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Abstract: Motivated by the two strategies of intermittent control and discrete feedback control, this
paper aims to introduce a periodically intermittent discrete feedback control in the drift part to
stabilize an unstable Markov jumping stochastic differential system. It is illustrated that, by the
approach of comparison principle, this can be achieved in the sense of almost sure exponential
stability. Further, the stabilization theory is applied to Markov jumping stochastic recurrent neural
networks.
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1. Introduction

Stochastic systems have played an important role in a series of fields. Markov jump-
ing stochastic differential systems (MJSDSs, for short) could offer a strong mathemat-
ical model describing option pricing, manufacturing engineering, and electric power
engineering [1–3], whose subsystems can switch according to the provided Markovian
chains. In studying the MJSDSs, the stability, as a basic and significant property, received
consequent emphasis, e.g., [4–11]. For an unstable system, various strategies have been
introduced to stabilize it, such as sample control, impulse control, pinning control, feedback
control, and intermittent control. Generally speaking, for stochastic differential systems,
the feedback control can be divided into one in the drift part and one in the diffusion part,
e.g., [12–16]. Here, the feedback control in the drift part is particularly noted for this paper.

With respect to an unstable MJSDS in the form

du(t) = F(u(t), t, r(t))dt + G(u(t), t, r(t))dB(t), t ≥ 0 (1)

it is traditional to introduce a feedback control H(u(t), t, r(t)) in the drift part, based on
continuous state observations, to stabilize it, where u(t) ∈ Rn stands for the system state,
r(t) ∈ S stands for the switching rule-Markovian chain, B(t) stands for an m-dimensional
Brownian motion, and F, H : Rn × R+ × S → Rn, G : Rn × R+ × S → Rn×m. Please refer
to more concrete definitions in the last paragraph of this section. It is noted that designing
the continuous feedback control is costly and impossible to achieve in reality. To reduce
the stabilization cost, Mao [17] introduced the feedback control in the drift part, based on
discrete state observations, to stabilize the unstable system (1). So, the controlled system
becomes

du(t) =
[
F(u(t), t, r(t)) + H(u([t/h]h), t, r(t))

]
dt + G(u(t), t, r(t))dB(t), (2)
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where h > 0 is the observation interval between two consecutive observations, and [] is
the integer operator, i.e., [t/h] = i as t ∈ [ih, (i + 1)h), i = 0, 1, 2, · · · . Then, the consequent
results on the topic of discrete feedback control were reported, e.g., [18–21].

Additionally, compared with the continuous control strategy, the intermittent control
strategy is more effective to achieve the aim of cost reduction. Intermittent control strategy
was initiated by Zochowski [22]. It involves the contents of working time and non-working
time. This topic with periodical working time is called as periodically intermittent control
and has received much focus, e.g., [23–29].

Therefore, motivated by the discrete feedback control and periodically intermittent
control, one may ask the following question.

F Question: With respect to the unstable MJSDS (1), could one introduce a periodically intermit-
tently discrete feedback control in the drift part to make the controlled MJSDS

du(t) =
[
F(u(t), t, r(t)) + H(u([t/h]h), t, r(t))

]
dt

+G(u(t), t, r(t))dB(t), t ∈ [lσ, (l + θ)σ)
du(t) = F(u(t), t, r(t))dt + G(u(t), t, r(t))dB(t), t ∈ [(l + θ)σ, (l + 1)σ)

(3)

stable, where l = 0, 1, 2, · · · , θ ∈ (0, 1] stands for the intermittently controlled rate, and σ stands
for the controlled period?

Up to now, there are few answers to this question. This paper offers a positive answer
and fills the research gap. The contributions of this paper consist of the following points:

(1) The issue and criteria of periodically intermittently discrete feedback control in the
drift part have been proposed for MJSDSs;

(2) The stabilization theory above is successfully applied to Markov jumping stochastic
recurrent neural networks, which shows the effectiveness of our theory.

