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Abstract: An equivalent theoretical homogenization method was proposed for composite sandwich
cylinders subjected to pure bending. Firstly, based on a homogeneous orthotropic layer hypothesis,
the trapezoidal corrugated sandwich core was found to be equivalent in a homogenization orthotropic
layer with the nine equivalent mechanical properties. Then, Lekhnitskii’s theory, based on a unified
connection parameter method, was introduced and applied in the equivalent composite sandwich
cylinder. The method developed by Lekhnitskii is suitable for arbitrary combinations of winding
layers with different winding angles and materials. Additionally, the bending stiffness of the
equivalent sandwich cylinder could be calculated. By developing user subroutine of UMAT, the
numerical calculation results were in a good agreement with the results of the proposed method.
Further, according to the Hill–Tsai strength criterion and the maximum strain criterion, parametric
study was done for specified bending stiffness and specified bending strength. The results show
that the influence of core parameters on the specified bending stiffness and strength are lower than
that of the skin parameters. Additionally, larger skin thickness and smaller winding angles could
improve the specified bending stiffness and specified bending strength of the composite corrugated
sandwich cylinders.

Keywords: equivalent homogenization method; sandwich cylinder; specified bending stiffness;
specified bending strength; pure bending

1. Introduction

Composite sandwich cylinders made of internal and outer skins and a core material
with certain topological configurations are widely used in aerospace, aircraft, and building
industries due to their high specified stiffness, specified strength, damage tolerance, and
blast resistance [1–3]. In the past decades, many different lattice core structures have been
proposed. It has been proved that corrugated and periodic lattice cores, including Lattice
block [4], Tetrahedral truss [5], Pyramidal truss [6], Kagome lattice [7], Woven lattice [8],
and Isogrid [9,10], have the potential to enhance numerous applications in aerospace
structures. Among these cores, corrugated core is the most widely used because of its
simple forming process, low cost, and relatively good mechanical properties. However,
most published reports [4,7,11–13] deal with axial-compressive behaviors of the composite
sandwich cylinders, but rare investigations are involved in their bending behaviors, which
is a significant performance index.

A composite thick wall pipe is generally anisotropic. After deformation caused by
various types of loading, such as internal or external pressure, axial pressure, or torsion, the
axis of the composite thick wall pipe is still straight. However, under bending condition,
deflection occurs on the axis of the thick wall pipe, which makes the deformation prediction
more complex. Earlier, Lekhnitskii [14] used the flexibility method of a double stress func-
tion to obtain two partial differential equations for the case of cylindrical anisotropy. Later,
Jolicoeur and Cardou [15] developed and expanded Lekhnitskii’s theory. The developed
theory is only suitable for spiral wound layers and not for special winding layers with
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orientation n of 0◦ and 90◦. Xia et al. [16] treated cross-winding layers to 90◦ winding layers.
A single stress function was used to establish differential equations because out-of-plane
shear stresses are zero, which limits the scope of application of their method. In 2014,
Zhang and Hoa [17,18] proposed a unified connection parameter method. This method
overcomes the problem of singular parameters in the presence of a special winding layer
and is suitable for composite tubes of general stacking sequence including 0◦, 90◦, and
[ϕ/−ϕ].

The periodic topological core structure in composite sandwich cylinders is another
complex factor. In the past few decades, the research on cores’ equivalent theory has mainly
focused on the in-plane stiffness of sandwich panels. For corrugated cores, Libove and
Hubka et al. [19] proposed that shear effects were an important phenomenon that could not
be neglected. Based on the Classical Plate Theory (CPT), Xia et al. [20] derived the in-plane
equivalent mechanical properties for different corrugation cores. Bartolozzi et al. [21]
derived the in-plane equivalent mechanical properties of a sinusoidal-shaped corrugated
core using an energy method. Then, Bartolozzi et al. further extended the energy method
to make it suitable for arbitrary shapes of corrugated cores [22]. Based on the classical
Euler–Bernoulli and line hypotheses, Magnucka-Blandzi et al. [23,24] analyzed the bending
and buckling behavior and the effect of transverse shearing deformation on sandwich
beams with sinusoidal corrugated cores. They also studied the effect of transverse shearing
deformation for short and long beams. For corrugated cores, equivalent out-of-plane prop-
erties are also important and cannot be ignored [25]. Therefore, Zhang and Lei et al. [26]
studied the out-of-plane compressive performance and energy absorption of multi-layer
graded sinusoidal corrugated sandwich panels. Ghahfarokhi et al. [27] use a new approach
to reveal the damage mode of global buckling and the equivalent stiffness of composite
sandwich cylindrical shells with lattice cores under uniaxial compression. In the context
of shear deformation theory, Yadav et al. [28] studied circular cylindrical sandwich shells
with open/closed cellular core the face sheets. Additionally, their effective mechanical
properties were determined using the Gibson and Ashby model and the rule of mixture.
Guo et al. [29] proposed a unified semi-analytical method for dynamic homogenization
and vibration of lattice-truss-core sandwich beams. Based on the mechanics of materials
approach and the classical plate theory, Pydah et al. [30] analytically investigate infinitesi-
mal cylindrical bending deformations of two-layered triangular corrugated and webcore
linearly elastic sandwich panels. Kolpakov et al. [31] derived the equivalent stiffnesses
for corrugated plates by using a two-step approximation method. For corrugated core
sandwich panels, Buannic et al. [32] applied a specific study to derive the transverse shear
stiffness and determined an equivalent Reissner–Mindlin homogeneous plate.

