because robustness and efficiency
are also the focus of algorithm improvement, we are also carrying out research along with
this thought. This study investigates how to improve the efficiency of the algorithm and
enhance the robustness of the algorithm. The research problems are how to reduce the
runtime of the algorithm and the number of search nodes, and how to avoid collision and
reduce the number of right-angle turns.

To address these two issues, an improvement method named the EBHSA* algorithm
is proposed in this paper. It incorporates a series of improvements to the traditional
A* algorithm, including the expansion distance, bidirectional search, heuristic function
optimization and smoothing. The expansion distance extends a certain distance from
obstacles to improve path robustness by avoiding collisions. A bidirectional search is a
strategy that searches for a path from the start node and the goal node at the same time.
Heuristic function optimization designs a new heuristic function to replace the traditional
heuristic function. Smoothing improves path robustness by reducing the number of right-
angle turns.

The main contributions of this paper as follows: the EBHSA* algorithm is proposed
in this paper, and it includes four optimization strategies in the traditional A* algorithm:
expansion distance, bidirectional search, heuristic function optimization and smoothing. Of
them, the expansion distance and smoothing are employed to enhance the robustness of the
path. The bidirectional search, heuristic function optimization and expansion distance are
employed to improve the efficiency of the algorithm. In addition, the EBHSA* algorithm
was tested through simulation and compared with other algorithms. The results show that
EBHSA* algorithm performs better in terms of robustness and efficiency. In addition to
test the effectiveness of the EBHSA* algorithm in actual application scenarios, the EBHSA*
algorithm is transplanted to an FS-AIROBOTB mobile robot produced by China HuaQing
YuanJian, and tested in the real world.

The rest of this manuscript is organized as follows. A review of the literature on the
A* algorithm from the past few years is introduced in Section 2. In Section 3, the basic
theory of the A* algorithm and the four optimization methods of the EBHSA* algorithm
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are introduced. In Section 4, the coarse-grained time complexity analysis of the EBHSA*
algorithm is given. The EBHSA* algorithm is tested and compared in Section 5. In Section 6,
the EBHSA* algorithm is transplanted to a mobile robot to verify the effectiveness of the
algorithm in actual scenarios. Finally, conclusions are given in Section 7.

2. Related Work

The emphasis of path planning is algorithm design. The algorithm processes a geo-
metric model with a certain complexity to generate an appropriate path, and the algorithm
verification is completed by means of a robot traveling in the real world. The Dijkstra
algorithm [8] and its variants are commonly used in applications such as Google Maps and
other traffic routing systems. To overcome Dijkstra’s computational-intensity doing blind
searches, A* [12] and its variants are presented as state-of-the-art algorithms for use within
static environments [10].

The A* algorithm can plan the shortest path in a map, but it needs to traverse around
the path nodes and select the minimum path cost. Therefore, the algorithm performs a large
amount of calculation and long calculation time, and the efficiency of the algorithm will
decrease with the expansion of the map scale [13]. Due to the characteristics of the graph
search algorithm itself, the A* algorithm uses rasterized maps as its map representation
method, which makes its path smoothness poor and reliant on too many right-angle turns,
resulting in reduced reliability.

Extensive research has been performed on the A* algorithm, mainly focusing on ob-
stacle avoidance, different application scenarios, and algorithm performance optimization
in the progress of the A* algorithm. The A* algorithm is a popular graph traversal path
planning algorithm. The A* algorithm similar to Dijkstra’s because it is a Dijkstra algorithm
modification, in a sense. A* aims to find a shortest path and guides its search towards the
shortest path states by a heuristic function. Therefore, the efficiency of the A* algorithm is
better than Dijkstra’s. Many works of literature show that the A* algorithm has been widely
used in many fields, such as transportation industry [14,15], and with the development
of artificial intelligence, the A* algorithm has since been improved, including automated
guided vehicle (AGV) [16,17] or unmanned surface vehicle (USV) path planning [18,19]
and robot path planning [20,21]. The A* algorithm is simpler and uses less search node,
which means less computation than some other path planning algorithms, so it lends itself
to more constrained scenarios [22,23].

The A* algorithm needs to search for the shortest path in a map and through a heuristic
function for guidance. The heuristic function mainly includes Euclidean distance [24],
Manhattan distance [21], diagonal distance [25], and Chebyshev distance. An algorithm is
performed and governed by a heuristic function for computation time or run time for the
performance of the task.

