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Abstract: In this paper, we propose, implement and analyze an Authenticated Encryption with
Associated Data Scheme (AEADS) based on the Modified Duplex Construction (MDC) that contains
a chaotic compression function (CCF) based on our chaotic neural network revised (CNNR). Unlike
the standard duplex construction (SDC), in the MDC there are two phases: the initialization phase
and the duplexing phase, each contain a CNNR formed by a neural network with single layer, and
followed by a set of non-linear functions. The MDC is implemented with two variants of width, i.e.,
512 and 1024 bits. We tested our proposed scheme against the different cryptanalytic attacks. In fact,
we evaluated the key and the message sensitivity, the collision resistance analysis and the diffusion
effect. Additionally, we tested our proposed AEADS using the different statistical tests such as NIST,
Histogram, chi-square, entropy, and correlation analysis. The experimental results obtained on the
security performance of the proposed AEADS system are notable and the proposed system can then
be used to protect data and authenticate their sources.

Keywords: authenticated encryption; duplex construction; chaotic neural network; statistical tests;
security analysis; computing performance

1. Introduction
1.1. Research Background

Authenticated encryption (AE) is a term used to describe encryption systems that
simultaneously protect the confidentiality, integrity, and authenticity of the data transmitted
over insecure channels. Many applications and protocols require these forms of security.
However, so far, these properties have been designed separately [1–3].

The AE schemes are classified into three groups. The first group is a straightforward
class called Encrypt-Then-MAC (ETM), which is designed and implemented by using both
a hash function and a block cipher, e.g., the CBC-HMAC scheme [4] that is widespread used
in IP security protocol suite IPSec and other applications [5]. The second group is composed
of AE schemes based on block cipher, e.g., CCM, GCM, EAX, and OCB [6], and some of
these schemes are even standardized or recommended by National Institute of Standards
and Technology (NIST). The third group is the AE schemes based permutation [7], which
were proposed and implemented with the appearance of Sponge functions, e.g., ASCON [8],
PHOTON-Beetle [9], Oribatida [10], etc. The last type is a new research topic, and these three
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types of schemes exhibit some useful properties in terms of key agility, software efficiency
and hardware implementation [11].

In 2011, Bertoni et al. [12] proposed an AE scheme called SpongeWrap which is based
on the Duplex construction [13]. A Duplex construction is a Sponge function that allows the
extraction of certain bits from the intermediate chaining variables for each block under
processing (see Figure 1). It is claimed that the security level of the Duplex is equivalent to
the Sponge’s security [12]. With such a construction, many applications can be built, such
as reseedable Pseudo Random bit sequence Generator (PRG) and efficient AE schemes,
requiring only one call to the permutation function f per input block [14]. In fact, the Duplex
construction is composed of two phases: the first one is the Initialization phase while the
second one is the Duplexing phase. In the first phase, the Initial Value IV, set to 0, is
composed of an outer part with the size equal to the bitrate r and an inner part with the size
equal to the capacity c. The input message M of arbitrary length L is divided into blocks
Mi, (i ≥ 1), of maximum length equal to the maximum duplex rate ρmax [15]. The value of
ρmax is given by:

ρmax(Pad, r) = max{|Mi| : |Mi|+ |Pad[r](|Mi|)| ≤ r} (1)

where |Mi| is the length of the block message Mi, (i ≥ 1), Pad is a function that pads each
block message Mi to obtain |Mi| equal to r, and Pad[r](|Mi|) = (r− |Mi|)-bit padded to
the message block Mi.

The padding scheme should be injective, reversible, and must ensure that the last
block is non-zero [16]. Normally, the simplest padding sequence is equal to multiples of 10
or 10*. In case ρmax(Pad, r) is equal to r− 1, the |Pad[r](|Mi|)| is equal to 1 [17,18].

In the second phase, each Mi is padded using the function Pad and called one time.
This ensures that every padded block is non-zero. Unlike the Sponge function, the Duplex
construction takes an input string for each call, and returns an output string Zi of length ui
that depends on all previous inputs [7].

Similar to the Sponge function, the Duplex construction can be converted to a crypto-
graphic keyed hash algorithm by using one of the three methods shown in [19,20]:

1. FKS (Full-State Keyed Sponge);
2. IKS (Inner keyed-Sponge);
3. OKS (Outer keyed-Sponge).

In our proposed CNN-Duplex schemes for the AEAD applications, the (FKS) is inher-
ently included.
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1.2. Research Significance

The specificity of our proposed AEADS system is in the use of a chaotic compression
function instead of a permutation function. It is well known that non-linear dynamic
discrete time systems (chaotic maps) can generate chaos and the attractor (signature) of
each chaotic map is characterized by the presence of symmetrical patterns [21]. Two chaotic
maps, namely the Skew-tent (ST) map and PWLCM map used in the proposed chaotic
compression function, have symmetrical mapping related to their parameters.

This paper is organized into the following sections: Section 2 provides a short descrip-
tion of mostly related works; in Section 3, we describe in details the proposed AEADS based
on the MDS-CNNR structure that comes up to solve existing issues in most of the works
completed in the literature. Section 4 presents and discusses the results with different
security metrics. Section 5 analyzes the features of the AEAD schemes covered in this work
and compares the performance with our proposed AEADS. Finally, Section 6 concludes
this work and suggests future research directions.

2. Related Works

Many methods exist to construct different kinds of AE schemes [22]. The simple method
is to immediately use the AE modes already existed, recommended and standardized by
NIST. A more complicated way that forms a challenging way is to design a completely
new AE mode. Note that in the third round of the CAESAR competition, most candidates
proposed, designed, and implemented new AE modes. In fact, Berton et al. designed in 2016
a new AE mode adopted by the Ketje scheme, an authenticated encryption scheme based
on Keccak-p, called MonkeyWrap [23]. Actually, it is very similar to the SpongeWrap method
proposed by Bertoni et al. in 2011 [7]. The major difference between these two schemes is that
MonkeyWrap adopts, during its whole process lifecycle, MonkeyDuplex permutations. In fact,
MonkeyWrap uses two mixing layers to obtain the ciphertexts; the first one is applied on the
input data, while the second one is applied on the output data. Additionally, between these
two mixing layers, MonkeyWrap XORs the message number with the internal data processed
by the system. On the other hand, MonkeyWrap iterates the obtained message blocks several
times in order to calculate the authenticated tag. Furthermore, Bertoni et al. [24] designed
in 2015 another AE scheme based on a Sponge function, called Motorist, that was adopted
by the Keyak scheme. First, it encrypts the message blocks and its number with a unique
private vector in order to obtain the authenticated tag and the corresponding cipher blocks.
Motorist applies the same procedure to all message blocks in parallel, and that is performed
by supporting more than one duplex operation at the same time. In 2016, Jean et al.
designed an AE scheme, called Deoxys, based on Deoxys-BC [25]. Deoxys is an efficient
scheme for small messages (few dozen bytes), which is essentially important for various
lightweight applications [26]. In this proposed scheme, Jean et al. combines the inputs
of authenticated ciphers to obtain the authenticated tags and ciphertexts. Additionally,
with the same techniques as the Advanced Encryption Standard algorithm, it can resist
side-channel attacks [27].