This paper proposes an equivalent homogenization theoretical method for composite
sandwich cylinder under pure bending. Firstly, based on a homogeneous orthotropic
layer hypothesis, the trapezoidal-shaped corrugated sandwich core was approximately
equivalent to an orthotropic homogenization layer. This layer was described with nine
equivalent mechanical properties. Then, Lekhnitskii’s theory, based on a unified connection
parameter method, was introduced and applied in the equivalent composite sandwich
cylinder. By developing a user subroutine of UMAT, the results of the equivalent homoge-
nization theoretical method were compared with the numerical results. Further, according
to the characteristics of the sandwich cylinder, two different strength criteria for skin and
core are discussed. The influence of variable parameters on specified bending stiffness and
strength is discussed with a parametric study.

2. Materials and Methods
2.1. Analytical Methods for Composite Cylinders Subjected to Pure Bending

After years of development, the range of application of the elasticity theory for com-
posite cylinders subjected to pure bending has been continuously expanded. This elasticity
theory is an important basis for the sandwich cylinder subjected to pure bending. Addi-
tionally, the theory was introduced in this section.



Symmetry 2021, 13, 2225 3 of 22

2.1.1. Analytical 3D Elasticity Method by Lekhnitskii

A composite tube with multiple layers under a pure bending load Mx and My is
shown in Figure 1 [18], where bn, bn+1 and ϕn(n = 1, 2, · · ·, N) are the inner and outer
radius of the nth layer and its filament winding angle, respectively. Additionally, σz, is
the main bending stress component along the axis in the composite pipe. The in-plane
stress components of σr, σθ , and τrθ are parallel to the cross-section are the secondary
stress components, and the stress components of τθz and τrz are the out-of-plane stress
perpendicular to the cross-section.
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Based on the winding angle of ϕn(n = 1, 2, · · ·, N), the constitutive equation of each
layer transformed from the principal material coordinate system to the cylindrical system
can be obtained as follows [18]:

εr
εθ

εz
γθz
γrz
γrθ


= C
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σθ

σz
τθz
τrz
τrθ


=
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where
C = TTST (4)

in which

T =



0 sin2 ϕ cos2 ϕ −2 sin ϕ cos ϕ 0 0
0 cos2 ϕ sin2 ϕ 2 sin ϕ cos ϕ 0 0
1 0 0 0 0 0
0 0 0 0 − sin ϕ − cos ϕ
0 0 0 0 cos ϕ − sin ϕ

0 sin ϕ cos ϕ − sin ϕ cos ϕ sin2 ϕ− cos2 ϕ 0 0

 (5)
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To simplify the expression, the following reduced elastic constants βij were defined
by Lekhnitskii [14]

βij = Cij −
Ci3C3j

C33
(6)

For the pure bending problem of composite pipes, Lekhnitskii [14] first proposed the
flexibility method containing two stress functions, F(r, θ) and Ψ(r, θ). The in-plane stress
component is expressed as the following form of stress function F(r, θ).

σr =
1
r

∂F
∂r

+
1
r2

∂2F
∂θ2 , σθ =

∂2F
∂r2 , τrθ = − ∂2

∂r∂θ

(
F
r

)
(7)

Meanwhile, the out-of-plane stress component is expressed as follows.

τrz =
1
r

∂Ψ
∂θ

, τθz = −
∂Ψ
∂r

(8)

Additionally, the three-dimensional elastic mechanical problem of pure bending of
a composite pipe is a generalized plane strain problem, and its bending stress can be
expressed as follows:

σz =
1

C33

(
kxr sin θ + kyr cos θ − C13σr − C23σθ − C34τθz

)
(9)

A system of ordinary differential equations can be obtained with separate variables,
and the solution is sought as follows.

F = f (r)
(
kx sin θ − ky cos θ

)
(10)

Ψ = ψ(r)
(
kx sin θ − ky cos θ

)
(11)

where kx and ky are the curvature in the plane perpendicular to directions x and y, respec-
tively.

According to the compatibility equations [14], the following ordinary differential
equation about the stress function can be obtained.

(
β22
r

(
r d4

dr4 + 2 d3

dr3

)
− β11+2β12+β66

r4

(
r2 d2

dr2 − r d
dr + 1

))
f (r)

+
(

β14
r2

(
d
dr + r d2

dr2

)
− β24

r

(
r d3

dr3 + 2 d2

dr2

)
+ β56

r2
d
dr

)
ψ(r)

= 2
r

C13−C23
C33(

β14
r3

(
r2 d2

dr2 − r d
dr − 1

)
+ β24

r

(
−r d3

dr3 +
d2

dr2

)
+ β56

r3

(
−r d

dr − 1
))

f (r)

+
(

β44
r

(
r d2

dr2 +
d
dr

)
− β55

r2

)
ψ(r) = 2C34

C33

(12)

2.1.2. Solutions for Composite Tube with Multi-Layer

Based on Lekhnitskii [14], Jolicoeu and Cardou [15] considered the fourth-order
ordinary-differential-compatibility equation of pure bending problem of composite tube
with multi-layer and arbitrary winding angle. System (12) is of the Cauchy–Euler type.
The form of the solution of f (r) = Krm+1 and ψ(r) = Kgrm were assumed. The complete
solutions of the pure bending system for the stress function are

F =
(
kx sin θ − ky cos θ

)( 4

∑
i=1

Ki
mi

rmi+1 +
µ1

2
r3

)
(13)

Ψ =
(
kx sin θ − ky cos θ

)( 4

∑
i=1

Kigirmi + µ2r2

)
(14)
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where mi are four characteristic roots given by

{
m1
m2

= ±

√
−b +

√
b2 − 4ac

2a
(15)

{
m3
m4

= ±

√
−b−

√
b2 − 4ac

2a
(16)

with
a = β22β44 − β2

24
b = β24(2β14 + β24 + 2β56)

−β44(β11 + 2β12 + β22 + β66)− β22β55 + β2
14

c = β55(β11 + 2β12 + β22 + β66)− β2
56

(17)

µ1 and µ2 are the two unknown constants. The solution is written in matrix form as{
µ1
µ2

}
=

[
−2β14 − 6β24 + β56 4β44 − β55

−β11 − 2β12 + 3β22 − β66 2β14 − 2β24 + β56

]−1 1
C33

{
2C34

C13 − C23

}
(18)

gi are four connection parameters obtained from

gi =
β24m2

i + (β14 + β24)mi − β56

β44m2
i − β55

; i = 1 to 4 (19)

Additionally, Ki are four combination coefficients that are calculated with the continu-
ity boundary condition.