Notation 1. Assume (Ω, F , {Ft}t≥0,P) is a completed probability space with the usual condi-
tions. B(t) stands for an m-dimensional Brownian motion, and r(t) stands for a right-continuous
Markovian chain with the finite state space S = {1, · · · , N} and the generator Γ = (rk1k2)N×N ,
which satisfies rk1k2 > 0 as k1 6= k2 and ∑k2∈S λk1k2 = 0. Operator E stands for the expectation
with respect to P. For a matrix M, |M| =

√
trace(MT M) and ‖M‖ = max{|Mx| : |x| = 1},

where T stands for the transpose operator and trace stands for the trace operator. Matrix M is
symmetric, when MT = M.

2. Problem Description and Main Results

This paper is mainly concerned with the unstable MJSDS (1) with initial data u(0) ∈
Rn, r(0) ∈ S. Furthermore, the global Lipschitz conditions are assumed for functions F
and G.

Assumption 1. There exist two numbers c1, c2 > 0 such that, for ∀u, v ∈ Rn, s ∈ R+, j ∈ S

|F(u, s, j)− F(v, s, j)| ≤ c1|u− v|
|G(u, s, j)−G(v, s, j)| ≤ c2|u− v|.

Furthermore, F(0, s, j) = 0, G(0, s, j) = 0 for ∀s ∈ R+, j ∈ S.

From Assumption 1, MJSDS (1) has the zero equivalent solution. However, Assump-
tion 1 can not ensure the stability. Hence, as discussed above, the periodically intermittently
discrete feedback control in the drift part is introduced for MJSDS (1). For simplicity, the
controlled MJSDS (3) can be rewritten as

du(t) =
[
F(u(t), t, r(t)) + I(t)H(u([t/h]h), t, r(t))

]
dt + G(u(t), t, r(t))dB(t), (4)
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where I(t) equals 1 as t ∈ [lσ, (l + θ)σ), while 0 as t ∈ [(l + θ)σ, (l + 1)σ), and θσ stands
for the controlled width.

It is further assumed that θ ∈ [ h
σ , 1], i.e., θσ ≥ h, since the controlled period should

not be less than the controlled width, and the controlled width should not be less than the
observation interval between two consecutive observations. In fact, the constraint θσ ≥ h
can be removed.

Remark 1. Compared with the assertions on traditionally continuous feedback control in the drift
part, this paper emphasizes the feedback control based on discrete observations. Compared with the
results on the discrete feedback control in the drift part [17–21], this paper emphasizes a periodically
intermittent control strategy. In sum, the periodically intermittently discrete feedback control
introduced in this paper can reduce the controlled cost effectively.

Remark 2. The controlled MJSDS (4) is complicated for the two switching rules. One is the
original Markovian switching rule; another is the periodically intermittent switching rule, which is
newly added. From another angle, system (4) is a periodically switched system: one of its subsystems
is the original unstable MJSDS; another is the discrete feedback controlled MJSDS.

Before the main contribution of the stabilization result is presented, the following
assumptions are given for function H.

Assumption 2. There exists a number c3 > 0 such that, for ∀u, v ∈ Rn, s ∈ R+, j ∈ S

|H(u, s, j)− H(v, s, j)| ≤ c3|u− v|.

Furthermore, H(0, s, j) = 0 for ∀s ∈ R+, j ∈ S.

Remark 3. Assumption 2 implies the linear growth condition for function H, i.e., |H(u, s, j)| ≤
c3|u| for ∀u ∈ Rn, s ∈ R+, j ∈ S.

Assumption 3. There exists a number c4 > c1 + c2
2/2 such that, for ∀v ∈ Rn, s ∈ R+, j ∈ S

vT H(v, s, j) ≤ −c4|v|2.

Please refer to c1, c2 in Assumption 1.

Remark 4. Given parameters c1 and c2 in Assumption 1, many cases exist for function H with
Assumptions 2 and 3. For instance, H(v, s, j) can take the linear form of−c4v with c4 > c1 + c2

2/2
to satisfy Assumptions 2 and 3 with c3 = c4.