Moreover, Dobraunig et al. [8] proposed in 2016 an AE scheme, intuitively defined on
words with 64-bit length, called Ascon. The words used in this scheme are only composed
from the bitwise Boolean functions like OR, AND, XOR, ROT, and NOT [28]. The permuta-
tion of Ascon scheme is similar to this used in MonkeyDuplex construction. The authenticated
tag and ciphertexts are produced after processing input data including the nonce, secret key,
AD, and message blocks. For both software and hardware implementation, Ascon provides,
in terms of speed and size, lightweight characteristics and has also good performance on
both implementation. Hence, it is highly recommended in the Internet of Things (IoT) use
case, where various lightweight computing devices communicate with a back-end server
using different protocols. In 2019, Bao et al. [9] designed an authenticated encryption
and hash family called PHOTON-Beetle, that adopts the Sponge-based construction mode
Beetle with permutation value equal to P256 (it is also used for the PHOTON hash [29]).
In fact, PHOTON-Beetle can be categorized into two classes based on its functionalities:
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PHOTON-Beetle-AEAD which is a family of authenticated encryption, and PHOTON-Beetle-
Hash which is a family of hash functions. These two families are parameterized by the rate
of message absorption r. The main innovation behind Beetle Sponge mode is the combina-
tion of two values, i.e., the ciphertext block and the feedback of the permutation output,
to generate the next permutation input. Bhattacharjee et al. proposed Oribatida, a family
of lightweight AE schemes, where its design is based on the known duplex construction
mode [10]. At its core, Oribatida, a variant of the MonkeyWrap AE mode, extended by a
ciphertext masking that boosts the security, inherits the minimal security guarantees of the
well-known duplex construction mode. Moreover, all members of this proposed family are
expected to provide 128-bit security for hashing and encryption.

3. Description of the Proposed AEADS Based on the Keyed MDS-CNNR Structure

The architecture of the proposed AEADS based on the Keyed MDS-CNNR structure is
composed of two phases: Initialization phase and Duplexing phase (see Figure 2).
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Figure 2. Structure of the proposed CNN-Duplex for AEADS—Encryption process.

The initialization phase uses the Initial Value IV of b-bit length to set the value of
h0. Additionally, the secret key of 160-bit length is used to supply the Chaotic System
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(CS), KM0 = K, formed by a recursive cell of order one which contains a discrete Skew tent
map [30].

Then, the Chaotic compression function C f0, composed CS and Chaotic Neural Net-
work (CNN), takes KM0 and h0 to produce the first chaining variable HM0 of b-bit length.

For this phase, we define the function CNND.initialize() for our proposed CNN-Duplex
construction. This function is explained by Algorithm 1.

Algorithm 1 The initialization function

Require: r < b, ρmax(Pad, r) > 0
Interface: HM0 = CNND.initialize(K, IV) with K ∈ Z|K|2 and IV ∈ Zb

2
KM0 = K
h0 = IV
HM0 = C f0(KM0, h0)
Return HM0.

Where CNND is a CNN-Duplex object of the CNNDuplex[Cf, Pad, r] function.
Notice that for the input data of the other cells, we choose two values of the bitrate r

and the capacity c: the first choice is r = 256 bits and c = 256 bits (b = 512 bits = 64 bytes),
and the second choice is r = 512 bits and c = 512 bits (b = 1024 bits = 128 bytes).

The duplexing phase takes an input string S and returns an output of b bits. In Algorithm 2,
we define the CNND.duplexing() function for our proposed CNN-Duplex construction.

Algorithm 2 The duplexing function

Require: r < b, ρmax(Pad, r) > 0
Interface: HM = CNND.duplexing(S, b) with S ∈ ∪ρmax(Pad,r)

l=0 Zl
2, and HM ∈ Zb

2
KM = bHMc|KM|
h = HM⊕ {(S||b f ||Pad[r](|S||b f |))||0b−r}
HM = C f (KM, h)
Return HM.

Where, l is the length of input string S; bf is the bit-frame equal to 0 or 1; and the input
string S of (r-2)-bit length can be AD, M, or 0. Notice that the length of the last block can be
arbitrary. Additionally, the calls where S is an empty string are referred to as blank calls,
while the calls with b = 0 are referred to as mute calls.

In this phase, the sub-keys of the CS of size |KM| = 128 bits are extracted from the
intermediate chaining variable HM of size |HM| = b bits (KM = LSB(HM)). These HM
are XORed with (S||b f ||Pad[r](|S||b f |)||0b−r) to produce the input h of b-bit length used
by the CNN function. The output of CS supplies the parameters of CNN.

The authenticated encryption with associated data function CNNDuplex-AEAD takes
the following elements as inputs:

1. An Initial Value IV, and a secret key K;
2. An Associated Data (AD) that will be authenticated but not encrypted;
3. A message M that will be both authenticated and encrypted.

In general, the Associated Data AD and the message M, when they are available,
are divided into multiple blocks ADi, (i = 1, . . . , I) and Mj, (j = 1, . . . , J), respectively. It
must be noted that the blocks of AD (ADi; i = 1, . . . , I) are concatenated by a bf equal
to 1, except for the last block, wherein its bf is equal to 0. Moreover, the blocks of M
(Mj; j = 1, . . . , J) are concatenated by a bf equal to 0, except for the last block, wherein its bf
is equal to 1. The bit-frame bf is used for two goals: first, to ensure that both the generated
key stream and the obtained authentication tag blocks are in two separate domains; second,
to assure that the AD and M input blocks can be recovered later from the input sequence of
the duplex construction [12]. After the absorption of AD||b f , the scheme absorbs M||b f
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and, then generates the ciphertext C, block by block: Cj = Mj ⊕ bHMc|Mj | of length
|Cj| = |Mj|; and HM is the response of the CNND to the previous CNND.duplexing() call.
If the needed authentication tag T’s length (Tlen) is greater than r-2, then the duplexing
phase enters in the tag generation phase, where all input strings are equal to 0. The obtained
ciphertext C and the authentication tag T will be sent to the receiver.