2.1.3. The Unified Connection Parameter Method

According to the above method proposed by Jolicoeur and Cardou [15], Zhang
et al. [18] found the connection parameters of g3 and g4 are infinite in |limg3|

ϕ→0,90
= ∞ and

|limg4|
ϕ→0,90

= ∞. In order to overcome this issue, the unified connection parameter method

was proposed by

K∗j =

{
Kjgj, ϕ 6= 90 or 0
Kjgj, ϕ = 90 or 0

j = 3, 4 (20)

g∗j =

{
g−1

j , ϕ 6= 90 or 0
0, ϕ = 90 or 0

j = 3, 4 (21)

Then, the four combination coefficients of K1, K2, K3, K4 are transformed into K1, K2, K∗3 ,
K∗4 . Additionally, the six stresses are as follows.

σr =
(
kx sin θ − ky cos θ

)( 2
∑

i=1
Kirmi−1 +

4
∑

j=3
K∗j g∗j rmj−1 + µ1r

)

σθ =
(
kx sin θ − ky cos θ

)( 2
∑

i=1
Ki(mi + 1)rmi−1 +

4
∑

j=3
K∗j g∗j

(
mj + 1

)
rmj−1 + 3µ1r

)

τrθ =
(
kx cos θ + ky sin θ

)(
−

2
∑

i=1
Kirmi−1 −

4
∑

j=3
K∗j g∗j rmj−1 − µ1r

)

τrz =
(
kx cos θ + ky sin θ

)( 2
∑

i=1
Kigirmi−1 +

4
∑

j=3
K∗j rmj−1 + µ2r

)

τθz =
(
kx sin θ − ky cos θ

)(
−

2
∑

i=1
Kigimirmi−1 −

4
∑

j=3
K∗j mjr

mj−1 − 2µ2r

)
σz =

1
C33

(
kxr sin θ − kyr cos θ − C13σr − C23σθ − C34τθz

)

(22)
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The displacements are expressed as follows

ur =
(
kx sin θ − ky cos θ

)(
− z2

2 +
2
∑

i=1
KiU′i r

mi +
4
∑

j=3
K∗j U∗j rmj + U′5r2 + υ

)

uθ =
(
kx cos θ + ky sin θ

)(
− z2

2 +
2
∑

i=1
KiV′i rmi +

4
∑

j=3
K∗j V∗j rmj + V′5r2 + υ

)

w = zr
(
kx sin θ − ky cos θ

)
+
(
kx cos θ + ky sin θ

)( 2
∑

i=1
KiW ′i rmi +

4
∑

j=3
K∗j W∗j rmj + W ′5r2

) (23)

where functions U, V, and W are finally written as
U′i =

1
mi
(β11 + β12(mi + 1)− β14gimi)

V′i = 1
mi
(β11 + β12 − β22mi(mi + 1)− gimi(β14 − β24mi))

W ′i =
1

mi
(β55gi − β56)

(24)


U∗j = 1

mj

(
(β11 + β12(mi + 1))g∗j − β14mi

)
V∗j = 1

mj

(
(β11 + β12 − β22mi(mi + 1))g∗j −mi(β14 − β24mi)

)
W∗j = 1

mj

(
β55 − β56g∗j

) (25)


U′5 = 1

2

(
µ1(β11 + 3β12)− 2β14µ2 +

C13
C33

)
V′5 = 1

2

(
µ1(β11 + β12 − 6β22)− 2µ2(β14 − 2β24) +

C13−2C23
C33

)
W ′5 = 1

2 (β55µ2 − β56µ1)

(26)

where i = 1, 2 and j = 3, 4.
In the context of no relative slip between layers in the composite tubecase, the stresses

σr, τrθ , and τrz and displacements ur, uθ , and w must meet the continuity condition. For a
composite tube with N layers, there are two free surfaces yielding two equations each, plus
(N − 1) interfaces giving five equations each. The value ν1 is set to zero [15]. This gives
5N equations for the same number of arbitrary constants (K1, K2, K∗3 , K∗4 , and ν for each
cylinder). Then, the 5N arbitrary constants can be calculated. The end conditions of pure
bending are given by 

Mx =
N
∑

n=0

∫ 2π
0

∫ bn+1
bn

σzr2 sin θdθdr

My = −
N
∑

n=0

∫ 2π
0

∫ bn+1
bn

σzr2 cos θdθdr
(27)

By using Equations (9) and (27), the bending stiffness (EI) is written as [18]{
Mx = (EI)kx
My = (EI)ky

(28)

(EI) =
N
∑

n=1

π
(C33)n

{
2
∑

i=1
(Ki)n[(C13)n + (C23)n((mi)n + 1)

−(C34)n(mi)n(gi)n]
b
(mi)n+2
n −b

(mi)n+2
n+1

(mi)n+2

+
4
∑

j=3

(
K∗j
)

n

[
(C13)n

(
g∗j
)

n
+ (C23)n

((
mj
)

n + 1
)(

g∗j
)

n

−(C34)n
(
mj
)

n

] b
(mj)n

+2
n −b

(mj)n
+2

n+1

(mj)n+2

+[(µ1)n((C13)n + 3(C23)n)− 2(µ2)n(C34)n − 1]
b4

n−b4
n+1

4

}
(29)
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2.2. Equivalent Properties of Trapezoidal Corrugated Cores

