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Abstract: In this paper, a new type of terahertz (THz) metamaterial (MM) modulator has been
presented with bifunctional properties based on vanadium dioxide (VO2). The design consists of
a VO2 resonator, polyimide substrate, frequency selective surface (FSS) layer, and VO2 film. Based
on the metal-insulator transition (MIT) of VO2, this structure integrated with VO2 material can
achieve the dynamic modulation on both transmission and reflection waves at 2.5 THz by varying the
electrical conductivity value of VO2. Meanwhile, it also exhibits adjustable absorption performance
across the whole band from 0.5–7 THz. At the lower conductivity (σ = 25 S/m), this structure can
act as a bandpass FSS, and, at the high conductivity (σ = 2 × 105 S/m), it behaves like a wideband
absorber covering 2.52–6.06 THz with absorption A > 0.9, which realizes asymmetric transmission.
The surface electric field distributions are illustrated to provide some insight into the physical
mechanism of dynamic modulation. From the simulated results, it can be observed that this design
has the capability of controlling tunable manipulation on both transmission/reflection responses at a
wide frequency band. This proposed design may pave a novel pathway towards thermal imaging,
terahertz detection, active modulators, etc.

Keywords: metamaterial modulator; VO2; thermal; FSS; modulation

1. Introduction

In the past decade, metamaterial (MM), a kind of artificially periodic or non-periodic
structure, has demonstrated outstanding electromagnetic (EM) functionalities that are
not realized in natural materials such as water, soil, wood, and so on. Owing to its
extraordinary EM characteristics, MM usually offers spatial potential to the asymmetric
transmission in manipulating the amplitude, phase, or polarization of the incident EM
waves [1–5], which enables them to be extensively studied; plentiful applications have been
proposed in different regions including the polarization converter [6–8], the antenna [9–13],
absorber [14–16], etc., which has greatly promoted the development of functional devices.

Currently, to control and manipulate the transmission/reflection response [17–19], a
variety of active structures based on metamaterials, such as the tunable frequency selective
surface (FSS) [20,21], switchable absorber [22–24], and coding metasurface [25,26], have
been designed to implement the dynamic modulation performance. However, though the
concept and design of active devices that are incorporated with active components (PIN
diodes and varactor diodes) [27] make it possible to achieve the dynamic manipulation
on the EM waves [28,29], it is not suitable for the application in the terahertz (THz) field
due to the high cost and complicated manufacturing processes. At the same time, it is
difficult to realize the rapid switching of absorbing, transmitting, and reflecting states in
the THz regime.
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To solve these problems, phase-change materials (PCM), for instance, graphene [30,31],
liquid crystal [32], and vanadium dioxide (VO2) [33], have attracted extensive attention due
to their unique electromagnetic and optical performances that can be directly controlled by
adopting external excitations, making them a potential new way to manipulate THz waves.
Among them, VO2 is more preferable to implement a dynamic modulation response
in THz frequencies for its electrical and optical characteristics near room temperature.
VO2 can achieve an ultrafast [34] and brutal reversible metal–insulator transition (MIT)
from insulator to metal provoked by thermal [35], electrical [36], or optical [37] stimuli.
Although the active modulation can be faster and more efficient if excited by the electrical
or optical method as compared to thermal excitation, electrical stimuli need a complex
biasing network and then, the fabrication difficulty would increase significantly in the THz
regime. Meanwhile, the external laser source is required for applying the optical method,
making the operating system bulky and the cost high. Thus, thermal excitation is an ideal
choice for modulating the property of VO2. There is a dramatic variation in the electrical
and optical performance during the phase transition (4–5 order of magnitude change on
the electrical conductivity σVO2), so VO2 is a promising candidate in tunable MM devices
at THz frequencies to achieve excellent modulation characteristics. Therefore, VO2 is of
crucial importance and can be employed in THz devices to tailor various performances.
Indeed, a lot of research fields have been focused on VO2-based tunable devices to obtain
adjustable and switchable functions, such as reconfigurable THz filters [38–40], polarization
converters [41–43], tunable THz absorbers [44–46], and so on. However, to the best of our
knowledge, few works have been presented to achieve multiple functionalities that can be
dynamically adjusted in THz devices.

In this manuscript, a novel VO2-based THz MM modulator is proposed. By introduc-
ing the phase change material VO2, this design can be capable of dynamically controlling
the transmission/reflection response of the incident waves. When σVO2 gradually changes
from 25 to 2 × 105 S/m with the external temperature increasing, the transmittance would
slowly decrease from 0.89 to approximately 0 around 2.5 THz, and absorption behavior per-
forms dynamic modulation across 0.5–7 THz. In the case of insulating state (σVO2 = 25 S/m),
this structure can be used as a bandpass FSS, while when σVO2 = 2 × 105 S/m, it acts as a
wideband absorber over the frequency band of 2.52–6.06 THz, covering 82.5% fractional
bandwidth with absorptivity of more than 0.9. The electric field distribution of this design
on both top and FSS layers is provided to investigate the physical mechanism for the
different states. It can be believed that this proposed design would have great potential in
the applications of thermal imaging, remote sensing, and wireless communication systems,
etc., due to its excellent characteristics.