As a matter of fact, the controlled MJSDS (4) is a Markov jumping stochastic delay
differential system

du(t) =
[
F(u(t), t, r(t)) + I(t)H(u(t− δ(t)), t, r(t))

]
dt + G(u(t), t, r(t))dB(t)

with bounded time varying delay δ(t) = t− [t/h]h. From [6], Assumptions 1 and 2 can en-
sure the existence and uniqueness of the global solution u(t; u(0), r(0), 0) for the controlled
MJSDS (4), while u(t; u(0), r(0), 0) does not satisfy the Markovian property. However, for
the special structure of system (4), the Markovian property holds for u(t; u(0), r(0), 0) and
r(t; r(0), 0) at the series of times lσ, l = 0, 1, 2, · · · ,, i.e.,(

u(t; u(0), r(0), 0), r(t; r(0), 0)
)
=
(

u(t; u(lσ), r(lσ), lσ), r(t; r(lσ), lσ)
)

.

What is more, the definition of almost sure exponential stability is cited for the
controlled MJSDS (4).
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Definition 1. Controlled MJSDS (4) is called to be almost surely exponentially stable, when
lim sup

t→∞
log |u(t; u(0), r(0), 0)|/t < 0 a.s. for ∀u(0) ∈ Rn, r(0) ∈ S.

In the following, we give the main stabilization result.

Theorem 1. Under Assumptions 1–3, suppose there exist numbers σ > 0, θ ∈ (0, 1] and h > 0
such that conditions

h ≤ θσ, (5)

L1(σ, θ, h)e(2c1+c2
2+λ)σ + e−εσ < 0.5 (6)

are satisfied for a parameter λ > 0; then, for ∀u(0) ∈ Rn, r(0) ∈ S, the global solution
u(t; u(0), r(0), 0) of controlled MJSDS (4) satisfies

lim sup
t→∞

log |u(t; u(0), r(0), 0)|/t < −γ/4, a.s. (7)

where ε = 2c4 − 2c1 − c2
2, γ = −log

(
2L1(σ, θ, h)e(2c1+c2

2+λ)σ + 2e−εσ
)
/σ,

L1(σ, θ, h) =c2
3/λe−εθσ(1− θ)σ + 8c4

3/λ2(2c2
1h + c2

2 + 2c2
3h)hθ2σ2e(4c1+2c2

2+2λ+3c2
3/λ)θσ

+ 4c2
3/λ(2c2

1h + c2
2 + 2c2

3h)hθσe(2c1+c2
2+λ+c2

3/λ)θσ.

Remark 5. As discussed in Remark 1, compared with the results in [17–21], in addition to the
discrete feedback control strategy, Theorem 1 introduces parameters σ and θ to implement the
periodically intermittent control strategy. Compared with the results in [23–29], in addition to the
periodically intermittent control strategy, Theorem 1 introduces parameters h to implement the
discrete feedback control strategy.

Theorem 1 demonstrates the almost sure exponential stability of controlled MJSDS (4).
Now, we recall the original question in Section 1 and can directly obtain the following
theorem from Theorem 1.

Theorem 2. With respect to the unstable MJSDS (1) satisfying Assumption 1, one can introduce
a periodically intermittently discrete feedback control

I(t)H(u([t/h]h), t, r(t)), I(t) =
{

1, t ∈ [lσ, (l + θ)σ)
0, t ∈ [(l + θ)σ, (l + 1)σ)

, l = 0, 1, · · ·

satisfying Assumptions 2, 3 and conditions (5), (6) to exponentially stabilize it almost surely, where
the related parameters have been proposed above.

Remark 6. Compared with the controlled criteria in [17–21,23–29], our criteria (i.e., conditions (5)
and (6)) are more complicated for the combination of two control strategies.

In the practical implementation, one can obey the following procedure to guarantee
the achievement of stabilization:

(1) Design a function H such that Assumptions 2 and 3 hold. Furthermore, compute
ε = 2c4 − 2c1 + c2

2;
(2) Choose multiple proper parameters σ, θ, and λ such that condition (6) with h = 0

holds;
(3) Choose the proper parameter h such that condition (5) and condition (6) hold;
(4) Design the periodically intermittently discrete feedback control I(t)H(u([t/h]h),

t, r(t)).

Remark 7. In this procedure, (2) is the key step and complicated. The common method is to choose
some parameters provided the others.
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3. Proof of Main Results

To give the detailed proof of Theorem 1, an auxiliary MJSDS

dv(t) =
(

F(v(t), t, r(t)) + H(v(t), t, r(t))
)
dt + G(v(t), t, r(t))dB(t), t ≥ 0 (8)

with initial data v(0) = u(0) ∈ Rn, r(0) ∈ S and some necessary results are listed as below.
Similarly, from [6], Assumptions 1–3 can also ensure the existence and uniqueness of the
global solution v(t; v(0), r(0), 0) for the auxiliary MJSDS (8).