In recent years [12,33,34], the sandwich structures with trapezoidal corrugated-cores,
as shown in Figure 2, have been of great concern due to their simple forming process,
low cost, and sufficient bonding area. Therefore, the precise equivalent parameters of
corrugated core have an important influence on the strength and stiffness design of sand-
wich structure.
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Unlike triangular-shaped cores and sinusoidal cores, the trapezoidal cores are com-
posed of two parts: the horizontal segment and the corrugated segment. Based on Mindlin–
Reissner theory, H. Mohammadi [35] and M. Shaban [25] established a quarter trapezoidal
cell model and the boundary conditions (BCs) of a dummy moment M0. A vertical force V
and a horizontal force H were applied at the end of the horizontal part. Although their
calculated results of equivalent mechanical properties are consistent with the simulation
under the same BCs, their methods are only suitable for the trapezoidal corrugated cores
without skins. The actual BCs are different between trapezoidal-shaped corrugated sand-
wich plates with two skins and without skins. In order to accurately calculate the equivalent
parameters, the correct boundary condition should be to apply forces and constraints at
the conjunction points of the core with skins [22].

As shown in Figure 3, a half-trapezoidal cell model represented by its centerline was
proposed by Giorgio Bartolozzi [21,22], where p1, p2, and p3 are the lengths of three parts
(Part O–A, Part A–B, and Part B–C, respectively) along the x-direction. The corrugation
cores can be considered periodic with period 2 × p, dip angle β, and height h.
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Generally, the corrugated cores are made of lightweight metal by a stamping and
folding process [36] or carbon fiber woven composite by a mold-pressing method [12].
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Additionally, the carbon fiber woven composite with symmetric orthogonal ply has an
in-plane quasi-isotropic characteristic, which could be treated as a metal material.

2.2.1. Transverse Shear Modulus Gxz

The corrugation part (Part A–B in Figure 3) of a trapezoidal core is the main deforma-
tion element that determines the mechanical characteristics of the whole core. Indeed, it is
necessary to calculate the deformation of Part A–B.

As shown in Figure 4, the analytical model of Part A–B has thickness tc and unit width
b = 1 in the y-direction. The origin of the XYZ coordinate system is set at point A, which is
the conjunction points of the core with skins, and there the structure is clamped. In order
to determine the equivalent shear modulus Gxz, a horizontal force H, a dummy moment
M0, and a vertical force V are applied at point B. Then, the Part A-B will only produce the
horizontal displacement δH , which is also called pure shear deformation (see Figure 5).
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The inner forces of arbitrary point in Part A–B are as follows.

M = H(h− x× tan β) + V(p2 − x)−M0
N = H cos β−V sin β
T = H sin β + V cos β

(30)
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Based on the Castilian second theorem [11], the rotation displacement, vertical dis-
placement, and horizontal displacement of the free end of point B can be derived as:

δH =
∫ p2

0

(
M
EI

∂M
∂H + N

EA
∂N
∂H + T

GA′
∂T
∂H

)
dx

cos ϕ

δV =
∫ p2

0

(
M
EI

∂M
∂V + N

EA
∂N
∂V + T

GA′
∂T
∂V

)
dx

cos ϕ

δM0 =
∫ p2

0

(
M
EI

∂M
∂M0

+ N
EA

∂N
∂M0

+ T
GA′

∂T
∂M0

)
dx

cos ϕ

(31)

According to the boundary conditions shown in Equation (32), the horizontal displace-
ment δH can be calculated from the equations shown in Equation (33).

δV = 0, δM0 = 0, H = 1 (32) δH
δV

δM0

 =

 C1,1 C1,2 C1,3
C2,2 C2,3

sym C3,3

 H
V

M0

 (33)

where 

C1,1 =
h2 p2−h tan βp2

2+
tan2 β

3 p2
3

EI cos β + cos β cos βp2
cos βEA + sin β sin βp2

cos βGA′

C1,2 =
hp2

2− p2 tan β+h
2 p2

2+
tan β

3 p2
3

EI cos β − sin β cos βp2
EA cos β + cos β sin βp2

GA′ cos β

C1,3 =
−hp2+

tan β
2 p2

2

EI cos β

C2,2 =
p2

3

3
EI cos β + sin β sin βp2

EA cos β + cos β cos βp2
GA′ cos β

C2,3 =
− p2

2

2
EI cos β

C3,3 = p2
EI cos β

(34)

and EI = EA× tc
2

12 , GA′ = EA× κ
2(1+ν)

, and κ is the shear correction factor of the beam
(κ = 0.85). The horizontal displacement can be found with

δH =

∣∣∣∣∣∣
C1,1 C1,2 C1,3

C2,2 C2,3
sym C3,3

∣∣∣∣∣∣∣∣∣∣ C2,2 C2,3
C2,3 C3,3

∣∣∣∣ H (35)

Therefore, the equivalent transverse shear modulus of Part A–B can be obtained
as follows:

Gxz2 =
τxz

γxz
=

Fx

Axy
/

δx

lz
=

H
p2

/
δH
2h

(36)

In the case of containing upper and lower skins, since the horizontal sections (O–A
and B–C) of the trapezoidal corrugated core are constrained by the skin and have little
effect on the transverse shear deformation of the core under the action of the horizontal
force in the x direction, the equivalent transverse shear modulus of the whole corrugated
core can be derived with

Gxz = Gxz1
p1

p
+ Gxz2

p2

p
+ Gxz3

p3

p
≈ Gxz2

p2

p
(37)

2.2.2. Elastic Modulus in the X-Direction Ex and Poisson’s Ratio νxz

To determine the equivalent elastic modulus in the x-direction Ex, it is necessary to
determine the horizontal displacement δH of the upper end due to a horizontal force H.
The calculation approach is like Gxz, but there is no dummy vertical force V. Therefore,
according to Equation (33) and considering the conditions of δM0 = 0, H = 1 and V = 0 at
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point B are finally imposed. The arising system of three equations with three unknowns
can be solved to determine δH .