An A* optimization method with two improvements is proposed to solve the problem
of slow search speed and low efficiency of the algorithm [26]. Firstly, the evaluation function
is weighted to ensure the reliability of the heuristic function. Secondly, in the rasterized
maps, a set of nodes centered on a certain point is constructed. When the set of nodes
contains obstacle nodes, this node is defined as an untrusted point and will not be searched.
These improvements are used to improve the efficiency of the A* algorithm. However, the
optimization method is only one strategy and it increases the calculation amount of the
algorithm; moreover, its optimization is not thorough. To improve the efficiency of the A*
algorithm, some researchers focused on the storage of traversed nodes and proposed an
improved A* storage array method [27]. The storage method is to access the array element
by looking up the sequence number when accessing the specified element. This can be
completed in one operation, while the traditional A* algorithm needs to traverse multiple
nodes to find the specified element. This method only optimizes the storage and access of
nodes, and only reduces the calculation amount of the algorithm without improving its
path planning. To shorten the calculation time of the A* algorithm, an improved algorithm,
called time efficiency A*, is proposed [28]. The proposed algorithm determines the value



Symmetry 2021, 13,2213

40f18

of the heuristic function before the collision phase, instead of during the initialization
phase. Therefore, the algorithm has higher efficiency in calculation time. This optimization
method only optimizes the opportunity of determining the value of the heuristic function
and does not optimize the heuristic function or decrease the number of search nodes.
Therefore, the improvement of efficiency is limited.

Variants of the A* algorithm seem to be invented endlessly. Several A* optimization
algorithms are used for a comparison, evaluation, and application scenario selection in [6],
including several modifications (Basic Theta*, Phi*) and improvements (RSR, JPS). A
hybrid A* algorithm is proposed, improving the traditional A* algorithm when employed
in autonomous vehicles. This method can plan the shortest possible path in a hybrid
environment for a vehicle.

The A* optimization methods introduced above all only incompletely optimize the
efficiency of the algorithm, which means that the efficiency of the algorithm can still
be more thoroughly optimized. None of the above algorithms consider optimizing the
robustness of the algorithm. Therefore, the improvements and variants of the A* algorithm
are still flawed.

A constrained A* approach is proposed for USV in a maritime environment [21],
determining the approach path with a USV enclosed by a circular boundary as a safety
distance constraint on the generation of optimal waypoints to avoid collision. This means
the USV is surrounded by a circuit and reflects the performance of a collision-free approach.
The concept of safety distance is also proposed, but the approach with an unmanned
surface vehicle enclosed by a circular boundary as a safety distance places a constraint on
the generation of optimal waypoints to avoid collision. This means the USV is surrounded
by a circuit and not considering the obstacles on the maps.

The path being not smooth enough to dynamically avoid collision is another obvious
shortcoming of the traditional A* algorithm. To solve this problem, a global path planning
method that perceives the characteristics of the local environment is proposed [29]. This
method first uses the A* algorithm to generate the global optimal planning path in a known
static map and deletes redundant nodes, and then generates local sequence nodes on the
deleted global path to optimize the global path. This method guarantees the performance
of the A* algorithm when it is used in a dynamic environment.

Smoothing is one of the most well-known methods to overcome the collision issue.
The traditional A* algorithm plans some sharp turns which causes some problems for
mobile robots. A smoothing of the A* algorithm is introduced in [20]. The smoothed A*
algorithm [19] generates a path and redundant waypoints by using cubic spline interpola-
tion and three path smoothers. Smoothing is one of the most effective methods to reduce
right-angle turns and reduce the risk of collision. The A* algorithm is computationally
simple relative to other path planning algorithms. With adjustments for vehicle kinemat-
ics, steering angle, and other factors, A* and its variants are suitable for AGV [30]. An
improved A* path planning algorithm considering economic performance is proposed
in [12] to solve the problem of global path planning for autonomous vehicles. New cost
functions can be created with respect to equal step sampling, as in the case of Equation
(1). The shown cost function includes distance and costs. The above considerations avoid
sudden turns and, in this manner, improve the path smoothness [10].

f(n) =kig(n) +kyh(n) +kyp(n) 1)

where ki, ky, k3 are weights with a positive value, g(n) and h(n) are the same as the base
A* function, and p(n) is the penalty factor based on the turning cost.

A visibility diagram was one of the very first graph-based search algorithms used in
path planning in robotics [10,31]. A hybrid A* algorithm with the visibility diagram plan-
ning algorithm is proposed in [14] to overcome the issue of high run costs to convergence.
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3. The Proposed Methods

In this section, the basic principles of the traditional A* algorithm are introduced, and
the deficiencies of the A* algorithm and the reasons for these deficiencies are analyzed.
Four optimization methods for the A* algorithm are proposed.

The basic development process of the new algorithm is: the Robot Operating System
(ROS) is used as the development platform and we modified the source code. The Dijkstra
algorithm contained in ROS is modified and incorporated into the breadth-first search
(BFS) method to construct a traditional A* algorithm. On the basis of the A* algorithm,
the expansion distance, bidirectional search, new heuristic function, and smoothing are
sequentially added, and the EA*, EBA*, EBHA*, and EBHSA* algorithms are developed in
sequence. In the following section, we introduce these four optimization strategies and
algorithms respectively, and carry out a series of tests on the algorithms.