2. Metamaterials (MM) Structure and Design

The three-dimensional (3D) view of the proposed unit cell geometry with a 2-
dimensional (2D) array is shown in detail in Figure 1. This design is a four-layer pe-
riodic structure, which, from top to bottom, is composed of a tunable resonator designed
with circle and cross geometries, polyimide substrate, bandpass FSS layer, and the ground
plate. Among them, the resonator and ground plate are both symmetrical patterns and
made of vanadium dioxide (VO2) material with thicknesses of t1 = 0.2 µm and t2 = 0.5 µm,
respectively. The dielectric constant of polyimide substrate is 3.5 with a tangent loss of
tan δ = 0.0027 and a thickness (h) of 9 µm. The gold is selected as a metal model for
the bandpass FSS structure with a thickness (t2) of 0.2 µm, and a conductivity (σ) of
4.561 × 107 S/m.
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Figure 1. Unit cell of the proposed design. (a) 3D view; (b) 2D array. The parameters are (μm): p = 25, l1 = 8.5, l2 = 16, l3 = 
10, w1 = w2 = 2, w3 = 1, r = 4, h = 9, t1 = t2 = 0.2, t3 = 0.5. 
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Figure 1. Unit cell of the proposed design. (a) 3D view; (b) 2D array. The parameters are (µm): p = 25, l1 = 8.5, l2 = 16,
l3 = 10, w1 = w2 = 2, w3 = 1, r = 4, h = 9, t1 = t2 = 0.2, t3 = 0.5.

During the insulator-to-metal transition of VO2, the conductivity value (σVO2 ) can be
dynamically adjusted, and its electrical characteristics will also be modulated accordingly.
When the external temperature is lower (<300 K), VO2 is in the insulating state as the
insulator; as the external temperature is over 340 K [47], it would be in a metallic state
like metal. According to the Bruggeman effective-medium theory, the complex dielectric
properties of VO2 can be described as follows:

εe f f =
1
4

{
εi(2− 3V) + εm(3V − 1) +

√
[εi(2− 3V) + εm(3V − 1)] + 8εiεm

}
(1)

where εi and εm are the dielectric permittivities of the insulating and metallic states of VO2,
respectively. Additionally, V represents the volume fraction of the metallic region. When
the external temperature changes, VO2 can transform between the insulating and metallic
states. εm can be calculated by using the Drude model:

εm(ω) = ε∞ − i
ω2

p

ω(ω + i/τ)
(2)

Here, ε∞ = 12 is the dielectric permittivity at high frequency; τ = 5.75 × 1013 rad/s
represents the collision frequency; and ωp =

√
σ/εoτ denotes the plasma frequency. V can

be defined as:
V = Vmax(1−

1
1 + exp[(T − To)/∆T]

) (3)

where To is the critical temperature of phase transition; ∆T denotes the temperature
difference of the external thermal excitation between the heating and cooling processes;
and Vmax describes the maximum limit volume distribution in the metallic state during the
phase transition (≈0.95). Thus, based on the Equations (1)–(3), the effective conductivity of
VO2 material under different temperature cases can be expressed as:

σe f f (ω) = −iεoω(εe f f (ω)− 1) (4)

Figure 2 illustrates the experimental results of the conductivity of VO2 for different
temperature states. From the results, it is worth noting the conductivity of VO2 can change
from 25 S/m at 300 K to 2.5 × 105 S/m at 370 K during the phase transition. When the
temperature is above 350 K, the conductivity is over 2 × 105 S/m. Therefore, in simulation,
the conductivity (σvo2 ) of VO2 is assumed in the range from 25 to 2 × 105 S/m.
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Figure 2. The measured conductivity of VO2 under different temperature cases.

3. Results and Discussion

The numerical simulations of this design are carried out by using the commer-
cial software CST Microwave Studio. The periodic boundary conditions are adopted
along the x- and y-directions to model the infinite array. Floquet ports are used to ex-
cite the incident plane waves. Meanwhile, the absorbance A(ω) can be calculated by
A(ω) = 1− R(ω)− T(ω), where R(ω) =|S11(ω)|2 and T(ω) =|S21(ω)|2 represent re-
flectance and transmittance, respectively.