δH = C1,1 −
C2

1,3

C3,3
(38)

δV = C2,1 −
C2,3C3,1

C3,3
(39)

Additionally, the equivalent Young’s modulus Ex2 of Part A–B is derived as follows:

Ex2 =
σx

εx
=

Fx

Ayz
/

δx

lx
=

1
h

/
δH
p2

(40)

Hence, the equivalent elastic modulus in the x-direction Ex of the whole trapezoidal-
shaped corrugation is

Ex = p/
(

p1

Ex1
+

p2

Ex2
+

p3

Ex3

)
(41)

where Ex1 and Ex3 represent the equivalent elastic modulus of Part O–A and Part B–C,
respectively, and

Ex1 = Ex2 = E× tc/h (42)

Furthermore, Poisson’s ratio νxz can be derived as

νxz = −
εz

εx
=

δV
h

/
(δH + p1+p3

tcE )

p
(43)

2.2.3. Elastic Modulus in the Y-Direction Ey

The equivalent elastic modulus Ey in the y direction can be calculated by Equation (44),
which scales the Young’s modulus of the core E to the ratio between the sectional area of
corrugated core in X–Z plane, Ay, and the section area of the equivalent volume, Aeqy.

Ey = E
Ay

Aeqy
= E

tcl
hp

(44)

l = p1 +
p2

cos β
+ p3 (45)

2.2.4. Transverse Shear Modulus in Y–Z Plane Gyz

The transverse shear modulus Gyz can be obtained by simplifying the shape of trape-
zoidal corrugated core. In the sample domain of half a period, the core is stretched to a
flattened panel. This corresponds to creating a local curved system of reference along the
center line of the core sheet and integrating along that local coordinate. Then, the panel can
be considered as a straight beam with a rectangular section. Based on Timoshenko beam
theory, the displacement in the y direction due to an applied force H in the same direction
is derived as

δre
zy =

Hl′
5
6 × G× tcb

(46)

where l′ = P2
cos β and b is the width of the core in the y direction. The shear deformation of

the equivalent sample section, δ
eq
zy, under the same conditions, is

δ
eq
zy =

Hh
5
6 × Gyz2 p2b

(47)
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By imposing that δre
zy and δ

eq
zy are equal, the equivalent shear modulus Gyz2 of Part A–B

is obtained as
Gyz2 = G

htc

p2l′
(48)

Then, the transverse shear modulus in the Y–Z plane of the trapezoidal corrugation is
approximated as:

Gyz = Gyz1
p1

p
+ Gyz2

p2

p
+ Gyz3

p3

p
≈ Gyz2

p2

p
(49)

2.2.5. In-Plane Shear Modulus Gxy

The derivation method of in-plane shear modulus Gxy is similar to the derivation
method of transverse shear modulus in the Y–Z plane Gyz.The only difference is that now
the force H′ is acting in the x direction. Therefore, the shear deformations computed for
the approximated section δre

xy and for the equivalent sample section δ
eq
xy are:

δre
xy =

H′b
5
6 × Gtcl

(50)

δ
eq
xy =

H′b
5
6 × Gxyhp

(51)

By imposing that δre
xy and δ

eq
xy are equal, the equivalent shear modulus Gxy is ob-

tained as
Gxy = Gal

tcl
hp

(52)

2.2.6. In-Plane Poisson’s Ratio νxy

Poisson’s ratio νxy of typical orthotropic materials can be obtained from the follow-
ing relation:

νxyEy = νyxEx (53)

The Poisson’s ratio in the X–Y plane νyx can be assumed to be equal to the constituent
material Poisson’s ratio [22].

2.2.7. Out-of-Plane Elastic Modulus in Z-Direction Ez

As represented in Figure 2, the derivation of elastic modulus in the z direction is
similar to that of the elastic modulus in the x direction. By imposing a vertical force V in
the z direction to the point B, positive vertical displacement, δV , and negative horizontal
displacement in the x-direction, δH , occur. Additionally, in order to avoid rotation in the
X–Z plane, a dummy moment M0 will be produced at point B. Therefore, according to
Equation (33) and considering the conditions of δM0 = 0, H = 0, and V = 1, the arising
system of three equations with three unknowns can be solved to determine δV and δH :

δV = C2,2 −
C2

2,3

C3,3
(54)

δH = C1,2 −
C1,3C2,3

C3,3
(55)

Additionally, the equivalent Young’s modulus Ez is obtained as:

Ez =
σz

εz
=

Fz

Axy
/

δV
lz

=
1
p

/
δV
h

(56)
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2.2.8. Poisson’s Ratio νzy

The Poisson’s ratio, νzy, is obtained from the following relation:

νzyEy = νyzEz (57)

Similar to the calculation of νyx, the Poisson’s ratio of νyz can also be assumed to be
equal to the constituent material of Poisson’s ratio. Additionally, then, νzy can be calculated
by Equation (57).

2.2.9. Relative Density ρcore

The relative density of the equivalent material is computed by scaling the density of
the constituent material ρ proportionally to the occupied equivalent volume, thus

ρcore = ρ
tcl
hp

(58)

Generally, the present theoretical results are almost consistent with the calculated
results of the FEA shell elements models with the same boundary conditions [21–25]. By
comparing the results of the FEA model and Xia’s method [20], Bartolozzi et al. [22] proved
that the proposed method can still be used with good accuracy for trapezoidal corrugated
cores with relatively short horizontal segments. Furthermore, compared with Xia’s method,
the proposed method can further calculate the out-of-plane equivalent properties.