For each CNNDAEAD.encrypt(AD, M, b) request, the latter transmits the blocks of the
AD and the message M to the CNND.duplexing(S, b). A formal definition and description of
CNNDuplex-AEAD encryption function is provided in Algorithm 3.

Algorithm 3 The Authenticated Encryption function CNNDuplex− AEAD[C f , Pad, r, ρ]

Require: ρ ≤ ρmax(Pad, r)− 1
Require: CNND = CNNDuplex[C f , Pad, r]
This algorithm treats AD, M, C instances equal to the empty string as a single (empty)
block
Interface: CNNDAEAD.initilalize(K, IV) with K ∈ Z|K|2 and IV ∈ Zb

2
HM0 = CNND.initialize(K, IV)
Interface: (C, T) = CNNDAEAD.encrypt(AD, M, b)
with AD, M ∈ Z∗2 , b ≥ 0, C ∈ Z|M|2 and T ∈ ZTlen

2
Let AD = AD1||AD2|| . . . ||ADI with |ADi| = ρ f or i < I, |ADI | ≤ ρ and |ADI | >
0 i f I > 0
Let M = M1||M2|| . . . ||MJ with |Mj| = ρ f or j < J, |MJ | ≤ ρ and |MJ | > 0 i f J > 0
for i = 1 to I − 1 do

CNND.duplexing(ADi||1, 0)
end for
HM = CNND.duplexing(ADI ||0, |M1|)
C = M1 ⊕ bHMc|M1|
for j = 1 to J − 1 do

HM = CNND.duplexing(Mj||0, |Mj+1|)
C = C||(Mj+1 ⊕ bHMc|Mj+1|)

end for
HM = CNND.duplexing(MJ ||1, ρ)
while |HM| < Tlen do

HM = HM||CNND.duplexing(0, ρ)
end while
T = bHMcTlen
Return (C, T).

Where, CNNDAEAD is an instance of the authenticated encryption function CNNDuplex-
AEAD[Cf, Pad, r, ρ].

The structure of the decryption process is shown in Figure 3. It takes the following
elements as inputs:

1. The same Initial Value IV and the same secret key K taken from the encryption process;
2. The same Associated Data AD used in the encryption process;
3. The ciphertext C to be decrypted;
4. The authentication tag T used to check the integrity of the Associated Data AD and

the authenticity of the message M.

As observed from Figure 3, the decryption process is similar to the encryption process
by exchanging message Mj, (j = 1, . . . , J) and ciphertext Cj, (j = 1, . . . , J) blocks. This
means that Mj = Cj ⊕ bHMc|Cj |, where HM is the response of CNND to the previous
CNND.duplexing() call. If the calculated tag T′ is equal to the received authentication tag T,
then the original message M is delivered. Otherwise, an Error message is delivered.

For each CNNDAEAD.decrypt(AD, C, T) request, the latter transmits the blocks of the
AD and the retrieved message M from C to CNND.duplexing(S, b). A formal definition and
description of the CNNDuplex-AEAD decryption process is provided in Algorithm 4.
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Algorithm 4 The Authenticated Encryption function CNNDuplex− AEAD[C f , Pad, r, ρ]

Require: ρ ≤ ρmax(Pad, r)− 1
Require: CNND = CNNDuplex[C f , Pad, r]
This algorithm treats AD, M, C instances equal to the empty string as a single (empty)
block
Interface: CNNDAEAD.initilalize(K, IV) with K ∈ Z|K|2 and IV ∈ Zb

2
HM0 = CNND.initialize(K, IV)
Interface: M = CNNDAEAD.decrypt(AD, C, T) with
AD, C ∈ Z∗2 , T ∈ ZTlen

2 and M ∈ Z|C|2 ∪ {error}
Let AD = AD1||AD2|| . . . ||ADI with |ADi| = ρ f or i < I, |ADI | ≤ ρ and |ADI | >
0 i f I > 0
Let C = C1||C2|| . . . ||CJ with |Cj| = ρ f or j < J, |CJ | ≤ ρ and |CJ | > 0 i f J > 0
Let T = T1||T2|| . . . ||TX with |Tx| = ρ f or x < X, |TX | ≤ ρ and |TX | > 0 i f X > 0
for i = 1 to I − 1 do

CNND.duplexing(ADi||1, 0)
end for
HM = CNND.duplexing(ADI ||0, |C1|)
M1 = C1 ⊕ bHMc|C1|
for j = 1 to J − 1 do

HM = CNND.duplexing(Mj||0, |Cj+1|)
Mj+1 = Cj+1 ⊕ bHMc|Cj+1|

end for
HM = CNND.duplexing(MJ ||1, ρ)
while |HM| < T′len do

HM = HM||CNND.duplexing(0, ρ)
end while
T′ = bHMcTlen
if T = T′ then

Return M1||M2|| . . . ||MJ .
else

Return Error.
end if

Note that the AD plays the same role as the header of the message in all network
applications [31]. The role of the IV is similar to that used in the stream cipher.

The structure of the proposed Chaotic function Cf is shown in Figure 4. It contains a
CS and a single layer CNN, followed by a set of non-linear (NL) functions. The input layer
of CNN is composed of four neurons. The activation function of each neuron is composed
of the Discrete Skew Tent map (DSTmap) and the Discrete Piecewise Linear Chaotic map
(DPWLCmap). The CS produces a Key Stream KS (all necessary samples) in order to supply
the two layers, as represented in Equation (2):

KS = {QI, BI, WI, WO} (2)

The size of KS is represented in the following equation:

|KS| = |QI|+ |BI|+ |WI|+ |WO| (3)

For the first choice (r = 256 bits, c = 256 bits), each input neuron has four input data and
three 32-bit parameters BIk QIk,1, and QIk,2 (see Figure 5). BIk is the bias of the neurons at
the input layer while QIk,1 and QIk,2 are the control parameters for the activation function
of DSTmap and DPWLCmap, respectively. Indeed, for this case, the necessary sizes of
32-bit parameters are calculated as follows: |QI| = 8 samples, |BI| = 4 samples, |WI| = 16
samples, |WO| = 4 samples, and so the total size of |KS| is equal to 32 samples. For the
second choice (r = 512 bits, c = 512 bits), each input neuron has eight input data and three
32-bit parameters BIk, QIk,1, and QIk,2 (see Figure 6). Indeed, for this case, the necessary
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sizes of 32-bit parameters are calculated as follow: |QI| = 8 samples, |BI| = 4 samples,
|WI| = 32 samples, |WO| = 4 samples, and so the total size of |KS| is equal to 48 samples.
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Figure 3. Structure of the proposed CNN-Duplex for AEADS—Decryption process.