Lemma 1. Under Assumptions 1–3, MJSDS (8) satisfies

E|v(t; v(0), r(0), 0)|2 ≤ E|u(0)|2e−εt, ∀t ≥ 0 (9)

where ε has been defined in Theorem 1.

Proof. Write v(t; v(0), r(0), 0) as v(t) for short. From Assumptions 1–3, compute the
generalized Itô’s operator L [6] to |v(t)|2,

L |v(t)|2 =2v(t)T[F(v(t), t, r(t)) + H(v(t), t, r(t))
]
+ |G(v(t), t, r(t))|2

≤(2c1 + c2
2 − 2c4)|v(t)|2

≤− ε|v(t)|2.

(10)

Furthermore, we obtain for ∀t ≥ 0,

Eeεt|v(t)|2 =E|v(0)|2 + E
∫ t

0
eεs(ε|v(s)|2 +L |v(s)|2)ds ≤ E|u(0)|2, (11)

implying the required assertion.

Remark 8. Here, the Lyapunov function |v(t)|2 is adopted for the auxiliary MJSDS (8). In fact,
we can adopt a more general Lyapunov function vT(t)Pv(t), where P is a symmetric positive
definite matrix.

Lemma 2. Under Assumptions 1 and 2, MJSDS (4) satisfies

sup
0≤s≤t

E|u(s; u(0), r(0), 0)|2 ≤ E|u(0)|2e(2c1+c2
2+λ+c2

3/λ)t, ∀t ≥ 0 (12)

E|u(t; u(0), r(0), 0)− u(t− δ(t); u(0), r(0), 0)|2

≤ (4c2
1h + 2c2

2 + 4c2
3h)hE|u(0)|2e(2c1+c2

2+λ+c2
3/λ)t, ∀t ≥ 0

(13)

where λ > 0 has been defined in Theorem 1.

Proof. Write u(t; u(0), r(0), 0) as u(t) for short. By Assumptions 1 and 2, compute the
generalized Itô’s operator L [6] to |u(t)|2,

L |u(t)|2 =2u(t)T[F(u(t), t, r(t)) + I(t)H(u(t− δ(t)), t, r(t))
]
+ |G(u(t), t, r(t))|2

≤(2c1 + c2
2)|u(t)|2 + 2u(t)T I(t)H(u(t− δ(t)), t, r(t)).

(14)

From Remark 3, we have, for a number λ > 0,

2u(t)T I(t)H(u(t− δ(t)), t, r(t)) ≤ λ|u(t)|2 + c2
3/λ|u(t− δ(t))|2.
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Substituting this into (14), it follows, for ∀t ≥ 0,

E|u(t)|2 =E|u(0)|2 + E
∫ t

0
L |u(s)|2ds

≤E|u(0)|2 + (2c1 + c2
2 + λ)

∫ t

0
E|u(s)|2ds + c2

3/λ
∫ t

0
E|u(s− δ(s))|2ds.

(15)

From the inequality E|u(s− δ(s))|2 ≤ sup0≤v≤s E|y(v)|2 and the Grownwall inequal-
ity, (15) implies that,

sup
0≤v≤t

E|u(v)|2 ≤E|u(0)|2 + (2c1 + c2
2 + λ + c2

3/λ)
∫ t

0
sup

0≤v≤s
E|u(v)|2ds

≤E|u(0)|2e(2c1+c2
2+λ+c2

3/λ)t,

which is the assertion (12).
Furthermore, we yield that, for ∀t ≥ 0,

E|u(t)− u(t− δ(t))|2

=E|
∫ t

t−δ(t)

[
F(u(s), s, r(s)) + I(s)H(u(s− δ(s)), s, r(s))

]
ds +

∫ t

t−δ(t)
G(u(s), s, r(s))dB(s)|2

≤4δ(t)
∫ t

t−δ(t)

[
E|F(u(s), s, r(s))|2 + E|H(u(s− δ(s)), s, r(s))|2

]
ds

+ 2
∫ t

t−δ(t)
E|G(u(s), s, r(s))|2ds

≤(4c2
1h + 2c2

2)
∫ t

t−δ(t)
E|u(s)|2ds + 4c2

3h
∫ t

t−δ(t)
E|u(s− δ(s))|2ds

≤(4c2
1h + 2c2

2 + 4c2
3h)hE|u(0)|2e(2c1+c2

2+λ+c2
3/λ)t,

(16)

which is the assertion (13).

