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Abstract: As a mathematical tool to rationally handle degrees of belief in human beings, uncertainty
theory has been widely applied in the research and development of various domains, including
science and engineering. As a fundamental part of uncertainty theory, uncertainty distribution is
the key approach in the characterization of an uncertain variable. This paper shows a new formula
to calculate the uncertainty distribution of strictly monotone function of uncertain variables, which
breaks the habitual thinking that only the former formula can be used. In particular, the new formula
is symmetrical to the former formula, which shows that when it is too intricate to deal with a problem
using the former formula, the problem can be observed from another perspective by using the new
formula. New ideas may be obtained from the combination of uncertainty theory and symmetry.

Keywords: uncertainty theory; uncertainty distribution; uncertain variable

1. Introduction

In practice, the estimated distribution function is usually not close enough to the real
frequency. According to Liu [1], in this case, if we applied probability theory to modeling
degrees of belief, it would lead to counterintuitive results. To overcome this problem,
we apply uncertainty theory, which was established by Liu [2] in 2007 and completed by
Liu [3] in 2009. Nowadays, uncertainty theory has been successfully employed in various
fields of science and has spawned numerous theoretical branches.

One of the most essential concepts in uncertainty theory is uncertain variables, which
were defined by Liu [2] in 2007. It is used to represent indeterminate quantities, such as
stock price, market demand, and product lifetime. Furthermore, in order to characterize
uncertain variables, Liu [2] presented the concept of uncertainty distribution, and Liu [4]
developed the definition of inverse uncertainty distribution. In addition, some operational
laws were proposed by Liu [4] to calculate the uncertainty distribution and inverse un-
certainty distribution of strictly monotone functions of independent uncertain variables.
Meanwhile, for the purpose of ranking uncertain variables, Liu [2] gave the definition of
the expected value of uncertain variables. Based on the expected value operator, Liu [2]
proposed variance, distance and moments between uncertain variables. After that, Yao [5]
presented a formula for calculating the variance of an uncertain variable. Until now, sub-
stantial work has been done grounded in uncertain variables, such as Chen and Dai [6],
Ma, Yang and Yao [7], Zhang [8] , etc.

As a fundamental part of uncertainty theory, uncertainty distribution is the key ap-
proach in the characterization of uncertain variables. In fact, numerous research studies
show that it is sufficient to know the uncertainty distribution rather than the uncertain
variable itself. Therefore, uncertainty distribution is crucial to the development of un-
certainty theory, and many scholars have made significant progress in it. For instance,
Peng and Iwamura [9] proved a sufficient and necessary condition of a function’s un-
certainty distribution. Liu and Lio [10] presented a review of sufficient and necessary
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condition of uncertainty distribution. They thoroughly solved the problem of what an
uncertainty distributioin is.

This paper aims to provide a new formula for calculating the uncertainty distribution
of strictly monotone function of independent uncertain variables. The rest of the paper is
organized as follows: Section 2 shows some foundational definitions in uncertainty theory.
Section 3 presents a new formula and some examples. Finally, Section 4 provides a concise
conclusion.

2. Preliminaries

The key to uncertainty theory is the uncertain measure defined by Liu [2] and Liu [3]
with the normality axiom, duality axiom, subadditivity axiom, and product axiom. Among
them, the product axiom is the most essential difference between uncertainty theory and
probability theory. Furthermore, according to Liu [2], an uncertain variable is a measur-
able function from an uncertainty space to the set of real numbers, and the uncertainty
distribution Θ of an uncertain variable κ is defined by

Θ(z) = M{κ ≤ z}, ∀z ∈ <.

Moreover, Liu [4] declared that the inverse uncertainty distribution is the inverse
function of uncertainty distribution. Furthermore, Liu [3] proclaimed that the uncertain
variables κ1, κ2, · · · , κn are said to be independent if

M

{
n⋂

i=1

(κi ∈ Ai)

}
=

n∧
i=1

M{κi ∈ Ai}

for any Borel sets A1, A2, · · · , An of real numbers.
Finally, some theorems are given as follows.

Theorem 1 (Liu [4]). Assume that κ1, κ2, · · · , κn are independent uncertain variables with regular
uncertainty distributions Θ1, Θ2, · · · , Θn, respectively. If h(z1, z2, · · · , zn) is continuous, strictly
increasing with respect to z1, z2, · · · , zm and strictly decreasing with respect to zm+1, zm+2, · · · ,
zn, then κ = h(κ1, κ2, · · · , κn) is an uncertain variable with an inverse uncertainty distribution

Υ−1(ρ) = h(Θ−1
1 (ρ), · · · , Θ−1

m (ρ), Θ−1
m+1(1− ρ), · · · , Θ−1

n (1− ρ)).