For the first choice, each hS, (S = AD, M, T) at the input layer is formed by Pj, (j =
4k, . . . , 4k + 3). The first two input blocks Pj, (j = 4k, 4k + 1), weighted by the appropriate
input weights WIj, (j = 4k, 4k + 1), are both added with the input bias BIk (weighted
by 1) to construct the input of the first DSTmap function. The second two input blocks
Pj, (j = 4k + 2, 4k + 3), weighted by the appropriate input weights WIj, (j = 4k + 2, 4k +
3), are both added with the same input bias BIk to construct the input of the second
DPWLCmap function.

For the second choice, each hS, (S = AD, M, T) at the input layer is formed by
Pj, (j = 8k, . . . , 8k + 7). The first four input blocks Pj, (j = 8k, . . . , 8k + 3), weighted
by the appropriate input weights WIj, (j = 8k, . . . , 8k + 3), are all added with the input
bias BIk (weighted by 1) to construct the input of the first DSTmap function. The second
four input blocks Pj, (j = 8k + 4, . . . , 8k + 7), weighted by the appropriate input weights
WIj, (j = 8k + 4, . . . , 8k + 7), are all added with the same input bias BIk to construct the
input of the second DPWLCmap function. All inputs Pj are 32-bit samples (integer values),
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and the all input biases BIk are necessary in case having a null input message. The DSTmap
and the DPWLCmap are represented by Equations (4) and (5), respectively.

KSs(n) = DSTmap(KSs(n− 1), Q1)

=


2N × KSs(n−1)

Q1 i f 0 < KSs(n− 1) < Q1

2N − 1 i f KSs(n− 1) = Q1

2N × 2N−KSs(n−1)
2N−Q1 i f Q1 < KSs(n− 1) < 2N

(4)

where, N is the finite precision equal to 32 bits length; and Q1 represents the control
parameter of the DSTmap. KSs(n) and KSs(n-1) are the outputs of DSTmap at the nth and
(n− 1)th iterations, respectively. Q1, KSs(n), and KSs(n-1) range between 1 and 2N − 1.

KSp(n) = DPWLCmap(KSp(n− 1), Q2)

=



2N × KSp(n−1)
Q2 i f 0 < KSp(n− 1) ≤ Q2

2N × KSp(n−1)−Q2
2N−1−Q2 i f Q2 < KSp(n− 1) ≤ 2N−1

2N × 2N−KSp(n−1)−Q2
2N−1−Q2 i f 2N−1 < KSp(n− 1) ≤ 2N −Q2

2N × 2N−KSp(n−1)
Q2 i f 2N −Q2 < KSp(n− 1) ≤ 2N − 1

2N − 1−Q2 otherwise

(5)

where Q2 represents the control parameter of the DPWLCmap. KSp(n) and KSp(n− 1) are
the outputs of DPWLCmap at the nth and (n− 1)th iterations, respectively. Q2, KSp(n),
and KSp(n− 1), and range between 1 to 2N−1.

HMi
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Pad || 0b-r hi
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D

Figure 4. Detailed structure of the ith Chaotic compression function of the proposed CNN-Duplex based
on a one-layered NL for AEADS.
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Figure 5. Detailed structure of the kth input neuron for the first choice of the proposed CNN-Duplex.
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Figure 6. Detailed structure of the kth input neuron for the second choice of the proposed CNN-Duplex.

After computing, both outputs of the chosen chaotic maps DSTmap and DPWLCmap
are combined together using XOR operation to calculate the outputs of neurons denoted by
the parameter Ck, (k = 0, . . . , 3), which is given by Equation (6) for the first choice, and by
Equation (7) for the second choice.

Ck = mod{[Fn1 + Fn2], 2N}

where


Fn1 = DSTmap{BIk + mod([

4k+1
∑

j=4k
(Pj ×WIj)], 2N), QIk,1}

Fn2 = DPWLCmap{BIk + mod([
4k+3
∑

j=4k+2
(Pj ×WIj)], 2N), QIk,2}

(6)
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Ck = mod{[Fn
′
1 + Fn

′
2], 2N}

where


Fn
′
1 = DSTmap{BIk + mod([

8k+3
∑

j=8k
(Pj ×WIj)], 2N), QIk,1}

Fn
′
2 = DPWLCmap{BIk + mod([

8k+7
∑

j=8k+4
(Pj ×WIj)], 2N), QIk,2}

(7)

The values of Ck, (k = 0, . . . , 3), weighted by WOk,k, (k = 0, . . . , 3), form the inputs Dk, (k =
0, . . . , 3) of the NL output layer: Dk = Ck ×WOk,k, (k = 0, . . . , 3), which are truncated
to 32-bit lengths. The final output values Hk, (k = 0, . . . , 7) are given by the following
equation (see Figure 7):

H0 = t2⊕ t1⊕ D0

H1 = t1⊕ D0

H2 = D1 ⊕ D0

H3 = D2 ⊕ D1

H4 = D3 ⊕ D2

H5 = t1⊕ D1 ⊕ D0

H6 = t1⊕ D2 ⊕ D1

H7 = t1⊕ D3 ⊕ D2

where

{
t1 = Σ1(D3)⊕ Ch(D1, D2, D3)

t2 = Σ0(D1)⊕Maj(D1, D2, D3)
(8)

The Hk, (k = 0, . . . , 7) are values of 32-bit size.
The four non-linear functions (Σ0 and Σ1, Ma, and Ch) are represented as follows:

Σ0(D1) = ROTR2(D1)⊕ ROTR13(D1)⊕ ROTR22(D1)

Σ1(D3) = ROTR6(D3)⊕ ROTR11(D3)⊕ ROTR25(D3)

Ma(D1, D2, D3) = (D1 ∧ D2)⊕ (D1 ∧ D3)⊕ (D2 ∧ D3)

Ch(D1, D2, D3) = (D1 ∧ D2)⊕ (¬D1 ∧ D3)

ROTRn(x) = (x � n) ∨ (x � (32− n))

(9)

where ∧ : AND logic,¬ : NOT logic,⊕ : XOR logic,∨ : OR logic,�: Binary Shi f t Right
operation and�: Binary Shi f t Le f t operation.

