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Abstract: In this paper, we employ the certain theory of Lie symmetry analysis to discuss the time-
fractional Gardner equation with time-dependent coefficients. The Lie point symmetry is applied
to realize the symmetry reduction of the equation, and then the power series solutions in some
specific cases are obtained. By virtue of the fractional conservation theorem, the conservation laws
are constructed.
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1. Introduction

The conversant Korteweg–de Vries(KdV) equation, as the prototype of an integrable
nonlinear partial differential equation (NPDE), is an active subject in the area of mathemat-
ical physics. The Gardner equation

ut + 6uux + 6u2ux + uxxx = 0, (1)

also called the combined KdV-mKdV equation, which appears in applications of describing
various significant phenomena in fluid mechanics, plasma physics and quantum field
theory, has been widely studied by various methods, including numerical methods and
analytical methods. Taking into account the inhomogeneity of the medium and boundary,
variable-coefficient nonlinear partial differential equations (NPDEs) always reflect certain
nonlinear physical phenomena more truly than constant-coefficient NPDEs. There exists a
vast amount of materials on various types of variable-coefficients Gardner equations [1–7].
In [8], the following form of a Gardner equation with time-dependent coefficients

ut + a(t)uux + b(t)u2ux + c(t)uxxx + d(t)ux + f (t)u = 0 (2)

is discussed, where u(x, t) is the amplitude of the relevant wave model, x is the horizontal
coordinate, t is the time and the time-dependent coefficients a(t), b(t), c(t), d(t) and f (t)
are all analytic functions, which are related to the background density and shear flow
stratification. By combining with symbolic computation, the author has deduced the
Painlevé integrability condition, lax pair and Bäcklund transformation, as well as the
N-soliton-like solutions of two special equations. S. Kumar et al. [9] have determined the
Painlevé property and the exact solutions by Painlevé analysis and Lie group analysis.
In addition, the solutions of (2) are constructed by applying the general solution of the
Riccati equation in [10]. Setting a(t) = αtm, b(t) = βtn, c(t) = γtp, d(t) = δtq and
f (t) = µtr, Equation (2) is reduced as below:

ut + αtmuux + βtnu2ux + γtpuxxx + δtqux + µtru = 0. (3)
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Liu et al. [11] have given the explicit solution via the Painlevé analysis and Lie group
analysis. In particular, for r = −1, Equation (3) is simplified as

ut + αtmuux + βtnu2ux + γtpuxxx + δtqux +
µ

t
u = 0. (4)

Taking m = β = p = δ = 0, we get its special case of the generalized cylindrical KdV
type equation

ut + αuux + γuxxx +
µ

t
u = 0. (5)

Similarly, they have produced the exact solutions of (4) and (5) by Painlevé analysis
and Lie symmetry [12]. Fractional NPDEs possessing nonlocality can more succinctly and
accurately describe the mechanical and physical processes with historical memory and
spatial global correlation than integer order NPDEs [13–15]. In this paper, we consider the
extended time-fractional Gardner equation with time-dependent coefficients

∂αu
∂tα

+
µ

t
u + atluux + btmu2ux + βtpuxxx + γtqux = 0. (6)

Lie symmetry is one of the most versatile and effective methods to derive the analytical
solutions of fractional NPDEs [16–23]. The famous Noether theorem points out that each
symmetry corresponds to a conservation law. Lukashchuk proposed the fractional Noether
operator and went on to construct conservation laws of time-fractional diffusion waves
and sub-diffusion equations [24–27]. Conservation laws have important applications in
the integrability of partial differential equations, stability and global behavior of solutions,
reliability of numerical solutions, construction of nonlocal systems and extension of gen-
eralized symmetric methods. Symmetry reflects the structural characteristics of NPDEs,
solutions reveal the laws of physical behavior of NPDEs, and conservation laws reflect the
motion characteristics of NPDEs. The primary purpose of this paper is to obtain new exact
solutions and construct the conservation laws of (6).

The arrangement of the paper is as follows. In Section 2, the idea of Lie symmetry act-
ing on the NPDE with Riemann–Liouville (RL) fractional derivatives are given. In Section 3,
we introduce the infinitesimal transformation of a one parameter Lie group into (6) and
derive the vector fields in appropriate cases. Symmetry reduction is realized by means of
the definition of the RL derivative. In Section 4, some new explicit solutions are obtained
by the power series method. In Section 5, the conserved vectors of (6) are constructed.
Section 6 makes some conclusions.