The simulated frequency responses under different conductivity values are described
in Figure 3. In Figure 3a, there is a transmission peak appearing at the frequency of 2.5 THz;
the transmission coefficient gradually decreases as the conductivity of VO2 (σvo2 ) increases,
and when σvo2 is above 2× 103 S/m, the transmission peak almost disappears. Then, as the
value σvo2 progressively goes from 25 to 2 × 105 S/m, the transmission coefficient would
slowly decrease from 0.9 to nearly 0, the amplitude modulation depth of transmission is
approximately 200% at 2.5 THz, and so do the reflection results accordingly, as shown
in Figure 3b,c; this obviously demonstrates that this design can achieve dynamically
tunable absorption property under normal incidence across the whole frequency band of
0.5–7 THz by changing the conductivity of VO2. There is a wide absorption bandwidth
in the frequency band ranging from 2.52 to 6.06 THz with the fractional bandwidth of
82.5%, as the absorptance is more than 0.9 when σvo2 = 2 × 105 S/m. However, in the
insulating state (σvo2 = 25 S/m), VO2 behaves like the insulator and the incident EM waves
can transit with low insertion loss, so then this design can act as a bandpass FSS. When it is
in the metallic state (σvo2 = 2 × 105 S/m), VO2 can be regarded as metal; the majority of
incident EM waves would be reflected by the bottom VO2 film, and then absorbed by the
top VO2 resonator due to ohmic loss to realize the wide absorption performance. The above
results clearly indicate that this design achieves the adjustable and switchable functions by
controlling the characteristics of phase transition of VO2 material.

In an attempt to achieve a better physical insight on the working operation of this
design, the electric field distributions at both top and FSS layers are investigated and shown
in detail in Figure 4 at three different frequencies, in which the color refers to the intensities
of the electric field.

At the frequency of 2.5 THz, from Figure 4a, the electric field is mainly distributed
on the upper and lower edges of the loop-shaped aperture of the FSS layer to form the
resonance and the incident waves can be allowed to pass through the structure. There
exists a small part of the electric field on the top resonator, which is the reason for insertion
loss at the passband. Thus, the design can produce an EM transparent window at 2.5 THz
with an insertion loss as σvo2 = 25 S/m. In Figure 4b, it can be seen that the electric field
is mainly focused on the four arms of the top resonator at 3.1 THz. For the frequency of
5.3 THz, an amount of the electric field is concentrated on both left and right sides of the
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circle of the top layer, as illustrated in Figure 4c. The electric field distributions indicate
that the absorption mainly comes from the ohmic dissipation of the top VO2 resonator
when σvo2 = 2 × 105 S/m for these two frequencies.
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As a result, the proposed configuration incorporated with VO2 material generates
a highly effective modulation performance on the transmission/reflection response. It
demonstrates that the transmission/reflection modulation located at 2.5 THz and the
tunable absorption property is implemented simultaneously by applying phase-change
material VO2.

Figure 5 depicts the oblique incidence properties for two different conductivity states
in both cases of TE and TM polarizations. From the above results, it is seen that this design
maintains relatively robust angular stability at the passband of 2.5 THz over the incident
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angle (θ, the angle between the incident wave vector
⇀
k and the z-axis), ranging from 0◦

to 45◦ for both TE and TM waves in Figure 5a,b with σvo2 = 25 S/m. However, some
harmonics are appearing at the higher frequencies for both cases, as θ is greater than 15◦,
which is attributed to the mutual coupling between adjacent units. Figure 5c,d describes
the absorption responses against the incident angle (θ) as σvo2 = 2 × 105 S/m. In TE mode,
the absorption gradually deteriorates when θ goes up to 45◦ at the lower absorption band
with the absorptance > 0.8, as plotted in Figure 5c. It can be ascribed to the fact that the
parallel E-field component gradually decreases with increasing θ. On the contrary, the
absorption performance almost remains stable even though θ reaches up to 45◦ for the TM
mode because the parallel E-field component stays nearly unchanged. From the above
results, for the TM mode, the design has good angular stability on absorption performance
as compared with that in the TE mode when θ increases up to 45◦, as detailed in Figure 5d.
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4. Conclusions

In conclusion, a tunable THz MM modulator with bifunctional properties integrated
with VO2 has been presented in the article. By utilizing the phase transition performance
of VO2 from the insulator to metal, the proposed design can realize the dynamic manip-
ulation of the incident THz waves. Compared to the previous works, this design has
high modulation characteristics for the transmission/reflection and absorption responses.
With the conductivity σVO2 changing from 25 to 2 × 105 S/m, the design provides high
modulation depth on the transmission/reflection at the frequency of 2.5 THz, and achieves
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the tunable absorption performance over the whole frequency band of 0.5–7 THz. At the
lower conductivity (σVO2 = 25 S/m), this design can be used as the bandpass FSS, while also
acting as a wider absorber across the operating frequency band ranging from 2.52–6.06 THz
with the absorption of over 0.9 and fractional bandwidth of 82.5% as σVO2 = 2 × 105 S/m.
In addition, it still possesses the polarization-insensitivity performance for structural sym-
metry. The design demonstrates attractive advantages, which paves a new way towards the
THz modulator with asymmetric transmission property, and may be extensively applied to
biological imaging, thermal scanning, THz camouflage, etc.
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