In the proposed AEADS, and in order to calculate the b-bit intermediate hash values,
we first iterate the output layer nr times, with nr = 1, 8, 24, according to the required
security level and speed. Then, with the chosen value of nr, we iterate again the output
layer twice for the first choice (r = 256 bits, c = 256 bits) and four times for the second choice
(r = 512 bits, c = 512 bits) to obtain the intended b-bit intermediate hash values.

D0

D1

D2

D3

H0

H1

H2

H3

H4

H5

H6

H7

Ch Ma ∑0∑1

Non-Linear Functions

t1

Figure 7. Detailed structure of NL Functions block.
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4. Performance Analysis of the Proposed AEADS

In this section, we will first assess the security of the proposed AEADS against known
cryptanalytic attacks. After that, we calculate some statistical tests [32].

4.1. Cryptanalytic Analysis

This section examines the security of all components of the proposed AEADS. Indeed,
we calculate the key space and we test the key sensitivity, the message sensitivity, the col-
lision resistance, the diffusion effect in order to confirm the resilience of the proposed
AEADS against most cryptanalytic attacks.

4.1.1. Key Space

The length of secret key K, composed by all parameters of the system and by all initial
conditions, is equal to 160 bits. It means that the brute force attack of the proposed AEADS
is impracticable.

4.1.2. Key Security and Sensitivity

An AEADS must be very sensitive to one bit change on the used key K. This property
is important in order to test the resistance of the proposed algorithm against many different
attacks [33]. Consequently, it is necessary to test the sensitivity of generated ciphertexts and
obtained hash values when a slight change in the secret K occurred. Indeed, it is impossible
from the generated sequences to calculate the secret key K due to the structure of the
chaotic generator [34]. Therefore, to check the key sensitivity of ciphertexts, we calculate
the following three parameters: Number of Pixel Change Rate (NPCR), Unified Average
Changing Intensity (UACI), and Hamming Distance (HD) . The two parameters NPCR and
UACI are introduced by Biham et al. [35] and are given by the following equations:

NPCR =
1

P× L× C
×

P

∑
p=1

L

∑
i=1

C

∑
j=1

D(i, j, p)× 100% (10)

where

D(i, j, p) =

{
0 i f C1(i, j, p) = C2(i, j, p)
1 i f C1(i, j, p) 6= C2(i, j, p)

(11)

UACI =
1

P× L× C× 255
×

P

∑
p=1

L

∑
i=1

C

∑
j=1
|C1(i, j, p)− C2(i, j, p)| × 100% (12)

In Equations (10)–(12), the three variables i, j, and p represent the row, column, and plane
indexes of the image, respectively. Additionally, the three values L, C, and P are, the length,
width, and plane sizes of the image, respectively. Indeed, the two optimal values of NPCR
and UACI are equal to 99.61% and 33.46%, respectively [36].

The parameters (NPCR, UACI) are necessary to ensure that the proposed AEADS is
resistant against the key sensitivity attack but insufficient condition. For this reason, we
calculate the Hamming Distance (HD) measure [37]. This measure is represented by the
following equation:

HD(C1, C2) =
1
|Ib| ×

|Ib|

∑
K=1

(C1(K)⊕ C2(K)) (13)

where |Ib| = L× C× P× 8 (in bits) is the length of the image.
The optimal HD value is equal to 50%. So, a good AEADS must produce an HD value

very close to 50% [38].
Table 1 shows that the values of three parameters NPCR, UACI, and HD of the pro-

posed AEADS are very close to the optimal values. As a result, a very high resistance to
different attacks is achieved.
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Table 1. The NPCR, UACI and HD of the proposed AEADS.

AEAD NPCR UACI HD %

Proposed AEADS 99.67 33.43 49.8

On the other hand, to check the key sensitivity of the authentication tag T with
respect to the secret key K, we compute the authentication tags Ti (in hexadecimal format),
the number of changed bits Bi(T, Ti) (bits), and the Hamming Distance HDi(T, Ti)(%),
for the following input message M “With the wide application of Internet and computer
technique, information security becomes more and more important. As we know, hash
function is one of the cores of cryptography and plays an important role in information
security. Hash function takes a message as input and produces an output referred to as
a hash value. A hash value serves as a compact representative image (sometimes called
digital fingerprint) of input string and can be used for data integrity in conjunction with
digital signature schemes.” and under each of the five following conditions:

Condition 1: We use the original secret key K.

In each of the following conditions, we flip the Least Significant Bit (LSB) in the
above-mentioned initial conditions and parameters:

Condition 2: We change the value of initial condition KSs(0) in the secret key K.
Condition 3: We change the value of parameter Ks in the secret key K.
Condition 4: We change the value of initial condition KSs(−1) in the secret key K.
Condition 5: We change the value of control parameter Q1 in the secret key K.

We represent the results obtained, under each condition, of Ti, Bi, and HDi(%) for the
two width values (b = 64 bytes and 128 bytes) with 256-bit authentication tag length in
Table 2. For the two width values, all results are very close to the expected theoretical values
(Bi = 128 bits, and HDi = 50%), demonstrating the high key sensitivity of the proposed
AEADS.

Table 2. The key sensitivity of 256-bit authenticated tag T to K for the two width values (64 bytes and 128 bytes).