Theorem 2 (Liu [4]). Assume κ1, κ2, · · · , andκn are independent uncertain variables with regular
uncertainty distributions Θ1, Θ2, · · · , Θn, respectively. If h(z1, z2, · · · , zn) is continuous, strictly
increasing with respect to z1, z2, · · · , zm and strictly decreasing with respect to zm+1, zm+2, · · · ,
zn, then κ = h(κ1, κ2, · · · , κn) is an uncertain variable with an uncertainty distribution

Υ(z) = sup
h(z1,z2,··· ,zn)=z

(
min

1≤i≤m
Θi(zi) ∧ min

m+1≤i≤n
(1−Θi(zi))

)
.

3. A New Formula for Calculating Uncertainty Distribution

In this section, we obtain a new formula for calculating the uncertainty distribution
of strictly monotone function of independent uncertain variables, and three examples
are given for illustrating the formula. The formula is obtained in a symmetrical form
as follows:

Theorem 3. Assume κ1, κ2, · · · , κn are independent uncertain variables with regular uncertainty
distributions Θ1, Θ2, · · · , Θn, respectively. If h(z1, z2, · · · , zn) is continuous, strictly increasing
with respect to z1, z2, · · · , zm and strictly decreasing with respect to zm+1, zm+2, · · · , zn, then
κ = h(κ1, κ2, · · · , κn) is an uncertain variable with an uncertainty distribution
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Υ(z) = inf
h(z1,z2,··· ,zn)=z

(
max

1≤i≤m
Θi(zi) ∨ max

m+1≤i≤n
(1−Θi(zi))

)
.

Proof. Without loss of generality, let us prove the case of m = 1 and n = 2. It follows from
Theorem 1 that κ = h(κ1, κ2) has an inverse uncertainty distribution

Υ−1(ρ) = h(Θ−1
1 (ρ), Θ−1

2 (1− ρ)).

Write
z = Υ−1(ρ).

Then
Υ(z) = ρ.

On the one hand, for any z1 and z2 with h(z1, z2) = z, since h is strictly increas-
ing with respect to z1 and strictly decreasing with respect to z2, and h(z1, z2) = z =
h(Θ−1

1 (ρ), Θ−1
2 (1− ρ)), we have

z1 ≥ Θ−1
1 (ρ) or z2 ≤ Θ−1

2 (1− ρ).

That is,
ρ ≤ Θ1(z1) or ρ ≤ 1−Θ2(z2).

Thus
Υ(z) = ρ ≤ Θ1(z1) ∨ (1−Θ2(z2)).

By the arbitrariness of z1 and z2 with h(z1, z2) = z, we obtain

Υ(z) ≤ inf
h(z1,z2)=z

(Θ1(z1) ∨ (1−Θ2(z2)). (1)

On the other hand, take

z′1 = Θ−1
1 (ρ), z′2 = Θ−1

2 (1− ρ),

i.e.,
h(z′1, z′2) = h(Θ−1

1 (ρ), Θ−1
2 (1− ρ)) = Υ−1(ρ) = z,

Υ(z) = ρ = ρ ∨ ρ = Θ1(z′1) ∨ (1−Θ2(z′2)).

Thus
Υ(z) ≥ inf

h(z1,z2)=z
Θ1(z1) ∨ (1−Θ2(z2)). (2)

It follows from (1) and (2) that

Υ(z) = inf
h(z1,z2)=z

Θ1(z1) ∨ (1−Θ2(z2)).

That is, h(κ1, κ2, · · · , κn) has an uncertainty distribution

Υ(z) = inf
h(z1,z2,··· ,zn)=z

(
max

1≤i≤m
Θi(zi) ∨ max

m+1≤i≤n
(1−Θi(zi))

)
.

The theorem is verified.
Furthermore, it follows from Theorem 2 that h(κ1, κ2, · · · , κn) has an uncertainty

distribution

Υ(z) = sup
h(z1,z2,··· ,zn)=z

(
min

1≤i≤m
Θi(zi) ∧ min

m+1≤i≤n
(1−Θi(zi))

)
.
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Thus

Υ(z) = inf
h(z1,z2,··· ,zn)=z

(
max

1≤i≤m
Θi(zi) ∨ max

m+1≤i≤n
(1−Θi(zi))

)
= sup

h(z1,z2,··· ,zn)=z

(
min

1≤i≤m
Θi(zi) ∧ min

m+1≤i≤n
(1−Θi(zi))

)
.

Remark 1. If the equation h(z1, z2, · · · , zn) = z does not have a root for some values of z, then
we set

Υ(z) =
{

0, if h(z1, z2, · · · , zn) > z
1, if h(z1, z2, · · · , zn) < z.