2. Preliminaries

The basic idea of Lie symmetry is to identify the similar variables of NPDE. Combin-
ing the definition of the RL derivative can reduce an independent variable and get the
corresponding simplified equation.

First, we give the definition of RL fractional derivative [28]

∂α f
∂tα

=

{
∂n f
∂tn , α = n ∈ N,

1
Γ(n−α)

∂n

∂tn

∫ t
0 (t− s)n−α−1 f (x, s)ds, n− 1 < α < n,

(7)

where Γ(n− α) is the gamma function. Note an important property of the RL fractional
derivative

Dα
t tr =

Γ(r + 1)
Γ(r + 1− α)

tr−α, r > 0. (8)
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The Erdélyi–Kober(EK) fractional differential operator is defined as [29]

(
Pτ,α

δ h
)
(z) :=

n−1

∏
j=0

(
τ + j− 1

δ
z

d
dz

)(
Kτ+α,n−α

δ h
)
(z),

n =

{
[α] + 1, α /∈ N,
α, α ∈ N,

(9)

where

(
Kτ,α

δ h
)
(z) :=

{
1

Γ(α)

∫ ∞
1 (ω− 1)α−1ω−(τ+α)h

(
zω

1
δ
)
dω, α > 0,

h(z), α = 0
(10)

is the EK fractional integral operator. Then, we consider the time-fractional NPDE of order
α (α ∈ (0, 1))

∂αu(x, t)
∂tα

= F(x, t, u, ux, uxx, uxxx). (11)

The one-parameter Lie group of infinitesimal transformations is as follows:

x∗ = x + εξ(x, t, u) + O(ε2),

t∗ = t + ετ(x, t, u) + O(ε2),

u∗ = u + εη(x, t, u) + O(ε2),
∂αu∗

∂t∗α =
∂αu
∂tα

+ εηα,t(x, t, u) + O(ε2), (12)

∂u∗

∂x∗
=

∂u
∂x

+ εηx(x, t, u) + O(ε2),

∂2u∗

∂x∗2 =
∂2u
∂x2 + εηxx(x, t, u) + O(ε2),

∂3u∗

∂x∗3 =
∂3u
∂x3 + εηxxx(x, t, u) + O(ε2),

where ε is the group parameter, ξ, τ, η are infinitesimal operators, ηx, ηxx, and ηxxx are
extended infinitesimal functions of integer order and ηα,t is the extended infinitesimal
function of order α, which is defined by using the generalized Leibnitz rule and generalized
chain rule

ηα,t =Dα
t η + (ηu − αDt(τ))Dα

t u− uDα
t ηu + µ +

∞

∑
n=1

[(
α

n

)
Dn

t ηu

−
(

α

n + 1

)
Dn+1

t (τ)

]
Dα−n

t (u)−
∞

∑
n=1

(
α

n

)
Dn

t (ξ)D
α−n
t (ux), (13)

with

µ =
∞

∑
n=2

n

∑
m=2

m

∑
k=2

k−1

∑
r=0

(
α

n

)(
n
m

)(
k
r

)
1
k!

tn−α

Γ(n + 1− α)
(−u)r

× ∂m

∂tm

(
uk−r

) ∂n−m+kη

∂tn−m∂uk . (14)

The corresponding Lie algebra is given in the following form

V = ξ(x, t, u)
∂

∂x
+ τ(x, t, u)

∂

∂t
+ η(x, t, u)

∂

∂u
. (15)
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The invariance criterion must be adapted if the vector field can generate Lie group
symmetry of (6)

pr(α,3)V(∆)|∆=0 = 0, (16)

where pr(α,3) is the third prolongation operator, expanded as

pr(α,3) = V + ηα,t∂∂α
t u + ηx∂ux + ηxx∂uxx + ηxxx∂uxxx . (17)

Under the invariance condition, we get

τ(x, t, u)|t=0 = 0. (18)

3. Symmetry Reduction

In this section, Lie symmetry is applied to (6) to achieve its similarity reductions.
After inserting the Lie group transformation, the expansion of (16) is obtained:

ηα,t +
µ

t
η − µ

t2 τu + alτtl−1uux + atluηx + bmτtm−1u2ux + 2btmuηux

+ btmu2ηx + βpτtpuxxx + βtpηxxx + γqτtq−1ux + γtpηx = 0. (19)

By replacing the extended infinitesimal functions and making the coefficients of the
derivatives of u equal to 0, the determining equations of the vector fields are derived as

ξ = (m− l − 1)(p− q)c1x + c2,

τ = 2(m− l − 1)c1t,

η = 2α(m− l)c1u. (20)

Case 1. The parameter variables of (6) take any value. The vector field represents

V1 =
∂

∂x
. (21)

Case 2. m− l − 1 = 0, p and q are arbitrary constants. The symmetry Lie algebra is
two-dimensional, spanned by

V1 =
∂

∂x
, V2 = 2αu

∂

∂u
. (22)

Case 3. For m− l = 0 and p− q = 0, we get the two vector fields

V1 =
∂

∂x
, V3 = −2t

∂

∂t
. (23)

For symmetry V3, this gives rise to the group-invariant solution u = f (z), where z = x
is the similarity variable. Replacing this solution in (6) produces the nonlinear ordinary
differential equation (NODE)

µ

t
f (z) + atl f (z) f ′(z) + btm f 2(z) f ′(z) + βtp f ′′′(z) + γtq f ′(z) = 0. (24)

Case 4. For m− l = 0 and p− q 6= 0, the Lie algebra extends by the following Lie
point symmetry generators:

V1 =
∂

∂x
, V4 = −2t

∂

∂t
+ (q− p)x

∂

∂x
. (25)

For symmetry V4, there emerges the corresponding group-invariant solution u = f (z)
with z = xt

q−p
2 . Subsequently, we implement the symmetry reduction that makes (6) reduce
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to a fractional NODE in the EK sense. Let n− 1 < α < n, n = 1, 2, 3, . . .; then, the RL
fractional derivative with respect to t exerts

∂αu
∂tα

=
∂n

∂tn

(
1

Γ(n− α)

∫ t

0
(t− s)n−α−1 f (xs

q−p
2 )ds

)
. (26)

Taking ρ = t
s , Equation (26) is transformed into the following form:

∂αu
∂tα

=
∂n

∂tn

(
tn−α 1

Γ(n− α)

∫ ∞

1
(ρ− 1)n−α−1ρ−(n−α+1) f (zs

p−q
2 )dρ

)
=

∂n

∂tn

(
tn−α

(
K1,n−α

2
p−q

f
)
(z)
)

. (27)

Since t ∂
∂t ϕ(z) = q−p

2 z d
dz ϕ(z), we get

∂αu
∂tα

=
∂n−1

∂tn−1

(
tn−α−1

(
n− α− p− q

2
z

d
dz

)(
K1,n−α

2
p−q

f
)
(z)
)

. (28)

Repeating the operation n− 1 times, there appears the EK fractional differential operator

∂αu
∂tα

= t−α
n−1

∏
j=0

(
1 + j− α− p− q

2
z

d
dz

)(
K1,n−α

2
p−q

f
)
(z)

= t−α

(
P1−α,α

2
p−q

f
)
(z). (29)

Inserting the group-instant solution u = f (z) and (29) into (6) allows the NODE to be
obtained as(

P1−α,α
2

p−q
f
)
(z) + µtα−1 f (z) + atl+ q−p

2 +α f (z) f ′(z) + btm+
q−p

2 +α f 2(z) f ′(z)

+ βt
3q−p

2 +α f ′′′(z) + γt
3q−p

2 +α f ′(z) = 0. (30)

Case 5. For m− l− 1 6= 0, m− l 6= 0 and p− q = 0, we obtain the following 2 vector fields

V1 =
∂

∂x
, V5 = 2(m− l − 1)t

∂

∂t
+ 2α(m− l)u

∂

∂u
. (31)

The vector field V5 arouses the group-invariant solution u = t
α(m−l)
m−l−1 f (z) with z = x.