Message Variants Authenticated Tag in Hexadecimal Format Bi HDi%

b = 64 bytes

1 5cf839f23ab09f77a0f5efb4b8376f7014a64d4573a0a49d6b622459c7f3066c – –
2 2aa99d0a65ba78b1dca34c4737dab62f10da532481ac655b6ad59f334dd57a38 133.00 51.95
3 635f0c9970b9cee82508fc620e4481b1db50e8250ac1b5e1218dc832f499a1a6 141.00 55.07
4 1dad759ec9f258d6022b272a97ffb69d70c543d49d47591f0893c8a8efa93de1 133.00 51.95
5 9b498e512ec5e2e37ea0c0791124170422488f0f2b7c13c044f8c4bd77945cb6 138.00 53.90

Average – 136.25 53.22

b = 128 bytes

1 c1fb8921581959928cce8d75b42e6c5d4dff037b91e42ca4a904cd8c50d5a2aa – –
2 7fc5609746e964392d0ff999124274d627c8bb57de6ef906e1237449d4a9bbc8 128.00 50.00
3 404864221fbfdd28a5cc0af04543a8d9634dbc41d62abf9b36a51db210ab092a 124.00 48.44
4 d7366dee282cfa69a48c55e381255d3e79505c83a5f6a224805faaf9782aab44 128.00 50.00
5 58d7387465730f264dbb1161ffdcc4d6ba31ab63f2ee6e1a4089bbad0564d418 126.00 49.21

Average – 126.50 49.41

4.1.3. Message Sensitivity

An AEADS should be very sensitive to the input message M. It means that a little
change in its input message would generate a completely different ciphertext and Tag.
To check this property, we measure the ciphertext and the authenticated Tag (in hexadecimal
format), the number of changed bits Bi(T, Ti) (in bits), and the sensitivity of the ciphertext
and the authenticated tag to the initial message M (in %) for a given secret key K, by using
the Hamming Distance HDi(T, Ti) (in %) metric as follows:
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Bi(T, Ti) =
|T|

∑
k=1

[T(k)⊕ Ti(k)] (bits) (14)

and

HDi(T, Ti)% =
Bi(T, Ti)

|T| × 100% (15)

Under the following conditions, we obtain the different message variants used for testing:

Condition 1: The initial message M is the one used in Section 4.1.2.
Condition 2: We change the first character "W" to "X" in the input message.
Condition 3: We change the word "With" to "Without" in the input message.
Condition 4: We change the dot (".") to comma (",") at the end of the input message.
Condition 5: We add a "blank space" at the end of the input message.
Condition 6: We swap the first block M1 of the input message

“With the wide application of Internet and computer technique, information
security becomes more and more important. As we know, hash function is one of
the cores of cryptography and plays an important role in information security.
Hash function takes a mes,”

With the second block M2 of the same input message
“sage as input and produces an output referred to as a hash value. A hash

value serves as a compact representative image (sometimes called digital
fingerprint) of input string and can be used for data integrity in conjunction
with digital signature schemes.”

Under each condition, we show the results of Ti (in hexadecimal format), Bi (in bits),
and HDi (in percentage) obtained for the two width values (b = 64 bytes and 128 bytes)
with T = 256 bits in Table 3. For the two width values, all results are very close to the
expected theoretical values (Bi = 128 bits, and HDi = 50%), demonstrating the high message
sensitivity of the proposed AEADS.

Table 3. The message sensitivity of 256-bit authenticated tag T to M for the two width values (64 bytes and 128 bytes).

Message Variants Authenticated Tag in Hexadecimal Format Bi HDi%

b = 64 bytes

1 5cf839f23ab09f77a0f5efb4b8376f7014a64d4573a0a49d6b622459c7f3066c – –
2 af1f98eda7a69b2a1c9b146d60b04e7f3a1c421ead01e913d12ab3018b86bf60 135.00 52.73
3 ac3a80e98af6809e94bd50b7c337acfa6987fce4df7534b388ffc8fe224f98e0 127.00 49.60
4 20aaf22ec8f025fbb8da59b6f175dc5587b1e19c60c0603c296fe5df5fabd816 114.00 44.53
5 a177b89d7ec17468ff0c4aff348ba20334855f53f5c9bcdb3e4e54273e40a977 133.00 51.95
6 0bdc884523ac64cc5c14150af8068b1b46f83f0067c7b3d7c3d52dc67d2b99dd 136.00 53.13

Average – 129.00 50.39

b = 128 bytes

1 c1fb8921581959928cce8d75b42e6c5d4dff037b91e42ca4a904cd8c50d5a2aa – –
2 55d53d2a5f8b2ce215f0ecd097296d26c1511f8f49c21a82cb1b9b749d63e9dd 124.00 48.43
3 7e428a69f21099ce7717ae2892e8107160a8ecd18e757d856b8ac3dc99ca3f7c 127.00 49.60
4 e306a1484f36d072c37c9f33c8e18cbb987710db2ecc56862551450e75c7d96e 116.00 45.31
5 2622493df19883b33d23aa780a3fe817f1aa1c79c869ddc8ff759fa704e06bc9 121.00 47.26
6 504ab6f4aa4b2262727bf6a067b83f9679aeada6f2046386e7c7aab0f9d13880 137.00 53.51

Average – 125.00 48.82

4.1.4. Collision Resistance Analysis

In the cryptography field, collision resistance is a very important property of cryp-
tographic hash functions. This statistical analysis evaluates the collision resistance prop-
erty quantitatively [39]. To do this test, we calculate the number of hits ω as defined in
Equation (16), given the authentication tag T = {c1, c2, . . . , cs} of a random input message
M (in the ASCII format), and its corresponding authentication tag T′ = {c′1, c′2, . . . , c′s}
generated after flipping only one bit of the same input message M.
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ω =
s

∑
i=1

f (D(ci), D(c
′
i)), (16)

where the function f is represented as follow:

f (x, y) =

{
0 if x 6= y;

1 if x = y.
(17)

Note that, the value of s is equal to u
8 , and the function D(.) converts the hexadecimal

inputs to their equivalent decimal values. In theory, the relation between a number of
hits ω = 0, 1, 2, . . . , s and a number of independent experiments J, as mentioned in [40], is
represented by the following equation:

WJ(ω) = J × Prob{ω} = J
s!

ω!(s−ω)!
(

1
2k )

ω(1− 1
2k )

s−ω, (18)

In fact, the theoretical values of WJ(ω), calculated according to Equation (18), are repre-
sented in Table 4.

Table 4. Theoretical values of the number of hits ω for T = 256 bits with respect to the number of
tests J.