Next, we give the detailed proof of Theorem 1.

Proof of Theorem 1. By the controlled MJSDS (4) and the auxiliary MJSDS (8), one easily
obtains, for ∀t ≥ 0,

|u(t)− v(t)|2

=
∫ t

0
2(u(s)− v(s))T[(F(u(s), s, r(s))− F(v(s), s, r(s))) + (I(s)H(u(s− δ(s)), s, r(s))

− H(v(s), s, r(s)))
]
+ |G(u(s), s, r(s))−G(v(s), s, r(s))|2ds

+
∫ t

0
2(u(s)− v(s))T(G(u(s), s, r(s))−G(v(s), s, r(s)))dB(s).

Take the expectation and obtain

E|u(t)− v(t)|2

=E
∫ t

0
2(u(s)− v(s))T[F(u(s), s, r(s))− F(v(s), s, r(s))) + (I(s)H(u(s− δ(s)), s, r(s))

− H(v(s), s, r(s)))
]
+ |G(u(s), s, r(s))−G(v(s), s, r(s))|2ds.

(17)

For the different expressions of I(t) in [lσ, (l + θ)σ) and [(l + θ)σ, (l + 1)σ), we have
the different estimations of E|u(t)− v(t)|2 as below.
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As t ∈ [0, θσ), by Assumptions 1 and 2, and Lemma 2

E|u(t)− v(t)|2

=E
∫ t

0
2(u(s)− v(s))T[(F(u(s), s, r(s))− F(v(s), s, r(s))) + (H(u(s− δ(s)), s, r(s))

− H(v(s), s, r(s)))
]
+ |G(u(s), s, r(s))−G(v(s), s, r(s))|2ds

≤E
∫ t

0
(2c1 + c2

2 + λ)|u(s)− v(s)|2 + c2
3/λ|u(s− δ(s))− v(s)|2ds

≤(2c1 + c2
2 + λ + 2c2

3/λ)
∫ t

0
E|u(s)− v(s)|2ds + 2c2

3/λ
∫ θσ

0
E|u(s− δ(s))− u(s)|2ds

≤(2c1 + c2
2 + λ + 2c2

3/λ)
∫ t

0
E|u(s)− v(s)|2ds + 2c2

3/λ(4c2
1h + 2c2

2 + 4c2
3h)hθσE|u(0)|2

· e(2c1+c2
2+λ+c2

3/λ)θσ

≤4c2
3/λ(2c2

1h + c2
2 + 2c2

3h)hθσe(2c1+c2
2+λ+c2

3/λ)θσE|u(0)|2e(2c1+c2
2+λ+2c2

3/λ)t.

(18)

Moreover, we obtain∫ θσ

0
E|u(s)− v(s)|2ds ≤ 4c2

3/λ(2c2
1h + c2

2 + 2c2
3h)hθ2σ2e(4c1+2c2

2+2λ+3c2
3/λ)θσE|u(0)|2. (19)

As t ∈ [θσ, σ), by Assumptions 1 and 2,

E|u(t)− v(t)|2

=E
∫ t

0
2(u(s)− v(s))T(F(u(s), s, r(s))− F(v(s), s, r(s))) + |G(u(s), s, r(s))

−G(v(s), s, r(s))|2ds + E
∫ θσ

0
2(u(s)− v(s))T(H(u(s− δ(s)), s, r(s))

− H(v(s), s, r(s)))ds + E
∫ t

θσ
2(u(s)− v(s))T(−H(v(s), s, r(s)))ds

≤E
∫ t

0
(2c1 + c2

2)|u(s)− v(s)|2ds + E
∫ θσ

0
λ|u(s)− v(s)|2 + c2

3/λ|u(s− δ(s))− v(s)|2ds

+ E
∫ t

θσ
λ|u(s)− v(s)|2 + c2

3/λ|v(s)|2ds

≤E
∫ t

0
(2c1 + c2

2 + λ)|u(s)− v(s)|2ds + E
∫ θσ

0
c2

3/λ|u(s− δ(s))− v(s)|2ds + E
∫ t

θσ
c2

3/λ|v(s)|2ds.