In view of the property of (8) and the above group-invariant solution, Equation (6) is
simplified as

Γ
( α(m−l)

m−l−1 + 1
)

Γ
(

α
m−l−1 + 1

) f (z) + µtα−1 f (z) + atl+ 2α(m−l)
m−l−1 f (z) f ′(z)

+ btm+ α(3m−3l−1)
m−l−1 f 2(z) f ′(z) + βtp+α f ′′′(z) + γtq+α f ′(z) = 0. (32)

Case 6. For m− l − 1 6= 0, m− l 6= 0 and p− q 6= 0, the symmetry Lie algebra is
spanned by the two forms, respectively

V1 =
∂

∂x
, V6 = (m− l − 1)(p− q)x

∂

∂x
+ 2(m− l − 1)t

∂

∂t
+ 2α(m− l)u

∂

∂u
. (33)
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For vector field V6, we have the group-invariant solution u = t
α(m−l)
m−l−1 f (z) with the

similarity variable z = xt
q−p

2 . Imitating (26)–(29) to export the following results

∂αu
∂tα

= t
α

m−l−1

(
P1+ α

m−l−1 ,α
2

p−q
f
)
(z), (34)

Equation (6) is reduced to the NODE in the sense of the EK fractional derivative(
P1+ α

m−l−1 ,α
2

p−q
f
)
(z) + µtα−1 f (z) + atl+ q−p

2 + α(2m−2l−1)
m−l−1 f (z) f ′(z)

+ btl+ q−p
2 + α(3m−3l−1)

m−l−1 f 2(z) f ′(z) + βt
3q−p

2 +α f ′′′(z) + γt
3q−p

2 +α f ′(z) = 0. (35)

4. Power Series Solutions

The solutions of nonlinear ordinary differential equations obtained by symmetry
reduction of (6) cannot be expressed by elementary functions or their integral formulas,
though it is feasible to provide this solutions by the power series method. The power series
solutions can reflect the amplitude of the relevant wave model. Now, we determine the
power series solutions of (24), (30), (32) and (35).

We define (24) having the form of power series solution

f (z) =
∞

∑
n=0

anzn, (36)

so that

f ′(z) =
∞

∑
n=0

(n + 1)an+1zn, f ′′′(z) =
∞

∑
n=0

(n + 3)(n + 2)(n + 1)an+3zn. (37)

We proceed to transform (24) into the following form

µ

t

∞

∑
n=0

anzn + a
∞

∑
n=0

n

∑
i=0

(n + 1− i)aian+1−izntl + b
∞

∑
n=0

n

∑
i=0

i

∑
j=0

(j + 1)aj+1an−j

× zntm + β
∞

∑
n=0

(n + 3)(n + 2)(n + 1)an+3zntp + γ
∞

∑
n=0

(n + 1)an+1zntq = 0. (38)

From (38), we get for n = 0

a3 = − 1
6βtp

(µ

t
a0 + aa0a1tl + ba0a1tm + γa1tq

)
, (39)

and for n ≥ 1

an+3 =− 1
βtp(n + 3)(n + 2)(n + 1)

(µ

t
an + a

n

∑
i=0

(n + 1− i)aian+1−itl

+ b
n

∑
i=0

i

∑
j=0

(j + 1)aj+1an−jtm + γ(n + 1)an+1tq
)

. (40)

It can be seen that the coefficients of the power series (36) are completely determined
by the constants a0, a1, a2, µ, a, b, β and γ. This shows that (24) has a power series solution
with the coefficients determined by (39) and (40). Introducing the coefficient functions
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into (36) and combining with the group-invariant solution u = f (x), the power series
solution of (24) presents

u =a0 + a1x + a2x2 − 1
6β

(µ

t
a0 + aa0a1tl + ba0a1tm + γa1tq

)
x3t−p

+
∞

∑
n=1

(
− 1

β(n + 3)(n + 2)(n + 1)

(µ

t
an + a

n

∑
i=0

(n + 1− i)aian+1−itl (41)

+ b
n

∑
i=0

i

∑
j=0

(j + 1)aj+1an−jtm + γ(n + 1)an+1tq
))

xn+3t−p.