ω

0 1 2 3 32

J
2048 1806.91 226.74 13.78 0.54 1.76× 10−74

1024 903.45 113.37 6.89 0.27 8.84× 10−75

512 451.72 56.68 3.44 0.13 4.42× 10−75

For the two choices of width b, the results obtained are given in Table 5. In fact,
we obtain comparable results as expected. Then, the absolute difference d of the two
authentication tags is defined as follow:

d =
s

∑
i=1
|D(ci)− D(c

′
i)|. (19)

The minimum, maximum, mean, and mean/character of d for the two lengths of b with
J = 2048 tests are presented in Table 6. As observed from the obtained results, it is clear that
the values of mean/character are very close to the expected ones that is equal to 85.33 for
256-bit authentication tag size (L = 256) [41]. Indeed, the expected value is evaluated by the
following equation:

E[D(ci)− D(c
′
i)] =

1
3
× L (20)

Table 5. Number of hits ω for J = 2048 tests with respect to the width length b.

ω

0 1 2 3 4 5

b = 64 bytes 1816 218 13 1 0 0

b = 128 bytes 1898 142 8 0 0 0

Table 6. Minimum, maximum, mean, and mean/character of d for the two lengths of b with J = 2048 tests.

b (bytes) Minimum Maximum Mean Mean/Character

Proposed AEADS 64 1642 3784 2665.24 83.28
128 1846 3548 2668.15 83.33
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4.1.5. The Diffusion Effect

The optimal value of the diffusion effect (mentioned also as the Strict Avalanche Criterion
(SAC) in literature [42]) is obtained when swapping any bit in the original input message
M that causes a variation in each output bit in the authenticated tag T with a probability
equal to 50% [43]. To check the performance of the proposed AEADS, the next diffusion test
is executed. First, the authentication tag T for the previous input message M is produced.
Then, a new authentication tag T′ for the same input message M with one changed bit at
random is generated. Next, the Bi between the two obtained authentication tags T and T′ is
computed. This test is repeated J times, with J equal to 512, 1024, and 2048 tests. At the end,
we calculate the six statistical tests represented below:

1. B̄ = 1
J ∑J

i=1 Bi bits: Mean number of bits changed;

2. P = ( B̄
u )× 100%: Mean changed probability (mean of HDi(%));

3. Bmin = min({Bi}i=1,...,J) bits: Minimum number of bits changed;
4. Bmax = max({Bi}i=1,...,J) bits: Maximum number of bits changed;

5. ∆B =
√

1
J−1 ∑J

i=1(Bi − B̄)2 : Standard variance of the changed bit number;

6. ∆P =
√

1
J−1 ∑J

i=1(
Bi
u − P)2 × 100%: Standard variance of the changed probability.

The results presented in Table 7 with J equal to 2048 tests demonstrate that the diffusion
effect values, for the 256-bit authentication tag length, are very close to the expected results
(B̄ = 128 bits, and P = 50% for the proposed AEADS). Additionally, it is noted that both B̄
and P are very close to the ideal values, while ∆B and ∆P are very small, which means that
the diffusion effect is highly stable.

Table 7. Statistical test of the diffusion effect results for proposed AEADS with J = 2048 tests.

b (bytes) B̄ P Bmin Bmax ∆B ∆P

Proposed AEADS 64 128.10 50.04 101 155 7.96 3.13
128 128.01 50.00 104 150 7.8 2.23

4.2. Statistical Tests

As it is difficult to provide mathematical proof for cryptographic algorithms, the pro-
posed AEADS is evaluated mainly using statistical tests. Consequently, we applied NIST
test, histogram, chi-square, entropy, and correlation analysis.

4.2.1. NIST Test

Indeed, the NIST statistical test is used to evaluate the performance of the ciphertext
generated, and is also considered one of the most popular standards that is used for investi-
gating the randomness of binary data [44]. The NIST test is applied to many ciphertexts,
and all the NIST values obtained are good NIST results (as expected), which means that the
ciphertexts have a very high randomness. In fact, we present in Figure 8 one of the results
obtained after applying the NIST statistical package.

Figure 8. NIST test for one of ciphertext results.
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4.2.2. Histogram and Chi-Square Analysis

An AEAD algorithm is considered to be very strong against different statistical attacks,
if the histogram of the ciphertext is uniformly distributed. In fact, the uniformity test is essential
for vision, but it is not sufficient. For this reason, we apply the chi-square test (defined by the
Equation (21)) in order to confirm the uniformity of the histogram statistically:

χ2
exp =

Nb−1

∑
i=0

(oi − ei)
2

ei
(21)

where the number of levels Nb is equal to 256 in this case, oi is the observed occurrence
frequency of each color level (from 0 to 255) on the histogram of the encrypted image,
and ei is the expected occurrence frequency of the uniform distribution, given in this case
by the following equation:

ei =
L× C× P

Q
(22)

For a secure AEADS, the theoretical chi-square value, which is equal to 293 in the case
of α = 0.05 and Nb = 256, must be more than the experimental chi-square one. In fact,
the histograms os the plain/cipher images for Lena, Boat and Camera man (C-man) images,
having a length equal to 512x512x3, are given in Figures 9–11. As we can see from the
figures, the histograms of the ciphered images appear to be uniform. Additionally, in order
to verify the uniformity, the chi-square test with number of classes equal to 256 and α = 0.05,
is performed (see Table 8). As a result, the theoretical value are larger than the experimental
one, which means that the histograms have a uniform distribution.

Figure 9. Results of Lena image. (a) Lena image, (b) Ciphered Lena, (c) Histogram of Lena image,
and (d) Histogram of ciphered Lena.
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Figure 10. Results of Boat image. (a) Boat image, (b) Ciphered Boat, (c) Histogram of Boat image,
and (d) Histogram of ciphered Boat.

Figure 11. Results of Camera man image. (a) Camera man image, (b) Ciphered Camera man, (c) His-
togram of Camera man image, and (d) Histogram of ciphered Camera man.

Table 8. The chi-square results for the ciphered images: Lena, Boat, and Camera man.

Images Experimental Values Theoretical Values

Lena 512 × 512 × 3 272.152689 293.247835
Boat 512 × 512 × 3 268.465369 293.247835
C-man 512 × 512 × 3 270.317852 293.247835
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4.2.3. Entropy Analysis

The random behavior of the encrypted image can be quantitatively measured by the
entropy information given by Shannon [45]:

H(C) = −
Nc−1

∑
i=0

P(ci)× log2(P(ci)) (23)

where H(C) is the entropy value of the ciphered image, and P(ci) (ci = 0, 1, . . . , 255) is the
probability of each gray level appearance. Note that, the entropy has maximum value equal
to 8 in the case of equal probability levels. On the other hand, the encryption algorithm
is more robust when the experimental entropy value is closer to the maximum value. In
Table 9, we give the results received from the entropy test applied on the plain and ciphered
images. From this table, it is clear that the obtained entropy values of encrypted images are
very close to the optimal value, which means that the proposed AEADS has high levels
of resilience.