(20)

Combining the above two cases, as t ∈ [0, σ), by Lemma 1, 2 and the Grownwall
inequality, it follows that

E|u(t)− v(t)|2

≤(2c1 + c2
2 + λ)

∫ t

0
E|u(s)− v(s)|2ds + 2c2

3/λ
∫ θσ

0
(E|u(s)− v(s)|2 + E|u(s)

− u(s− δ(s))|2)ds + c2
3/λ

∫ t

θσ
E|v(s)|2ds

≤(2c1 + c2
2 + λ)

∫ t

0
E|u(s)− v(s)|2ds + 2c2

3/λ
∫ θσ

0
E|u(s)− v(s)|2ds

+ 2c2
3/λ(4c2

1h + 2c2
2 + 4c2

3h)hθσe(2c1+c2
2+λ+c2

3/λ)θσE|u(0)|2 + c2
3/λ(1− θ)σe−εθσE|u(0)|2

≤
[
L0(σ, θ, h)E|u(0)|2 + 2c2

3/λ
∫ θσ

0
E|u(s)− v(s)|2ds

]
e(2c1+c2

2+λ)t.

(21)

where L0(σ, θ, h) = 4c2
3/λ(2c2

1h + c2
2 + 2c2

3h)hθσe(2c1+c2
2+λ+c2

3/λ)θσ + c2
3/λ(1− θ)σe−εθσ.

Substituting (19) into (21), we obtain, for t ∈ [0, σ),

E|u(t)− v(t)|2 ≤ L1(σ, θ, h)E|u(0)|2e(2c1+c2
2+λ)t. (22)

Then, we yield,

E|u(σ)|2 ≤2E|u(σ)− v(σ)|2 + 2E|v(σ)|2 ≤ 2
[
L1(σ, θ, h)e(2c1+c2

2+λ)σ + e−εσ
]
E|u(0)|2. (23)
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Condition (6) means that there exists a number γ > 0 satisfying 2
[
L1(σ, θ, h)e(2c1+c2

2+λ)σ

+e−εσ
]
= e−γσ. So,

E|u(σ)|2 ≤e−γσE|u(0)|2. (24)

Since the solution u(t; u(0), r(0), 0) can be regarded as u(t; u(σ), r(σ), σ). Then,

E
(
|u(2σ)|2/Fσ

)
≤e−γσE|u(σ)|2. (25)

Computing the expectation for (25), we obtain

E|u(2σ)|2 =E
(

E
(
|u(2σ)|2/Fσ

))
≤ e−2γσE|u(0)|2. (26)

Furthermore, it follows that

E|u(lσ)|2 ≤ e−lγσE|u(0)|2. l = 1, 2, · · · (27)

The B-D-G inequality, Hölder inequality, and Grownwall inequality show that,

E( sup
0≤v≤σ

|u(v)|2)

≤4E|u(0)|2 + 4E( sup
0≤v≤σ

|
∫ v

0
I(w)H(u(w− δ(w)), w, r(w)))dw|2)

+ 4E( sup
0≤v≤σ

|
∫ v

0
(F(u(w), w, r(w))dw|2) + 4E( sup

0≤v≤σ

|
∫ v

0
G(u(w), w, r(w))dB(w)|2)

≤4E|u(0)|2 + 4c2
3σ
∫ σ

0
E|(u(w− δ(w))|2dw + (4c2

1σ + 16c2
2)
∫ σ

0
E|(u(w)|2dw

≤4E|u(0)|2 + (4c2
1σ + 16c2

2 + 4c2
3σ)

∫ δ

0
E( sup

0≤v≤w
|(u(v)|2)dw

≤c5E|u(0)|2,

(28)

where c5 = 4e(4c2
1σ+16c2

2+4c2
3σ)σ.