3.1. Basic Theory of the Traditional A* Algorithm

The A* algorithm is a graph search algorithm for path planning, and its search method
is based on breadth-first search. In the algorithm, visit to nodes is similar to tree traversal.
Only by completing the search of all nodes in this layer can the nodes of the next layer be
searched. This may cause blind search and lead to low search efficiency. However, as long
as there is a feasible path, it must be able to find and is the optimal path. The process of
BFS is shown as Figure 1.

Figure 1. The process of BFS.

The A* algorithm is one of the best-known path planning algorithms and is a classic
heuristic search algorithm. The A* algorithm aims to find a path from a start node to a
goal node with the smallest cost by searching all possible paths. The heuristic information
related to the characteristics of the problem is utilized to guide its performance, so it is
superior to blind search algorithms [31]. The A* algorithm consists of an OPEN list, a
CLOSED list, and a heuristic function, and it employs the heuristic function to evaluate
the distance from an arbitrary node to the goal node on a 2D plane. The A* algorithm is
defined as a best-first algorithm because each cell in the configuration space is evaluated
by the value:

f(n) =g(n) +h(n) @

where g(n) is the cost of the path from the start node to the current node n, ii(n) is the cost
of the path from node n to the goal node through the selected sequence of nodes, and h(n)
is the heuristic function of the A* algorithm. f(n) is denoted as the evaluation function
of node n. This sequence ends in the actually evaluated node. Each adjacent node of the
actually reached node is evaluated by f (7). The node with the minimum f(n) is chosen as
the next node in the sequence. The advantage of the A* algorithm is that other distances
can be used, modified, or added as standard distances.
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3.2. Expansion Distance

The paths obtained by the A* algorithm come close to obstacles. This is unreliable
during the movement of a robot. Therefore, a concept is proposed in this paper based on
the experience of Euclidean geometry: the expansion distance.

The expansion distance is a certain distance expanding outward along the edge of
obstacles before path planning. This is the shortest distance to which the path can approach
obstacles. The expansion distance sets a safe buffer area between the path and the obstacles.
The nodes of the expansion distance are regarded as obstacle boundaries. In the path
planning process, the critical nodes cannot be selected as candidate nodes. The expansion
distance can be adjusted according to the size of the robot and the physical environment.
A schematic diagram of the expansion distance is shown in Figure 2. The critical node is
the node that is in contact with the obstacle, and the expansion node is the node that the
algorithm has traversed.

————» Original Path

Improved Path

I Obstacle

Expansion Distance

Figure 2. Schematic diagram of the expansion distance.

As the expansion distance is introduced, critical nodes are not traversed during path
planning, which is equivalent to reducing the map scale and reducing the total number of
nodes that need to be traversed, thereby improving the efficiency of the algorithm.

Because the algorithm does not traverse these critical nodes, the total number of nodes
traversed by the algorithm decreases, and the path planning efficiency improves. The main
function of the expansion distance is to maintain a certain safe distance between the path
and obstacles to ensure the safety of the robot during the traveling process and to facilitate
the smooth processing of the path afterward.

3.3. Bidirectional Search Optimization

The search process of the traditional A* algorithm is a unidirectional search, finding a
path from the start node to the end node. The bidirectional search method is introduced in
this paper. The search is conducted from the start node and the end node at the same time.
The search process finishes when the forward and reverse search nodes are adjacent during
the search process. The positive and negative incomplete paths are spliced together to form
a complete collision-free path. A schematic diagram of the search optimization is shown in
Figure 3. The left figure is the single search, and the right figure is the bidirectional search.

Starting point .End point . Next search point

I:‘ Forward searched point I:I Reverse searched point

Figure 3. A schematic diagram of search optimization.
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The search method introduces this parallel idea and searches from the start node and
the goal node at the same time. A function call completes the two searches from the start
node and the end node. This reduces the number of function calls and improves the path
planning efficiency of the algorithm. In addition, the bidirectional search traverses fewer
nodes than the unidirectional search, which further improves the path planning efficiency.

3.4. The Heuristic Function

The heuristic function is the minimum cost evaluation value of the A* algorithm
from any node to the goal node and helps to reduce the number of nodes traversed.
Therefore, the choice of heuristic function has a direct impact on the efficiency of the
algorithm. The heuristic function of the traditional A* algorithm uses the Manhattan
distance, and subsequent improvements include the Euclidean distance, diagonal distance
and Chebyshev distance. These four heuristic functions are the most widely used functions,
and their theories are shown in Formulas (3)—(6).