Subsequently, considering (30), one gets

∞

∑
n=0

Γ
(
2 + (p−q)n

2
)

Γ
(
2− α + (p−q)n

2
) anzn + µ

∞

∑
n=0

anzntα−1 + a
∞

∑
n=0

n

∑
i=0

(n + 1− i)ai

× an+1−izntl+α+
q−p

2 + b
∞

∑
n=0

n

∑
i=0

i

∑
j=0

(j + 1)aj+1an−jai−jzntm+α+
q−p

2 (42)

+ β
∞

∑
n=0

(n + 3)(n + 2)(n + 1)an+3zntα+
3q−p

2 + γ
∞

∑
n=0

(n + 1)zntα+
3q−p

2 = 0.

There we omit the expression of the coefficient functions of (36), which can similarly
be obtained by making n = 0 and n ≥ 1. Connecting the group-invariant solution
u = f

(
xt

q−p
2
)
, the power series solution of (30) is received

u =a0 + a1xt
q−p

2 + a2x2tq−p − 1
6β

( Γ(2)
Γ(2− α)

a0 + µa0tα−1 + aa0a1tl+α+
q−p

2

+ ba2
0a1tm+α+

q−p
2 + γa1tα+

3q−p
2

)
x3t−p−α

+
∞

∑
n=1

(
− 1

β(n + 3)(n + 2)(n + 1)tα+
3q−p

2

(
Γ
(
2 + (p−q)n

2
)

Γ
(
2− α + (p−q)n

2
) an (43)

+ µantα−1 + a
n

∑
i=0

(n + 1− i)aian+1−itl+α+
q−p

2 + b
n

∑
i=0

i

∑
j=0

(j + 1)

× aj+1an−jai−jtm+α+
q−p

2 + γ(n + 1)an+1

))
xn+3t−p−α+

n(q−p)
2 ,

where the coefficients are determined by the constants a0, a1, a2, µ, a, b, β and γ.
In the light of the previous procedures, Equation (32) can be rewritten

∞

∑
n=0

Γ
( α(m−l)

m−l−1 + 1
)

Γ
(

α
m−l−1 + 1

) anzn + µ
∞

∑
n=0

anzntα−1 + a
∞

∑
n=0

n

∑
i=0

(n + 1− i)aian+1−i

× zntl+ α(2m−2l−1)
m−l−1 + b

∞

∑
n=0

n

∑
i=0

i

∑
j=0

(j + 1)aj+1an−jai−jzntm+ α(3m−3l−1)
m−l−1 (44)

+ β
∞

∑
n=0

(n + 3)(n + 2)(n + 1)an+3zntp+α + γ
∞

∑
n=0

(n + 1)an+1zntq+α = 0.
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Omitting the calculation of coefficient functions and concerning group-invariant

solution u = t
α(m−l)
m−l−1 f (x), the power series solution of (32) is as below:

u =a0t
α(m−l)
m−l−1 + a1xt

α(m−l)
m−l−1 + a2x2t

α(m−l)
m−l−1 − 1

6β

(
Γ
( α(m−l)

m−l−1 + 1
)

Γ
(

α
m−l−1 + 1

) a0 + µa0tα−1

+ aa0a1tl+ α(2m−2l−1)
m−l−1 + ba2

0a1tm+ α(3m−3l−1)
m−l−1 + γa1tp+α

)
x3t−p+ α

m−l−1

+
∞

∑
n=1

(
− 1

β(n + 3)(n + 2)(n + 1)

(
Γ
( α(m−l)

m−l−1 + 1
)

Γ
(

α
m−l−1 + 1

) an + µantα−1 (45)

+ a
n

∑
i=0

(n + 1− i)aian+1−it
l+ α(2m−2l−1)

m−l−1 + b
n

∑
i=0

i

∑
j=0

(j + 1)aj+1

× an−jai−jt
m+ α(3m−3l−1)

m−l−1 + γ(n + 1)an+1tq+α

))
xn+3t−p+ α

m−l−1 ,

where the coefficients are determined by the constants a0, a1, a2, µ, a, b, β and γ.
Likewise, Equation (35) can be expressed as the following:

∞

∑
n=0

Γ
(
2 + α(m−l)

m−l−1 + (p−q)n
2

)
Γ
(
2 + α

m−l−1 + (p−q)n
2

) anzn + µ
∞

∑
n=0

anzntα−1 + a
∞

∑
n=0

n

∑
i=0

(n + 1− i)

× aian+1−izntl+ q−p
2 + α(2m−2l−1)

m−l−1 + b
∞

∑
n=0

n

∑
i=0

i

∑
j=0

(j + 1)aj+1an−jai−j (46)

× zntm+
q−p

2 + α(3m−3l−1)
m−l−1 + β

∞

∑
n=0

(n + 3)(n + 2)(n + 1)an+3znt
3q−p

2 +α

+ γ
∞

∑
n=0

(n + 1)an+1znt
3q−p

2 +α = 0.