Similarly, we can derive

E( sup
lσ≤v≤(l+1)σ

|u(v)|2) ≤c5E|u(lσ)|2 ≤ c5e−lγσE|u(0)|2. l = 1, 2, · · · . (29)

Chebyshev’s inequality shows that, for l = 1, 2, . . .,

E
(

suplσ≤v≤(l+1)σ |u(v)|2 ≥ e−0.5lγσ
)
≤ E(suplσ≤v≤(l+1)σ |u(v)|2)/e−0.5lγσ ≤ c5e−0.5lγσE|u(0)|2. (30)

For
∞
∑

l=1
(e−0.5γσ)l < ∞, the Borel-Cantelli lemma shows that there is Ω0 ∈ Ω with

P(Ω0) = 1 such that, for any ω ∈ Ω0, there is an integer O(ω) with the property that, as
l ≥ O(ω) and lσ ≤ v ≤ (l + 1)σ,

sup
lσ≤v≤(l+1)σ

|u(v)|2 < e−0.5lγσ. (31)

Noting that l → ∞ means v→ ∞ , (31) means that

lim sup
v→∞

log |u(v)|/v < −γ/4. a.s. (32)

The proof is complete.
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Remark 9. Similar to Remark 8, the Lyapunov function (uT(t)− vT(t))P(u(t)− v(t)) can be
adopted to obtain a more general criteria, where the symmetric matrix P is the same as that in
Remark 8. That is left to readers.

4. Illustrated Application of Stochastic Neural Networks

Recurrent neural networks, as an important type of dynamic systems, have attracted
much focus. For the inevitable random factor, stochastic neural networks (SNNs, for
short) and Markov jumping stochastic neural networks (MJSNNs, for short) are modelled
to describe these systems with a random factor, e.g., [30–33]. The stability issue, as a
key property, for SNNs or MJSNNs, has been reported by many researchers in the past,
e.g., [34–39]. Hence, guaranteeing the stability of SNNs or MJSNNs is dispensable.

Here, we consider an n-dimensional unstable MJSNN in the form

du(t) =
[
− A(r(t))u(t) + D(r(t))F̄(u(t))

]
dt + Ḡ(u(t), r(t))dB(t), t ≥ 0 (33)

with initial data u(0) ∈ Rn and r(0) ∈ S, where u(t) ∈ Rn stands for nervous states,
A(r(t)) = diag{a1(r(t)), a2(r(t)), · · · an(r(t))} > 0 stands for the self-feedback connection
weight matrix, D(r(t)) ∈ Rn×n stands for the connection weight matrix, F̄(u(t)) ∈ Rn

stands for the bounded active function, and Ḡ(u(t), r(t)) ∈ Rn×m. Furthermore, the global
Lipschitz conditions are assumed for F̄ and Ḡ.

Assumption 4. There are a number c̄2 > 0 and matrix Σ such that, for ∀u, v ∈ Rn, j ∈ S,∣∣F̄(u)− F̄(v)
∣∣ ≤|Σ(u− v)|

|Ḡ(u, j)− Ḡ(v, j)| ≤c̄2|(u− v)|.

Furthermore, F̄(0) = 0, Ḡ(0, j) = 0 for ∀j ∈ S.

Remark 10. Condition
∣∣F̄(u)− F̄(v)

∣∣ ≤ |Σ(u− v)| implies that F̄ satisfies the global Lipschitz
condition.

Remark 11. Assumption 4 means that, for ∀u, v ∈ Rn,∣∣(−A(r(t))u + D(r(t))F̄(u))− (−A(r(t))v + D(r(t))F̄(v))
∣∣

≤|A(r(t))||u− v|+ |D(r(t))|
∣∣F̄(u)− F̄(v)

∣∣
≤max

j∈S
(|A(j)|+ |D(j)||Σ|)|u− v|,

i.e., Assumption 1 holds for MJSNN (33) with c1 = max
j∈S

(|A(j)|+ |D(j)||Σ|).

For the unstable MJSNN (33), a periodically intermittently discrete feedback control
I(t)H̄(u([t/h]h), r(t))) in the drift part is introduced, where the meaning of I(t) can be
seen in Section 2, and H̄ also satisfies the global Lipschitz condition.