1. Manhattan distance heuristic function

h(n)=/xa=xp/ + /Ya—Yyy/ ®)

2. Euclidean distance heuristic function
i (n) =\ (xa=20)° + (50—, @

3.  Diagonal distance heuristic function
h(n) = /xa=xp/ + /ya=yy/ + (V2=2)min(/xa=%y/, /ya=y,/) 5)

4. Chebyshev distance heuristic function
h (n) = max(/xa—xp/, /Ya—Yy/) (6)

h(n) is the heuristic function, and (x,, y,) are the coordinates of the goal node. (x3, yp)
are the coordinates of any node.

The Manhattan distance is mostly used for a 4-direction search. In the case of an
8-direction search, there are too many nodes to traverse. When the Euclidean distance
is used, the estimated function value is very similar when the path is close to the goal
node, and the node selection may be unclear. When the diagonal distance is used, if there
are few obstacles, it is not easy to obtain the shortest path near the goal node. When the
Chebyshev distance is used, only the maximum value of the abscissa difference or the
ordinate difference is used, and the path always starts from a straight line and then a
diagonal, If the search path encounters an obstacle, the shortest path is not obtained.

Based on the analysis of the heuristic function and the experience of repeated experi-
ments, we propose a new heuristic function, as shown in Formula (6).

h(n)= \/(xg—xb)2 + (yu—yb)2+max(/xu—xb/, /Ya—y,/) X2 (7)

The optimized heuristic function is composed of the Euclidean distance and Cheby-
shev assignment, according to different weights. This heuristic function not only takes
into account the advantages of the Euclidean distance and Chebyshev distance, but also
weakens their disadvantages. The first part of the heuristic function ensures that the path
is searched along the diagonal direction, and the latter part effectively reduces the number
of nodes that are searched around after encountering obstacles in the search process. This
advantage is clearly demonstrated in subsequent experiments.

3.5. Smoothing Optimization for Right-Angle Turns

There are three primary disadvantages in the traditional A* algorithm path [19]. The
A* algorithm sacrifices the turning cost to find the shortest path length. In addition, a
mobile robot needs to decelerate sharply when turning at right-angles, which affects the
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efficiency and robustness of the algorithm. To overcome these disadvantages, the A*
algorithm needs to be improved and smoothed.

In the moving process of the mobile robot, if the turning angle is a right-angle, the
turning motion of the mobile robot is broken down into three steps: deceleration, turning
on the spot, and movement. This greatly reduces the speed of the mobile robot.

This section mainly optimizes the right-angle turns that are prone to occur during the
path planning process. The idea for smoothing right-angle turns is decomposing a 90° turn
into multiple small-angle turns to improve the smoothness of the planned path. There are
two cases: namely, a single turn, and a continuous turn.

When there are no obstacles on the inside of the corner, the inflection point is deleted,
its adjacent two nodes are used as the turning point in the corner, and a right-angle turn
is decomposed into two 45° angles, as shown in Figure 4. When there are continuous
right-angle turns, the inflection points are removed, and the adjacent nodes are directly
connected to convert multiple right-angle turns into a small number of 45° acute-angle
turns, as shown in Figure 5. The smoothing optimization of the right-angle turns improves
the smoothness of the path, which not only improves the robustness of the algorithm but
also improves the overall travel efficiency of the robot.

Figure 4. Single right-angle turn smoothing.

Figure 5. Continuous right-angle turns smoothing.

4. EBHSA* Algorithm Time Complexity Analysis

In this section, combining the optimization strategies proposed in Section 3, we con-
duct a coarse-grained time complexity analysis of the EBHSA* algorithm. This algorithm
uses two loops: the inner loop traverses adjacent nodes with the current node as the center,
and the node with lowest cost is marked and added to the open table. The outer loop
traverses the nodes of the open table until the queue traversal ends. There are several fac-
tors that have obvious effects on the time complexity of various path planning algorithms,
such as the map scale, starting node and target node location, etc. In general, the time
complexity of various algorithms is given by Formula (8):
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T € [O(min [m, n]),O0(m *n)] 8)

In Formula (8), where m and 7 are the length and width of the map, respectively. Since
a bidirectional search is a strategy that searches in two directions, when the path is solvable,
the path formed by each search direction is smaller than the whole path, which reduces
the number of nodes added to the open table and reduces the loop frequency. Therefore,
the time complexity of the EBHSA* algorithm is less than or equal to half that of the tradi-
tional A* algorithm. The pseudocode of the EBHSA* algorithm is shown as Algorithm 1.

Algorithm 1: The pseudocode of the algorithm.