We naturally omit the calculation of coefficient functions and link the group-invariant

solution u = t
α(m−l)
m−l−1 f (z) with the similar variable z = xt

q−p
2 , so that the power series

solution of (35) is as following:

u =a0t
α(m−l)
m−l−1 + a1xt

q−p
2 + α(m−l)

m−l−1 + a2x2tq−p+ α(m−l)
m−l−1 − 1

6β

(
Γ
( 2+α(m−l)

m−l−1

)
Γ
(
2 + α

m−l−1

) a0

+ µa0tα−1 + aa0a1tl+ q−p
2 + α(2m−2l−1)

m−l−1 + ba2
0a1tm+

q−p
2 + α(3m−3l−1)

m−l−1

+ γa1tα+
3q−p

2

)
x3t−p−α +

∞

∑
n=1

(
− 1

β(n + 3)(n + 2)(n + 1)
(47)

×
(

Γ
(
2 + α(m−l)

m−l−1 + (p−q)n
2

)
Γ
(
2 + α

m−l−1 + (p−q)n
2

) an + µantα−1 + a
n

∑
i=0

(n + 1− i)aian+1−i

× tl+ q−p
2 + α(2m−2l−1)

m−l−1 + b
n

∑
i=0

i

∑
j=0

(j + 1)aj+1an−jai−j

× tm+
q−p

2 + α(3m−3l−1)
m−l−1 + γ(n + 1)an+1tα+

3q−p
2

))
xn+3t−p−α+

(q−p)n
2 ,

where the coefficients are determined by the constants a0, a1, a2, µ, a, b, β and γ.
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5. Conservation Laws

By combining Lie point symmetry and the adjoint equation, we derive the conservation
laws of (6). For the vector field (15), the conservation law is determined by the following
formula [25]

Dx(Cx) + Dt(Ct) = 0, (48)

where (Cx, Ct) is the conserved vector. To construct the conservation laws of (6) means to
get the conserved vectors.

Given the formal Lagrangian,

L = v(x, t)
(∂αu

∂tα
+

µ

t
u + atluux + btmu2ux + βtpuxxx + γtqux

)
. (49)

New dependent variables v(x, t) is the solution of the adjoint equation. The adjoint
equation is as below:

δL
δu

= 0, (50)

which is, with the Euler–Lagrangian operator, defined by

δL
δu

=
∂L
∂u

+ (Dα
t )
∗ ∂L

∂Dα
t u
− Dx

∂L
∂ux
− D3

x
∂L

∂uxxx
, (51)

where (Dα
t )
∗ is the adjoint operator of Dα

t . The components Cx, Ct of the conserved vector,
which are generated by each symmetry generator, are composed of the following formulas:

Cx =W
( ∂L

∂ux
− Dx

( ∂L
∂uxx

)
+ D2

x

( ∂L
∂uxxx

))
+ Dx(W)

( ∂L
∂uxx

− Dx

( ∂L
∂uxxx

))
+ D2

x(W)
( ∂L

∂uxxx

)
, (52)

Ct =
n−1

∑
k=0

(−1)kDα−1−k
t (W)Dk

t
∂L

∂Dα
t u
− (−1)n J

(
W, Dn

t
∂L

∂Dα
t u

)
,

where W is the Lie characteristic function, namely W = η − τut − ξux, and J is the integral
operator given by J( f , g) = 1

Γ(n−α)

∫ t
0

∫ T
t f (x, r)g(x, s)(r− s)n−1−αdrds.

There produce the specific components of the conserved vectors related to the Lie
symmetry of (6).