Assumption 5. There exist numbers c̄3 > 0 and c̄4 > max
j∈S

(|A(j)|+ |D(j)||Σ|) + (c̄2)
2/2

such that, for ∀u, v ∈ Rn, j ∈ S

|H̄(u, j)− H̄(v, j)| ≤c̄3|u− v|
vT H̄(v, j) ≤− c̄4|v|2.

Furthermore, H̄(0, j) = 0 for ∀j ∈ S.

Then, the controlled MJSNN becomes

du(t) =
[
− A(r(t))u(t) + D(r(t))F̄(u(t)) + I(t)H̄(u([t/h]h), r(t)))

]
dt + Ḡ(u(t), r(t))dB(t). (34)
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In what follows, we will illustrate the practical application in stochastic neural net-
works of the obtained stabilization theory.

Corollary 1. Under Assumptions 4 and 5, suppose there exist numbers σ > 0, θ ∈ (0, 1] and
h > 0 such that conditions (5) and

L̄1(σ, θ, h)e
(2 max

j∈S
(|A(j)|+|D(j)||Σ|)+(c̄2)

2+λ)σ
+ e−ε̄σ < 0.5 (35)

are satisfied for a parameter λ > 0; then, for ∀u(0) ∈ Rn, r(0) ∈ S, the global solution
u(t; u(0), r(0), 0) of controlled MJSNN (34) satisfies

lim sup
t→∞

log |u(t; u(0), r(0), 0)|/t < −γ̄/4, a.s. (36)

where ε̄ = 2c̄4 − 2 max
j∈S

(|A(j)|+ |D(j)||Σ|)− (c̄2)
2,

γ̄ = −log
(
2L̄1(σ, θ, h)e

(2 max
j∈S

(|A(j)|+|D(j)||Σ|)+(c̄2)2+λ)σ
+ 2e−ε̄σ

)
/σ,

L̄1(σ, θ, h) = (c̄3)
2/λe−ε̄θσ(1− θ)σ + 4(c̄3)

2/λ(2 max
j∈S

(|A(j)|+ |D(j)||Σ|)2h + (c̄)2
2 + 2(c̄3)

2h)hθσ

· e
(2 max

j∈S
(|A(j)|+|D(j)||Σ|)+(c̄2)2+λ+(c̄3)2/λ)θσ

+ 8(c̄3)
4/λ2(2 max

j∈S
(|A(j)|+ |D(j)||Σ|)2h + (c̄2)

2

+ 2(c̄3)
2h)hθ2σ2e

(4 max
j∈S

(|A(j)|+|D(j)||Σ|)+2(c̄2)2+2λ+3(c̄3)2/λ)θσ
.

Corollary 2. With respect to the unstable MJSNN (33) satisfying Assumption 4, one can introduce
a periodically intermittently discrete feedback control

I(t)H̄(u([t/h]h), r(t)), I(t) =
{

1, t ∈ [lσ, (l + θ)σ)
0, t ∈ [(l + θ)σ, (l + 1)σ)

, l = 0, 1, · · ·

satisfying Assumption 5 and conditions (5), (35) to exponentially stabilize it almost surely.

Remark 12. Similar to Remark 5, compared with the results on the periodically intermittent
control strategy for SNNs, our Corollaries 1 and 2 emphasize the discrete feedback control strategy.
Compared with the results on the discrete feedback control strategy for SNNs, our Corollaries 1 and 2
emphasize the periodically intermittent control strategy.

Remark 13. Here, we state the application in SNNs of the stabilization theory. In fact, the
stabilization theory can also be applied to other fields, such as stochastic complex networks and
stochastic multiagent systems.

5. Conclusions

By the approach of comparison principle, the issue of periodically intermittently
discrete feedback control for unstable MJSDSs has been studied in this paper. Furthermore,
the stabilization theory has been applied to SNNs.

6. Further Work

The key technology, deriving the stabilization theory, lies in the flow property of the
controlled MJSDS. However, for Markov jumping stochastic delay differential systems
(MJSDDSs, for short), the Markovian property will be lost. Hence, how to introduce
the intermittently discrete feedback control to stabilize an unstable MJSDDS is an open
problem. This will be our future work.
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