Function: Search(node_i, goal, CLOSE_LIST_i)

Input: Current search node node_i, goal node goal and positive close list CLOSE _LIST_i
Output: A path PATH from Start_i to End_i

Effect: Renew the open list and close list to find the target.

1:  Find the surrounding nodes “node(0)”, “node(1)”, “node(2)”, “node(3)” of the node_i

2: fori=0,i=3, repeat

3: if node(i) ¢ CLOSE_LIST _i

4: heuristic(i) = sqrt((goal_x-node(i)_x)*2 + (goal_y-node(i)_y)*2)

+ max(abs(goal_x-node(i)_x),abs(goal_y-node(i)_y)) x 2

5: OPEN_LIST i <- node(i)

6: else heuristic(i) = co
7 end if
8: end for

For the path planning algorithm, the theoretical time complexity of the algorithm is
the size of the entire map, which is O(n?) in this article, but the actual time complexity of
the algorithm will vary with the actual map. When there are no obstacles in the map and
the algorithm traverses all nodes in the map, the actual time complexity of the algorithm
is a theoretical value of O(n?), and the actual complexity must be less than or equal to
this value.

5. Simulation Testing

The EBHSA* algorithm was tested using Matlab 2020b, and Matlab 2020b was used
for the statistical experiments. All tests were performed on a PC with Windows 10 as OS
with 17-1065G7 quad-core CPU and 16GB RAM. A total of 154 maps were created and
181 times simulation tests were performed in this manuscript. In these maps, a total of
51 50 x 50 grid maps were generated and tested 60 times, a total of 51 200 x 200 grid maps
were generated and tested 60 times, a total of 52 100 x 100 grid maps were generated and
tested 61 times, and one map was tested once for the comparison test. All maps and data
of the simulation test are shared on GitHub.

Seconds were the used measuring unit for run time. In this simulation, we made
several main assumptions to ensure the scientificity and rationality of the test.

1.  The maps and obstacles of maps are randomly generated. Randomized maps can
more accurately verify the universality of the proposed algorithm.

2. The size of each obstacle in the map is a 5 x 5 grid, and the number of obstacle center
points accounts for about 1.5% of the map scale. A certain number of obstacles can
more accurately verify the robustness of the algorithm.

3.  The firewall, anti-virus software and other software running on the PC were closed
during the test to ensure no interference with the execution of the algorithm. We
needed to ensure that the algorithm had a stable operating environment during
repeated tests, and we found in the test that anti-virus software had a direct impact
on the efficiency of the algorithm.

4. The running time of the algorithm was used as the only ruler of the efficiency of the
algorithm, and its measured unit was seconds.
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5.1. Single and Randomized Maps Testing

In this section, we simulate and test the five algorithms, traditional A*, A* with
expansion distance (EA*), bidirectional EA* (EBA*), EBA* with the heuristic function
(EBHA®), and EBHA* with smoothing (EBHSA*). The map scale was 100 x 100 grids in the
simulation test. Each grid represents a physical distance of 5 m. The centers of the obstacles
were randomly generated. The five algorithms were tested, and the path planning results
are shown in Figure 6. The statistical results are shown in Table 1.

T ——

(©) (d) (o)

Figure 6. Simulation results of 5 algorithms on a 100 x 100 map scale. (a) A*. (b) EA*. (c) EBA*.
(d) EBHA*. (e) EBHSA*.

Table 1. Simulation statistical results of the five algorithms.

Indicators A* EA* EBA* EBHA* EBHSA*
Run-time/s 164.912 82.465 29.615 5.330 5.450
(100%) (50.01%)  (17.96%) (3.23%) (3.30%)
Number of nodes 179 179 179 179 122
Number of right-angle turns 19 21 25 29 0
Max turning angle 90° 90° 90° 90° 45°
Number of expansion nodes 4172 2055 1441 241 250
Number of critical nodes 118 0 0 0 7

In Figure 6, the black blocks are randomly generated obstacles, the fluorescent blue
blocks around the obstacles are the expansion distances of the obstacles, the green and gray
areas are the nodes traversed by the forward and reverse searches respectively, and the red
line is the path planned by the EBHSA* algorithm.
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Table 1 shows that the run-time represents the total time for the algorithm to complete
all path planning actions, such as the search, traverse, expansion, and smoothing. The
number of nodes represents the path length. The number of right-angle turns and the
maximum turning angle represent the path smoothness. The number of expansion nodes
represents the total number of nodes traversed by the algorithm, and the indicator affects
the algorithm efficiency. The number of critical nodes indicates the number of nodes
adjacent to obstacles in the path.

The five heuristic functions were also tested; the results are shown in Figure 7 and the
statistical results are shown in Table 2.

The five algorithms and the five heuristic functions were also tested five times on
100 * 100 randomized maps. The test results are shown in Tables 3 and 4, and all data are
averages.