Table 9. Entropy results for the ciphered images: Lena, Boat, and Camera man.

Entropy Lena Boat Camera Man

Plain image 7.4504 7.6845 7.4892
Cipher image 7.9584 7.9865 7.9582

4.2.4. Correlation Analysis

The correlation analysis is one of the statistical tests that are used to test the immunity
of the cryptosystem against cryptanalysis. The attacker must not have any partial informa-
tion on the original plain image or any information of the used secret key. This means that,
the ciphered image should be extremely different from its original version. This property
can be measured by correlation analysis. Indeed, it is well-known that neighboring pixels
are very correlated and redundant in the plain images. Thus, the correlation and the
redundancy of the neighboring pixels should be as low as possible in the ciphered images.
In order to calculate the correlation coefficient, we use the following four equations [46]:

ρxy =
cov(x, y)√

D(x)
√

D(y)
(24)

where

cov(x, y) =
1
N

N

∑
i=1

([xi − E(x)][yi − E(y)]) (25)

D(x) =
1
N

N

∑
i=1

(xi − E(x))2 (26)

E(x) =
1
N

N

∑
i=1

(xi) (27)

In the equations before, xi and yi are the values of the two neighboring pixels in the en-
crypted image or the corresponding plain image. To test the security of our proposed
AEADS concerning this kind of attack, we first set the value of N to 10,000 pairs of neigh-
boring pixels in horizontal, vertical, and diagonal directions from the plain image and its
encrypted version. We show in Table 10 the correlation coefficients of two neighboring
pixels in the plain and encrypted images. As we can see from this table, these results are
very close to the optimal values.
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Table 10. Entropy results obtained.

Image Horizontal Vertical Diagonal

Lena 0.939403 0.971060 0.931085
Lena encrypted −0.002674 −0.009113 −0.002178

Boat 0.951837 0.962357 0.915555
Boat encrypted −0.002602 −0.009819 0.002402

Camera man 0.887794 0.734230 0.888141
Camera man encrypted −0.007750 −0.006998 −0.002788

5. Performance Comparison with Other AE Algorithms

This section presents the different characteristics of essential AEAD algorithms in the
literature. Additionally, it provides a comparison for our proposed AEADS from a security
aspect with the main three modes such as; GCM mode, CCM mode, and OCB mode.

5.1. Characteristic Comparison

Table 11 summarizes the characteristics of the essential AEAD algorithms. In fact,
the characteristics mentioned in this section are taken from the basic list of properties
required for NIST proposal and extended by features, which varies across modes [47,48].

Table 11. Characteristic comparison between our proposed AEADS and other AEAD schemes.

Feature Proposed AEADS GCM CCM OCB

Tag length (bits) 256 0 to n 16k, k ∈ {2, . . . , 8} 0 to n
IV size (bits) Any Any (favored: n− 32) n n

Number of passes One Two Two One
Provably secure yes yes yes yes
Keying material one key one key one key one key

Online no yes no yes
Endian dependent yes yes yes no
Incremental MAC yes yes no no
Error propagation no no no no

Associated data authentication yes yes yes no

5.2. Security Comparison

Table 12 presents the security comparison of the three essential AEAD modes with our
proposed AEADS. It shows that our proposed AEADS, similarly to other three-modes, is
secure against the chosen plaintext attack.

Table 12. Performance comparison between our proposed AEADS and other AEAD schemes.

Feature Proposed AEADS GCM CCM OCB

Secure against yes yes yes yes
chosen-plaintext attack

Synchronization between
sender and receiver Same IV Same IV Same nonce Same nonce

Keying Requirements One block cipher key One block cipher key One block cipher key One block cipher key

Message Length
Requirements Any bit string allowed

Arbitrary message up to Arbitrary message up to

Any bit string allowed239–256 bits 28L bits where L = 2, . . ., 8
Arbitrary authenticated Arbitrary authenticated

data up to 264 bits data up to 264 bits

Underlying Cipher Block
Size Requirements (bits) 512, 1024 64, 128 Only 128 128, 192, 256

Parallelizability None Encryption block level
Authentication bit level None Fully parallelizable
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Additionally, these mentioned modes use one block cipher key mechanism that re-
quests for the memory resources to save the key. In addition to the CCM mode, the other
three modes are parallelizable. Our proposed scheme can be also implemented in a parallel
manner, which will be useful for scenarios having powerful nodes in the network, such as a
multi-core base station processing many large packets resulting from data aggregation [49].
The authenticity of the ciphertext depends on the IV or the nonce in the three modes, while
it depends on the IV and K for our proposed AEADS.

Therefore, these values must be kept identical in encryption and decryption processes.
For Message Length Requirements, our proposed AEADS, like the OCB mode, allows any
bit string, it can be satisfied by different applications. The CCM mode requests the message
length must be multiples of 16, it is certainly to restrict the range of application.

6. Conclusions and Future Work

In this paper, we have designed, realized, and evaluated the robustness of a new
Authenticated Encryption with Associated Data Scheme (AEADS) using the Duplex con-
struction based on Chaotic Neural Networks provided by a chaotic system. The proposed
scheme is composed of both encryption and decryption processes. In the encryption process
the inputs are composed of IV, K, AD, and M, while the outputs are C and T. These outputs,
in addition to IV, K, and AD, form the inputs of the decryption process. Then, the initial
message M is decrypted if the calculated tag T′ is equal to the received tag T. Otherwise, an
error message is delivered. These two processes are realized for the two-width length 64
bytes and 128 bytes. On the other hand, we tested our proposed scheme against the different
cryptanalytic attacks. In fact, we evaluated the key and the message sensitivity, the collision
resistance analysis and the diffusion effect. Additionally, we tested AEADS using the differ-
ent statistical tests such as NIST, histogram, chi-square, entropy and correlation analysis. All
the results obtained demonstrate that the security of the proposed system, against a battery
of cryptanalytic and statistic attacks, has been achieved. We conclude that the proposed
scheme simultaneously ensures the confidentiality and integrity of data transmitted over
unsecured channels and the authenticity of the data source. Our future work will focus on
an FPGA-based implementation of the system, the evaluation of its hardware performance
and the comparison of our AEADS with other authenticated encryption modes.
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