Case 1. For V1 = ∂
∂x , we have W1 = −ux. The components of the conserved vector are

derived as follows:

Cx =(−ux)(atluv + btmu2v + γtqv + βtpvxx) + βtpuxxvx − βtpuxxxv,

Ct =vDα−1
t (−ux) + J(−ux, vt). (53)

Case 2. For V2 = 2au ∂
∂u , we have W2 = 2au. The components of the conserved vector

are derived as follows:

Cx =(2au)(atluv + btmu2v + γtqv + βtpvxx)− 2αβtpuxvx + 2αβtpuxxv,

Ct =vDα−1
t (2au) + J(2au, vt). (54)

Case 3. For V3 = −2t ∂
∂t , we have W3 = 2tut. The components of the conserved vector

are derived as follows:

Cx =(2tut)(atluv + btmu2v + γtqv + βtpvxx)− 2βtp+1uxtvx + 2βtp+1uxxtv,

Ct =vDα−1
t (2tut) + J(2tut, vt). (55)
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Case 4. For V4 = −2t ∂
∂t + (q− p)x ∂

∂x , we have W4 = 2tut + (p− q)xux. The compo-
nents of the conserved vector are derived as follows:

Cx =(2tut + (p− q)xux)(atluv + btmu2v + γtqv + βtpvxx) + (2tuxt + (p− q)

× (ux + xuxx))(−βtpvx) + (2tuxxt + (p− q)(2uxx + xuxxx))(βtpv), (56)

Ct =vDα−1
t (2tut + (p− q)xux) + J(2tut + (p− q)xux, vt).

Case 5. For V5 = 2(m− l − 1)t ∂
∂t + 2α(m− l)u ∂

∂u , we have W5 = 2α(m− l)u −2(m− l − 1)tut.
The components of the conserved vector are derived as follows:

Cx =(2α(m− l)u− 2(m− l − 1)tut)(atluv + btmu2v + γtqv + βtpvxx)

+ (2α(m− l)ux − 2(m− l − 1)tuxt)(−βtpvx)

+ (2α(m− l)uxx − 2(m− l − 1)tuxxt)(βtpv), (57)

Ct =vDα−1
t (2α(m− l)u− 2(m− l − 1)tut)

+ J(2α(m− l)u− 2(m− l − 1)tut, vt).

Case 6. For V6 = (m− l − 1)(p− q)x ∂
∂x + 2(m− l − 1)t ∂

∂t + 2α(m− l)u ∂
∂u , we have

W5 = 2α(m − l)u − 2(m − l − 1)tut − (m − l − 1)(p − q)xux. The components of the
conserved vector are derived as follows:

Cx =(2α(m− l)u− 2(m− l − 1)tut − (m− l − 1)(p− q)xux)(atluv

+ btmu2v + γtqv + βtpvxx) + (2α(m− l)ux − 2(m− l − 1)tuxt

− (m− l − 1)(p− q)(ux + xuxx))(−βtpvx) + (2α(m− l)uxx (58)

− 2(m− l − 1)tuxxt − (m− l − 1)(p− q)(2uxx + xuxxx))(βtpv),

Ct =vDα−1
t (2α(m− l)u− 2(m− l − 1)tut − (m− l − 1)(p− q)xux)

+ J(2α(m− l)u− 2(m− l − 1)tut − (m− l − 1)(p− q)xux, vt).

6. Conclusions

We have shown feasible ways to determine the exact solutions and conservation laws
of the time-fractional Gardner equation with time-dependent coefficients. The advantage
of Lie symmetry is to reduce the equation into a NODE which is easy to solve. The power
series method is convenient and effective for solving obtained NODEs, and can be further
extended to solve other NPDEs by the similar routines. The exact solutions in the form
of a power series can be used to test the accuracy of the numerical solutions, that is, to
determine whether the numerical method for obtaining the numerical solution is reasonable
by comparing the images of the two types of solutions. On the basis of symmetry and new
conservation theorem, the conserved vectors are constructed in certain situations.
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Abbreviations
The following abbreviations are used in this manuscript:

KdV Korteweg–de Vries
NPDE Nonlinear partial differential equation
NPDEs Nonlinear partial differential equations
RL Riemann–Liouville
EK Erdélyi–Kober
NODE Nonlinear ordinary differential equation
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