2.3. The Theoretical Equivalent Homogenization Method for a Sandwich Cylinder

Composite sandwich tubes are widely used in many fields such as civil, aerospace,
and military. In the civil field, high-pressure long-tube trailers are an important way to
transport hydrogen, compressed natural gas, and other fuels in a short distance. Compared
with the traditional steel container, the composite cylinder has higher efficiency of storage
and transportation, but, as a result of increases in composite cylinder volume, a longer
bottle body would lower the stiffness of the vessel. Therefore, large-volume full-winding
hydrogen bottles should not only meet the requirements of their internal pressure strength
but should also still meet the tube body stiffness requirements in service conditions. In
the field of aeronautics and astronautics, a lightweight composite allio sandwich tube
structure can meet the requirements of the bearing performance of large engine shells
under complex working conditions, and the dialectical unity of its bending stiffness, axial
compression performance, and lightweight is continuously pursued in the design process.
In the military field, the improvement of the bending stiffness of the lightweight composite
rocket launcher can effectively reduce the lateral vibration during launch, reduce the
velocity deviation of the projectile leaving the launcher, and improve the hit accuracy.
Therefore, the bending stiffness of composite sandwich tubes is a significant performance
index. It is urgent to establish an effective analysis method to design the bending stiffness
of this kind of structure.

An equivalent homogenization theoretical method is proposed to analyze the pure
bending of a sandwich cylinder. As shown in Figure 6a, the sandwich cylinder is composed
of the inner skin, lightweight core, and outer skin. The geometric parameters of the
trapezoidal corrugated core are shown in Figure 6b. According to the equivalent theory
model of trapezoidal corrugated core in Section 3, the core could be approximated to
an orthotropic layer with equivalent mechanical properties. As shown in Figure 6c, the
core could be simplified into an orthotropic homogeneous layer with the same height as
hc. By using the developed Lekhnitskii’s theory, the equivalent bending stiffness of the
corrugated-core sandwich cylinder can be calculated.
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3. Results

To compare with the proposed equivalent homogenization theoretical method, a 3D
finite element model of the sandwich cylinder was established and calculated by ABAQUS
6.13. As shown in Figure 6b, the geometric parameters of inner skin, outer skin, and the
trapezoidal corrugated core are listed in Table 1. The inner and outer skin have two layers
with the same thickness of 0.8 mm. The material of the core is standard aluminum with E
= 71,000 MPa and ν = 0.33. The material of the inner and outer skin is carbon fiber/epoxy
resin with anisotropic elastic properties listed in Table 2.

Table 1. The geometric parameters of the sandwich cylinder.

Parameters Dimensions

Inner radius, ro 95 mm
Inner skin thickness, tfi 1.6 mm

Winding angles of inner skin, ϕ [90/0]
Outer skin thickness, tfo 1.6 mm

Winding angles of outer skin, ϕ [90/0]
Cell number 50

Height of cores, hc 6.8 mm
Angle of corrugation, θ 53.57◦

Corrugated rib thickness, tc 1 mm
Length of upper horizontal part, 2 × p1 2 mm
Length of below horizontal part, 2 × p3 2 mm

Length of trapezoidal core, 2 × p 12.56 mm



Symmetry 2021, 13, 2225 14 of 22

Table 2. Material Properties.

Material Properties Carbon Fiber/Epoxy Resin Glass Fiber/Epoxy Resin

E11/MPa 1.55 × 105 6.0 × 104

E22 = E33/MPa 1.21 × 104 1.1 × 104

G23/MPa 3.2 × 103 3.2 × 103

G13 = G12/MPa 4.4 × 103 7.6 × 103

v12 = v13 0.248 0.26
v23 0.458 0.458

By developing the user subroutine of UMAT, the orthotropic linear elastic constitutive
model is applied in the ABAQUS Implicit Solver. Considering that many meshes require a
considerable amount of computing resources, the semi-model of the sandwich cylinder was
established. As shown in Figure 7, there are 1000 regular elements in the circumferential
direction, 2 regular elements of each layer in the thickness direction, and 200 regular
elements in the axial direction. The linearly distributed load with the equivalent moment
of Mx = 6 × 106 N·mm and My = 0 N·mm was applied on the semi-model. Additionally,
the Y–Z section of the model is symmetrically constrained.
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As shown in Figure 8, under the equivalent moment, Mx = 6 × 106 N·mm, the axial
stress component at the position of θ = 90◦ is greater than that at other positions. In order to
measure the bending curvature of the cylinder, we chose a length of the cylinder to extract
the deformed coordinates of the nodes at the position of θ = 90◦ and 270◦. Additionally, the
coordinates of the deformed central axis can be calculated, as shown in Figure 8. Because
the deformation of the cylinder is symmetrical to the x-axis, only the coordinates of the
central axis in the Y–Z plane need to be considered. It is known that every three adjacent
nodes in Y–Z plane can determine a circle with a radius, R. The cylinder’s bending radius
can be determined by averaging the corresponding radius of all nodes in the central axis.
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According to the proposed equivalent homogenization theoretical method, the trape-
zoidal corrugated core with geometric parameters listed in Table 1 needs to be equivalent
to an orthotropic homogenization layer. The mechanical properties are shown in Table 3.

Table 3. The equivalent parameters for trapezoidal profile geometries.

Ex
(MPa)

Ey
(MPa) vyx

Gxy
(MPa)

Ez
(MPa)

Gxz
(MPa)

Gyz
(MPa) vyz vxz

295.74 17,948.8 0.33 6747.68 453.30 3314.44 3420.03 0.33 0.771

Then, the curvature of the equivalent cylinder can be calculated by Equation (28). The
numerical and theoretical results are shown in Table 4, which shows that the results of the
equivalent method were in good agreement with numerical results.