EBSA" algorithm with Manhattan distance

EBSA" algorithm with Euclidean distance

(a)

£BSA" agorithm with Chabyshe distance 1 EBHSA" algorithm

(d) (e)

Figure 7. Simulation results of 5 algorithms on a 100 x 100 map scale. (a) Manhattan distance.
(b) Euclidean distance. (c) Diagonal distance. (d) Chebyshev distance. (e) EBHSA*.

Table 2. Simulation statistical results of five heuristic functions.

. EBSA* with EBSA* with EBSA* with EBSA* with %
Indicators Manhattan Euclidean Diagonal Chebyshev EBHSA
Runn-time/s 31.568 43.559 50.043 37.611 5.435
Number of nodes 140 122 123 122 122
Number of expansion nodes 1448 2067 2408 1849 250

Number of critical nodes 6 5 8 7 7
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Table 3. Average simulation results of four algorithms on randomized maps.

Indicators A* EA* EBA* EBHA* EBHSA*
. 219.630 155.716 68.572 8.923

Run-time/s (100%)  (63.73%)  (16.80%) 8.080 (23.35%)
Number of nodes 179 179 180.6 181.4 120.4
Number of expansion nodes 4900.8 3296.2 2749.8 276.6 260.6

Table 4. Average simulation results of five heuristic functions on randomized maps.
. EBSA* with EBSA* with EBSA* with EBSA* with "
Indicators Manhattan Euclidean Diagonal Chebyshev EBHSA
Run-time/s 61.138 83.484 87.521 58.620 8.627
Number of nodes 155.4 122.4 122.2 127.4 123.2
Number of expansion nodes 2697.4 3357.6 3378.4 2450.2 294.8
Number of critical nodes 6 6 7 7 8

The experimental results show that the efficiency of the EBHSA* algorithm was
24.614 times that of the A* algorithm. The run-time of the BA* algorithm was approximately
44.04% of that of the A* algorithm. The results of other indicators in this experiment were
also in line with expectations.

To more accurately verify the universality of the algorithm, we repeated the above
experiments on maps of different scales, using 50 * 50 grids for small-scale maps, and
200 * 200 grids for large-scale maps. The test data are shown in Tables 5-8.

As shown in Tables 5-8, the test results and statistics results were exactly consis-
tent with the 100 x 100 maps. In addition, after rigorous testing on large-scale maps
with 200 x 200 grids, the test and statistics results are also exactly consistent with the
100 x 100 maps.

Table 5. Simulation statistical results of the five algorithms.
Indicators A* EA* EBA* EBHA* EBHSA*
Run-time /s 39.714 25.577 11.429 1.919 1.932
(100%)  (50.01%)  (17.96%)  (3.23%)  (3.30%)
Number of nodes 79 79 79 79 55
Number of right-angle turns 7 11 16 31 0
Max turning angle 90° 90° 90° 90° 45°
Number of expansion nodes 1083 692 593 80 85
Number of critical nodes 35 0 0 0 4
Table 6. Simulation statistical results of five heuristic functions.
. EBSA* with EBSA* with EBSA* with EBSA* with "
Indicators Manhattan Euclidean Diagonal Chebyshev EBHSA
Runn-time/s 11.848 14.958 14.876 12.380 2.036
Number of nodes 61 55 54 54 55
Number of expansion nodes 579 741 736 612 85
Number of critical nodes 4 4 5 5 4
Table 7. Average simulation results of four algorithms on randomized maps.
Indicators A* EA* EBA* EBHA* EBHSA*
Run-time /s 51.018 39.604 21.590 4.395 4.743
(100%)  (77.63%)  (19.52%) (8.61) (9.29%)
Number of nodes 80.2 79 81.4 82.4 56.4
Number of expansion nodes 1100.6 776 784.2 109.8 122
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Table 8. Average simulation results of five heuristic functions on randomized maps.

. EBSA* with EBSA* with EBSA* with EBSA* with "
Indicators Manhattan Euclidean Diagonal Chebyshev EBHSA
Run-time/s 17.742 11.844 13.589 22.005 2.063
Number of nodes 65.4 56.8 55 53.4 54.4
Number of expansion nodes 589.8 817.8 892 766.6 117
Number of critical nodes 3 3 2 3 2
5.2. Comparison Testing for Other A* Modification
A geometric A* algorithm is proposed in [30] for AGV path planning. The algorithm
is also optimized based on the conventional A* algorithm. To compare the efficiency and
robustness of EBHSA* and geometric A%, the 100 x 100 scale rasterized map in [30] was
reproduced. The path planning result of the EBHSA* algorithm is shown in Figure 8.
Geometric A-star Alogrithm
10 20 30 40 50 60 70 80 90 100
(@) (b)
Figure 8. Path planning of the EBHSA* and the Geometric A* algorithm. (a) EBHSA* algorithm.
(b) Geometric A* algorithm.
In Table 9, the data of [30] are quoted in the 2nd to 7th columns, and the 8th column is
the test results of the EBHSA* algorithm.
Table 9. Algorithm performance comparison.
Indicators A* BFS Dijkstra Bidirectional A* DFS Geometric A* EBHSA*
Run-time/s 316.334 322.962 316.334 316.334 394.83 295.142 3.850
Number of nodes 131 131 131 131 198 109 160
Number of turns 36 33 27 30 / 27 21
Max turning angle 45° 135° 45° 45° 90° 45° 45°
Number of expansion nodes 2246 5936 6047 1611 198 109 360