Example 1. Assume κ1, κ2, · · · , κn are independent uncertain variables with regular uncertainty
distributions Θ1, Θ2, · · · , Θn, respectively. It follows from Theorem 3 that

κ = κ1 + κ2 + · · ·+ κm − κm+1 − κm+2 − · · · − κn

has an uncertainty distribution

Υ(z) = inf
z1+···+zm−zm+1−···−zn=z

(
max

1≤i≤m
Θi(zi) ∧ max

m+1≤i≤n
(1−Θi(zi))

)
= sup

z1+···+zm−zm+1−···−zn=z

(
min

1≤i≤m
Θi(zi) ∨ min

m+1≤i≤n
(1−Θi(zi))

)
.

In particular, if m = 1 and n = 2, then κ1 − κ2 has an uncertainty distribution

Υ(z) = inf
q∈<

Θ1(z + q) ∨ (1−Θ2(q))

= sup
q∈<

Θ1(z + q) ∧ (1−Θ2(q)).

if m = n = 2, then κ1 + κ2 has an uncertainty distribution

Υ(z) = inf
q∈<

Θ1(z− q) ∨Θ2(q).

= sup
q∈<

Θ1(z− q) ∧Θ2(q).

Example 2. Assume κ1, κ2, · · · , κn are independent positive uncertain variables with regular
uncertainty distributions Θ1, Θ2, · · · , Θn, respectively. It follows from Theorem 3 that

κ =
κ1κ2 · · · κm

κm+1κm+2 · · · κn

has an uncertainty distribution

Υ(z) = inf
z1z2 ···zm

zm+1zm+2 ···zn =z

(
max

1≤i≤m
Θi(zi) ∨ max

m+1≤i≤n
(1−Θi(zi))

)

= sup
z1z2 ···zm

zm+1zm+2 ···zn =z

(
min

1≤i≤m
Θi(zi) ∧ min

m+1≤i≤n
(1−Θi(zi))

)
.
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In particular, if m = 1 and n = 2, then κ1/κ2 has an uncertainty distribution

Υ(z) = inf
q>0

Θ1(zq) ∨ (1−Θ2(q))

= sup
q>0

Θ1(zq) ∧ (1−Θ2(q)).

If m = n = 2, then κ1 ∗ κ2 has an uncertainty distribution

Υ(z) = inf
q>0

Θ1(z/q) ∨Θ2(q)

= sup
q>0

Θ1(z/q) ∧Θ2(q).

Theorem 4. Assume κ1, κ2, · · · , κn are independent uncertain variables with regular uncertainty
distributions Θ1, Θ2, · · · , Θn, respectively. Let h(z1, z2, · · · , zn) be continuous, strictly increasing
with respect to z1, z2, · · · , zm and strictly decreasing with respect to zm+1, zm+2, · · · , zn, and
κ = h(κ1, κ2, · · · , κn) be an uncertain variable with an uncertainty distribution Υ. For any real
number z, z1, z2, · · · , zn satisfying h(z1, z2, · · · , zn) = z, the equations

max
1≤i≤m

Θi(zi) ∨ max
m+1≤i≤n

(1−Θi(zi))

and
min

1≤i≤m
Θi(zi) ∧ min

m+1≤i≤n
(1−Θi(zi))

have an intersection. In particular, if

0 < Υ(z) < 1,

then the intersection is unique. Assume the intersection is (z∗1 , z∗2 , · · · , z∗n). Then

Υ(z) = Θ1(z∗1) = Θ2(z∗2) = · · · = Θm(z∗m)

= 1−Θm+1(z∗m+1) = 1−Θm+2(z∗m+2) = · · · = 1−Θn(z∗n).
(3)

Proof. It follows from Theorem 1 that κ = h(κ1, κ2, · · · , κn) has an inverse uncertainty
distribution

Υ−1(ρ) = h(Θ−1
1 (ρ), · · · , Θ−1

m (ρ), Θ−1
m+1(1− ρ), · · · , Θ−1

n (1− ρ)).

Write
z = Υ−1(ρ).

Then

ρ = Υ(z), h(Θ−1
1 (ρ), · · · , Θ−1

m (ρ), Θ−1
m+1(1− ρ), · · · , Θ−1

n (1− ρ)) = z.