Table 4. The results of the equivalent homogenization theoretical model and the FE model.

Results kx/mm−1 σz/MPa
(θ = 90◦,r = r0)

σz/MPa
(θ = 90o,r = r0 + tfi + hc + tfo)

FE model 9.356 × 10−6 11.647 166.4
Theoretical method 9.672 × 10−6 11.118 158.0

Relative errors −3.34% 4.54% 5.05%

4. Discussion
4.1. The Bending Strength of Sandwich Cylinder

The advantage of the theoretical method is that the core layer is simplified as a homog-
enized layer, making the sandwich cylinder’s three-dimensional elastic analysis possible.

Intuitively, the bending stiffness of the cylinder can be improved by reducing the
winding angle of the inner skin and outer skin. The calculation of the bending strength can
reflect the utilization rate of the materials in each layer of the sandwich cylinder. Therefore,
the bending strength of sandwich cylinder is also important.

4.1.1. Strength Criterion for the Cylinder’s Skin

The inner and outer skins of the cylinder are composed of winding layers with different
materials, angles, and thicknesses. The failure of skins belongs to the progressive failure
of each layer. Therefore, it is of great significance to find out the earliest failure location
and the failure load. In recent years, many strength criteria [37] have been developed for
fiber-reinforced resin matrix composites. In this paper, the Hill–Tsai strength criterion is
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used to evaluate the strength failure of the winding layers of skin. Additionally, the failure
determination formula is

fs =
σ2

1
X2

1
+

σ2
2

Y2
1
+

σ2
3

Z2
1
−
(

1
X2

2
+ 1

Y2
2
− 1

Z2
2

)
σ1σ2

−
(

1
X2

3
+ 1

Y2
3
− 1

Z2
3

)
σ1σ3

−
(

1
X2

4
+ 1

Y2
4
− 1

Z2
4

)
σ2σ3 +

τ2
12

S2
12
+

τ2
23

S2
23
+

τ2
31

S2
31

(59)

where fs is the failure factor; σ1, σ2, σ3, τ12, τ13, and τ23 are the stress components in the
material principal coordinate system of 1-2-3 directions; and S12, S13, and S23 are the shear
strength in the corresponding principal axis directions.

If σ1 > 0, then X1 = XT ; otherwise X1 = XC.
If σ2 > 0, then X2 = XT , Y1 = Y2 = YT and Z2 = ZT ; otherwise X2 = XC, Y1 = Y2 =

YC, Z2 = ZC.
If σ3 > 0, then X3 = XT , Y3 = YT and Z1 = Z3 = ZT ; otherwise X3 = XC, Y3 = YC

and Z1 = Z3 = ZC.
If σ2 < 0 or σ3 < 0, then X4 = XC, Y4 = YC and Z4 = ZC; otherwise X4 = XT , Y4 = YT

and Z4 = ZT .
where Xc, Yc, and Zc represent compressive strength and Xt, Yt and Zt represent tensile

strength in the principal directions. When the stress components of a material point make
fs > 1, the material point is considered to be damaged. According to the explicit stress
expression of the developed Lekhnitskii’s theory mentioned in Section 2.3, it is possible to
predict the failure location. As shown in Equation (44), the stress components need to be
transformed into corresponding stress components in material principal coordinate system.

σ1
σ2
σ3
τ23
τ13
τ12


= T



σr
σθ

σz
τθz
τrz
τrθ


(60)

4.1.2. Strength Criterion for the Core

For a sandwich cylinder, the neutral layer is coplanar with the axis, which will cause
a complex stress distribution along with the circumferential and radial directions. There-
fore, the actual stress state of the core with multi-corrugation shapes is more complicated.
Although the stress of each layer is not necessarily continuous, the strain along the circum-
ferential and radial direction must be continuous. For a trapezoidal corrugated core, the
axial stiffness is much greater than that in other directions. Additionally, the main strain is
in the axial direction of the cylinder, which causes that the σz to be much greater than other
stress components at each layer, as shown in Figure 2. When the core’s axial displacement
reaches the maximum uniaxial strain of the core material, failure is considered to have
occurred in the core. Therefore, the maximum strain criterion was applied in this paper to
evaluate the failure of cores, which is expressed as fc =

(
εcore

z,max

ε
T(C)
f

)2

ε
T(C)
f =

XT(C)
Ecore

(61)

where εcore
z,max is the maximum strain component in the z-direction of the core layer, ε

T(C)
f is

the critical failure strain of the core material, and XT(C) is the strength of the core material.
Generally, the corrugated cores are made of lightweight metal or woven carbon fiber
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composite with symmetric orthogonal ply. For metal material, XT(C) is the yield strength
and Ecore is the elastic modulus.

When the core is made of woven carbon fiber composite with ply order of [0/90]ns,
XT , XC, and Ecore are the equivalent tensile strength, compressive strength, and elastic
modulus of the [0/90]ns laminated plate, respectively. According to classical laminated
plate theory, the relationship between the internal force and the deformation in the middle
plane of a laminate is established as

εx
εy
εxy
kx
ky
kz

 =

[
A′ B′

B′ D′

]


Nx
Ny
Nxy
Mx
My
Mxy

 (62)

where matrix elements A′, B′, and D′ are the tensile, coupling, and bending flexibility,
respectively. For the laminated plate with symmetric ply, the coupling flexibility matrix is
a null matrix. The relationship above can be simplified into εx

εy
εxy

 =

 a11 a12 0
a12 a22 0
0 0 a66

 Nx
Ny
Nxy

 = h

 a11 a12 0
a12 a22 0
0 0 a66

 σx
σy
σxy

 (63)

where h is the thickness of the laminated. The effective in-plane engineering constant can
be presented as {

Ex = 1
ha11

, νxy = −a12
a11

Ey = 1
ha22

, Gyx = 1
ha66

(64)

When the layup configuration of the core is orthogonal and symmetrical, the laminate
has an in-plane quasi-isotropic characteristic. Therefore, the equivalent theory model of
trapezoidal corrugated cores is also applicable to the above composite cores. The in-plane
elastic modulus of the core can be determined as Ecore = Ex = Ey.