Analyzing the data in Table 9 shows that the efficiency of the EBHSA* algorithm was
vastly superior to that of Geometric A*. If absolute data are directly used for comparison,
it may seem unacceptable because the run-time of the algorithm is affected by many factors,
such as the programming language, platform, and computer performance. Therefore,
it may be unreasonable to use the absolute time. The A* algorithm was also tested and
compared with the Geometric A* algorithm. After careful consideration, the proportional
transformation comparison method was used in this comparative experiment. This method
is based on the run-time of the A* algorithm in each experiment and calculates the ratio of
the two benchmarks: the run-time of the EBHSA* algorithm and the ratio are multiplied to
obtain the relative run-time. The relative time was used for comparison with geometric A*.
The comparison results are shown in Table 10. The proportional transformation comparison
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method was also used to compare with the literature [25], and the efficiency of EBHSA*
algorithm was 13.83 times.

Table 10. Comparison of the run-times of the geometric A* and the EBHSA* algorithms.

Conventional A* Geometric A* EBHSA*
[30] 316.334 295.142 /
This research 164.912 / 5.450
Ratio 1.918 1 1.918
Relative runtime / 295.142 * 10.454 *

5.3. Discussion
5.3.1. Efficiency

The experimental results show that the run-time of the EBHSA* algorithm was ap-
proximately 3.30% of that of the traditional A* algorithm, which means that the efficiency
was 30.26 times that of the A* algorithm. The run-time of the EBA* algorithm was approx-
imately 35.91% of that of the EA* algorithm, and the experimental result was consistent
with the time complexity analysis introduced in the previous section. The results of the
comparison testing with Geometric A* are shown in Table 5. The efficiency of the EBHSA*
algorithm was 28.23 times that of the geometric A* algorithm, an A* modification was
13.83 times faster than suggested in the literature [25].

Analyzing the data in Table 1 shows that the run-time of the EBHSA* algorithm was
longer than that of the EBHA* algorithm. This occurred because smoothing was introduced
where all nodes of the path needed to be traversed during smoothing and smoothing was
performed if a right-angle turn was found. Therefore, EBHSA* effectively enhances the
robustness of the path at a small, worthwhile cost.

As shown in Table 2, the efficiency of the EBHSA* algorithm was better than those of
the other four heuristic functions in the case of other similar indicators, which means that
the proposed heuristic function optimization strategy is significant for path planning.

These data show that EBHSA* algorithm has excellent performance in terms of efficiency;
this was one of the original intentions that guided the design of the EBHSA* algorithm.

5.3.2. Robustness

Table 1 shows that the number of path nodes was 31.84% lower than that of the
A* algorithm. The maximum turning angle of 45° means that all right-angle turns were
smoothed. The number of critical nodes for the A* algorithm was 118, and it was 0 after
expansion distance optimization, which means that this strategy effectively enhanced the
robustness of the path. In addition, the number of the EBHSA* algorithm critical nodes was
higher by seven because critical nodes need to be borrowed when smoothing the corner
positions of obstacles. In this case, the right-angle was decomposed into two 45° angles,
and the robustness was not significantly reduced. In combination, the number of critical
nodes of the EBHSA* algorithm was 94.07% lower, thereby greatly reducing the chance
of collisions.

Table 9 shows that the number of turns of the EBHSA* algorithm was the lowest
of all the algorithms in the experiment, indicating that its path smoothness was the best.
The expansion distance was designed in the EBHSA* algorithm to establish a safe buffer
area, and to effectively ensure path robustness. This strategy is especially important in
an environment with dense obstacles. The comparison test result is shown in Figure 8a.
In Figure 8b, multiple sections of the geometric A* algorithm path are close to obstacles,
and the path robustness was greatly threatened. Therefore, it can be concluded that the
robustness of the EBHSA* algorithm was better than those other algorithms, including
the geometric A* algorithm. This was another goal pursued by the developers of the
EBHSA* algorithm.