Take
z∗i = Θ−1

i (ρ), 1 ≤ i ≤ m,

z∗j = Θ−1
j (1− ρ), m + 1 ≤ j ≤ n,

i.e.,

h(z∗1 , z∗2 , · · · , z∗n) = h(Θ−1
1 (ρ), · · · , Θ−1

m (ρ), Θ−1
m+1(1− ρ), · · · , Θ−1

n (1− ρ)) = z,

max
1≤i≤m

Θi(z∗i ) ∨ max
m+1≤i≤n

(1−Θi(z∗i )) = ρ ∨ ρ = ρ,

min
1≤i≤m

Θi(z∗i ) ∧ min
m+1≤i≤n

(1−Θi(z∗i )) = ρ ∧ ρ = ρ.
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Thus, (z∗1 , z∗2 , · · · , z∗n) is an intersection. If there is another intersection (y1, y2, · · · , yn),
then it follows from Theorem 3 that h(κ1, κ2, · · · , κn) has an uncertainty distribution

Υ(z) = inf
h(z1,z2,··· ,zn)=z

(
max

1≤i≤m
Θi(zi) ∨ max

m+1≤i≤n
(1−Θi(zi))

)
= sup

h(z1,z2,··· ,zn)=z

(
min

1≤i≤m
Θi(zi) ∧ min

m+1≤i≤n
(1−Θi(zi))

)
.

And
0 < ρ = Υ(z) < 1.

Take

β = max
1≤i≤m

Θi(yi) ∨ max
m+1≤i≤n

(1−Θi(yi)) = min
1≤i≤m

Θi(yi) ∧ min
m+1≤i≤n

(1−Θi(yi)).

That is,

β = Θ1(y1) = · · · = Θm(ym) = 1−Θm+1(ym+1) = · · · = 1−Θn(yn).

If β > ρ, then
yi > z∗i , 1 ≤ i ≤ m,

yj < z∗j , m + 1 ≤ j ≤ n.

Thus
h(y1, y2, · · · , yn) > h(z1, z2, · · · , zn) = z. (4)

It is in contradiction with h(y1, y2, · · · , yn) = z. Similarly, if β < ρ, then

yi < z∗i , 1 ≤ i ≤ m,

yj > z∗j , m + 1 ≤ j ≤ n.

Thus,
h(y1, y2, · · · , yn) < h(z1, z2, · · · , zn) = z. (5)

It is in contradiction with h(y1, y2, · · · , yn) = z. That is, the intersection is unique. The
theorem is verified.

Corollary 1. Assume κ1, κ2, · · · , κn are iid uncertain variables with a common regular uncertainty
distribution Θ. The uncertain variable

κ = κ1 + κ2 + · · ·+ κm − κm+1 − κm+2 − · · · − κn

has an uncertainty distribution

Υ(z) =


Θ
( z

n

)
, if m = n

1−Θ
(
− z

n

)
, if m = 0

Θ(z∗), otherwise

where z∗ is the unique root of

Θ(z∗) + Θ(
mz∗ − z
n−m

) = 1.
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Proof. It follows from Theorem 3 that

Υ(z) = inf
z1+···+zm−zm+1−···−zn=z

(
max

1≤i≤m
Θ(zi) ∨ max

m+1≤j≤n
(1−Θ(zj))

)
= sup

z1+···+zm−zm+1−···−zn=z

(
min

1≤i≤m
Θ(zi) ∧ min

m+1≤j≤n
(1−Θ(zj))

)
.

and it follows from Theorem 4 that

Υ(z) = Θ(z1) = Θ(z2) = · · · = Θ(zm)

= 1−Θ(zm+1) = 1−Θ(zm+2) = · · · = 1−Θ(zn).

Assume 0 < Υ(z) < 1, and take

z1 = z2 = · · · = zm = a,

zm+1 = zm+2 = · · · = zn = b.

Then
ma− (n−m)b = z,

Θ(a) + Θ(b) = 1.

If n = m, then
a =

z
n

,

and
Υ(z) = Θ(a) = Θ(

z
n
).

Otherwise, we have

b =
ma− z
n−m

,

and
Θ(a) + Θ(

ma− z
n−m

) = Θ(a) + Θ(b) = 1.

Write
z∗ = a.

Then
Υ(z) = Θ(a) = Θ(z∗),

and z∗ is a root of
Θ(z∗) + Θ(

mz∗ − z
n−m

) = 1.

Futhermore, the fuction

Θ(z∗) + Θ(
mz∗ − z
n−m

)

is a strictly increasing function with respect to z∗. Thus z∗ is the unique root. In particular,
if m = 0, then

Υ(z) = Θ(z∗) = 1−Θ(
mz∗ − z
n−m

) = 1−Θ(− z
n
).

Moreover, if Υ(z) = 0 or Υ(z) = 1, then the above conclusion still holds in light of the
continuity of the regular uncertainty distribution Θ. The corollary is verified.

4. Conclusions

In summary, this paper proved a new formula for calculating uncertainty distribution
of strictly monotone function of uncertain variables. In addition, three cases were given to
illustrate the formula. Furthermore, in the sense of uncertain measure, Liu [11] proposed



Symmetry 2021, 13, 2429 8 of 8

the ruin index, Lio and Liu [12] proposed the shortage index, and Yao [13] proposed the
busy period based on the former formula. In future research, some new results can be
obtained using the new formula and may be applied in practice better.
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