4.2. Parametric Study for Specified Bending Stiffness and Specified Bending Strength

There are many parameters that affect the mechanical properties of sandwich cylinders.
Based on the geometric parameters listed in Table 4, the specified bending stiffness (the
ratio of bending stiffness to structure density) and specified bending strength (the ratio
of bending strength to structure density) were studied under variable parameters of skin
thickness, winding angles of skin, corrugated rib thickness, and core materials. The material
properties of winding layers and cores are listed in Table 5. When the material of the core is
woven carbon fiber composite, the effective in-plane engineering constant can be calculated
according to classical laminated plate theory. However, it is more convenient to test the
material property of a [0/90]ns laminated plate [11] directly. The thickness of each winding
layer is 0.2 mm. In the process of the parametric study, the intermediate diameter of the
core was kept unchanged.
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Table 5. Material property for skins and cores.

Winding Layers
(Skins)

E1 = 158 GPa, E2 = E3 = 14.4 GPa;
u12 = u13 = 0.413; u23 = 0.5;

G12 = G13 = 4.4 GPa; G23 = 3.7 GPa;
XT = 1850 Mpa; XC = 1470 MPa;

YT = 29 MPa; YC = 140 MPa;
S12 = S13 = S23 = 65 Mpa;

ρ = 1.7 g/cm3

Cores
Standard aluminum alloy

E = 71 GPa, ˚ = 0.33,
X = σs = 240 MPa, ρ = 2.8

g/cm3

Carbon fiber woven
composite with [0/90]ns

E = 54.5 GPa, ν = 0.06, G =
4400 MPa

XT = XC = 473 MPa, ρ = 1.7
g/cm3

According to the density of each layer listed in Table 5 and the core density, ρcore,
calculated by Equation (58), the equivalent density of the sandwich cylinder can be obtained.
As shown in Figure 9, the influence of core material on standard aluminum alloy (SAA)
and carbon fiber woven composite (CFWC) with [0/90]ns was studied and contrasted. The
winding angles and thickness of inner and outer skin remain the same. With the increase
in winding angle, the specified bending stiffness of the sandwich cylinder drops rapidly at
winding angle interval of 0◦ to ±45◦. It keeps at an almost constant level at the interval
of ±45◦ to ±90◦. This is because the trapezoidal corrugated core is the main contributor
to the specified bending stiffness at winding angle interval of ±45◦ to ±90◦. The cores
made of woven carbon fiber composite with lower in-plane elastic modulus show a higher
specified bending stiffness due to its lightweight materials characteristic. Further, the
specified bending strength with the same parameters is shown in Figure 10. For aluminum
alloy cores, the unique failure mode is its yield failure. When the core becomes the main
contributor to the specified bending stiffness at winding angle intervals of ±45◦ to ±90◦,
the specified bending strength no longer changes significantly. The sandwich cylinder
with the composite core has different failure modes. When the skin winding angels are
±15◦, ±30◦, and ±45◦, the failure mode is skin failure, which is mainly caused by the resin
matrix tension at the positions of θ = 270o and r = r0. Therefore, due to the transition of
the failure modes, the bending strength reaches its minimum at the winding angle of ±30◦.
The other failure mode is core failure at winding angels of 0◦, ±60◦, ±75◦, and 90◦. The
phenomenon above proves that the multi-winding angles are necessary to improve the skin
stiffness of other directions and prevent the matrix failure from tensile load in advance.
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In order to reveal the influence of core parameters on specified bending stiffness
and strength further, the intermediate diameter and the material of cores remain the
same. The thickness and height of the corrugated cores were considered. As shown in
Figures 11 and 12, the smaller thickness of corrugated ribs and larger height of corrugated
cores can improve the specified bending stiffness and strength of the sandwich cylinder.
For variable core parameters, the failure modes are all skin failure, which is mainly caused
by the matrix tension. Due to the effect of mass density, when the skin thickness is 1.5 mm,
there is an inflection point in the specific bending strength curve shown in Figure 11.
However, the influence of core parameters on the specified bending stiffness and strength
are lower than that of the skin parameters. This is because the mass density of cores is
greatly affected by the core parameters, which could balance the variation of stiffness and
strength of the corrugated core sandwich cylinder.
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5. Conclusions

A theoretically equivalent homogenization method for composite sandwich cylin-
ders under pure bending was proposed to overcome the bending stiffness and strength
calculation, which has good accuracy with the FE model.

Based on a homogeneous orthotropic layer hypothesis, the trapezoidal corrugated
sandwich core was equivalent to a material with nine equivalent mechanical properties.
Lekhnitskii’s theory based on a unified connection parameter method was introduced
and applied in the equivalent composite sandwich cylinder. A case study shows that
the developed Lekhnitskii theory is suitable for an arbitrary combination of winding
layers with different angles or materials. The bending stiffness of the equivalent sandwich
cylinder could be calculated.

By developing the user subroutine of UMAT, the numerical calculation results were in
good agreement with the results of the proposed method. Further, according to the Hill–Tsai
strength criterion and the maximum strain criterion, parametric study for specified bending
stiffness and specified bending strength was done. The results show that the influence
of core parameters on the specified bending stiffness and strength is lower than that of
the skin parameters. Larger skin thickness and smaller winding angles could improve the
specified bending stiffness and strength of the composite corrugated sandwich cylinders.
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