Since the EBHSA* algorithm does not pursue the shortest path as the target at the
beginning of the design, it does not have an advantage in terms of path length. The design
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idea of the EBHSA* algorithm is to first ensure that the path is reliable, because the cost of
collision would be far greater than the performance advantages of other indicators.

The above experiments show that the comprehensive performance of the EBHSA*
algorithm is better than that of the other algorithms in the experiments.

6. Effectiveness Test

To verify the effectiveness of the EBHSA* algorithm on a real mobile robot platform,
the EBHSA* algorithm was transplanted to the FS-AIROBOTB mobile robot hardware
platform produced by China HuaQing YuanJian. The algorithm in the open source Robot
Operating System (ROS) was rewritten to realize the transplantation of the algorithm. The
components are shown in Figure 9, and the parts of each component in Figure 9 are shown
in Table 11.

Figure 9. FS-AIROBOTB component diagram.

Table 11. FS-AIROBOTB component serial number comparison table.

Serial Number Part Name Serial Number Part Name
1 ROS omnidirectional vehicle chassis 9 FS_AIROBOTB
2 Mecanum wheel 10 7-inch HDMI display
3 Omnidirectional vehicle drive module 11 360-degree lidar
4 Cortex-M4 chassis core control board 12 Wireless Bluetooth remote control handle
5 FS_Explore sensor board 13 Cortex-M3 robotic arm control board
6 1080P industrial module camera 14 4 array microphones
7 Grep 35/25C/1300 mA power lithium battery 15 3B+ Raspberry Pi
8

Six degrees of freedom robotic arm

In this experiment, we made several main assumptions to ensure the rationality of
the test.

1.  Areal environment is set, and the start point and goal point are set in the scene.

2. Since the wheels of the robot are Mecanum wheels with 360-degree steering capability,
the initial state of the robot does not require a small space.

3. Inorder to verify the obstacle-free ability of the robot, a certain number of obstacles
are set in the real scene.

The effectiveness test is divided into 3 steps: (1) EBHSA* algorithm transplantation,
(2) simultaneous localization and mapping (SLAM) test, and (3) a robot autonomous
navigation test. The algorithm transplantation involved writing the EBHSA* algorithm into
the robot system. The SLAM test built a test map to use the radar on the robot in the real
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world. The robot autonomous navigation test verified the effectiveness of the algorithm in
the real world. To enable other researchers to reproduce our experimental process, we are
sharing the source and instructions of this paper on GitHub.

This section mainly introduces the implementation of robot autonomous navigation
tests through EBHSA* algorithm transplantation and SLAM map construction to verify the
effectiveness of the EBHSA* algorithm in real applications. The corresponding digital map
of the real environment constructed through SLAM is shown in Figure 10.

Figure 10. Actual test environment and the map constructed by SLAM.

As shown in Figure 11, the left picture is the rviz interface of the ROS navigation and
the right picture is the extracted path.

@ Starting point
@® End point

== Path

Figure 11. The rviz interface of path planning and extracted path.

In this experiment, we provide a real-world application scenario for the algorithm and
carried out basic autonomous navigation tests to verify the effectiveness of the EBHSA*
algorithm. The developed algorithm was written into a real mobile robot. The robot could
independently plan a reliable and smooth path according to the algorithm and complete
the autonomous navigation test from the starting point to the target point. This experiment
verifies that the EBHSA* algorithm can be applied to real robots and has the potential to be
applied to industrial scenarios.

7. Conclusions

We have presented EBHSA*, an improved A* algorithm for path planning which aims
to enhance the algorithm robustness by avoiding collisions and eliminating right-angle
turns while improving algorithm efficiency by reducing expansion nodes and run time.
Since the A* algorithm was invented for shortest path determination without consideration
for robustness, we have presented two strategies for guiding the practice of applying to
mobile robots to plan a path for enhancing robustness. The two strategies are expansion
distance and smoothing. Moreover, the running time of A* algorithm was also considered
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to be in need of improvements for efficiency, so we also have presented a set of strategies
for improving efficiency. These strategies are bidirectional search, new heuristic function
and expansion distance. These strategies should be combined to be used because they
have great potential in solving the problems of A* algorithm. We created a scheme for
evaluating the performance of EBHSA* algorithm; systematic experiments demonstrated
that the EBHSA* algorithm can achieve much higher efficiency than other A* modifications
(Geometric A*), while the robustness of EBHSA* algorithm was also effectively enhanced.
From Section 5, the EBHSA* has 2925.91% better path planning efficiency, 94.07% fewer
critical nodes, and 100% fewer right-angle turns. The practical meaning of this study as
to design a path planning algorithm that can be used for mobile robots with excellent
efficiency and robustness and has great potential for industrial application in the field of
mobile robots.
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