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Abstract: In this paper, we investigate a normalized analytic (symmetric under rotation) function,
f , in an open unit disk that satisfies the condition <

(
f (z)
g(z)

)
> 0, for some analytic function, g, with

<
(

(z+1)−2n

z

)
g(z) > 0, ∀ n ∈ N. We calculate the radius constants for different classes of analytic

functions, including, for example, for the class of star-like functions connected with the exponential
functions, i.e., the lemniscate of Bernoulli, the sine function, cardioid functions, the sine hyperbolic
inverse function, the Nephroid function, cosine function and parabolic star-like functions. The results
obtained are sharp.

Keywords: univalent functions; star-like function; convex function; radius of star-likeness

1. Introduction and Motivations

Let by Dr, we denote the open unit disk with radius r, given by

Dr = {z : z ∈ C and |z| < r}.

It can be easily seen that
D = D1.

LetH be the family of analytic (symmetric under rotation) functions in

D = {z : z ∈ C and |z| < 1}

and An ⊂ H such that f ∈ An has the series representation:

f (z) = z +
∞

∑
j=n+1

ajzj.

Also, let S be the subfamily of A1 = A containing univalent functions in D. Now,
we connect the function ℵ f (z) : D → C defined by ℵ f (z) =

z f ′(z)
f (z) with each f ∈ S. The

koebe function.

k(z) = z + 2z2 + 3z3 + · · ·+ nzn + · · · =
∞

∑
n=2

nzn =
z

(1− z)2 , (1)
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which maps D onto the entire complex plane except for a slit along the negative real axis
from w = −∞ to w = − 1

4 , which is star-like but not convex. However it is known that, for
r ≤ 2−

√
3, the function k(z) maps the disk Dr = {z ∈ C : |z| < r} onto a convex domain.

Indeed for r ≤ 2−
√

3 every f ∈ S maps Dr onto a convex region. This number is called
the radius of convexity for S. The radius of star-likeness for functions in the class S has
been obtained by Grunsky [1] and is given by

tanh
(π

4

)
≈ 0.6558.

For two function classes Υ and Λ f , where the class Λ f is characterized by possessing
a geometric property ℘, we denote by RΛ f (Υ) the Λ f radius of Υ, which is the largest
number R with 0 < r ≤ R such that r−1 f (rz) ∈ Λ f for all f ∈ Υ. Though function theory
was first proposed in 1851, it was not until 1916 that Bieberbach’s coefficient conjecture
made this field a promising new research topic. In 1985, De Branges proved this conjecture.
Between 1916 and 1985, many good scholars of the time attempted to prove or reject this
theory. As a result, they discovered multiple subfamilies of a class S of univalent functions
that are associated with different image domains. For example a function f ∈ A is said to
be close-to-convex if

f ′(z) 6= 0 and <
(

f ′(z)
g′(z)

)
> 0.

This class was introduced and studied by Kaplan. A function f ∈ A with

f (z) 6= 0 and <
(

f (z)
g(z)

)
> 0,

for some star-like function, g (not necessarily normalized), was defined by Reade [2]. The
work conducted in [3–10] presents some remarkable research in this field and has played a
significant role in developing this area of geometric functions theory. Also there has been a
lot of research on radius constants for different kinds of functions that are defined by their
ratio to a certain function g. Mac-Gregor [11,12] obtained the radius of star-likeness for the
class of functions f ∈ Υ satisfying

<
(

f (z)
g(z)

)
> 0 or

∣∣∣∣ f (z)
g(z)

− 1
∣∣∣∣ < 1 (z ∈ D). (2)

Ratti [13] established the radius for the function f satisfying∣∣∣∣ f ′(z)
g′(z)

− 1
∣∣∣∣ < 1 (z ∈ D),

where g belongs to certain classes of analytic functions. Lecko and Sim [14] discovered
that certain functions satisfy the conditions <

(
1− z2) f (z)

z > 0 and <(1− z)2 f (z)/z > 0
by considering the star-like functions z

1−z2 and z
(1−z)2 . They have also determined certain

sharp coefficient estimates. A function χ1 (holomorphic function) is subordinate to another
function χ2, written as

χ1 ≺ χ2,

if there is an analytic function ν with

|ν(z)| ≤ |z| and ν(0) = 0,

such that
χ1(z) = χ2(ν(z)).
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If χ2 is univalent then

χ1 ≺ χ2 ⇐⇒ χ1(0) = χ2(0) and χ1(D) ⊆ χ2(D).

We now have the functions ϕj : D→ C, given by

ϕ1(z) =
√

1 + z, ϕ2(z) = 1 + z− z3

3
, ϕ3(z) = cos z,

ϕ4(z) = ez, ϕ5(z) = 1 +
4
3

z +
2
3

z2, ϕ6(z) = 1 + sin z,

ϕ7(z) = z +
√

z2 + 1, ϕ8(z) = 1 + sinh−1(z).

For ϕ = ϕj (j = 1, 2, · · · 8) the class S∗(ϕ) =
{

f ∈ A: ℵ f (z) ≺ φ(z)
}

respectively
becomes S∗L , S∗Ne, S∗cos, S∗e , S∗c , S∗sin, S∗p and S∗

sinh−1 . These classes were extensionally
studied in [15–22]. Many well-known mathematicians found radius constants for several
classes of functions f ∈ Υ that, defined by their ratio to a certain function g, meet one of
the following conditions:

I <
(

f (z)
g(z)

)
> 0 where <

(
g(z)

z

)
> 0 or <

(
g(z)

z

)
> 1

2 .

II
∣∣∣ f (z)

g(z) − 1
∣∣∣ < 1 where <

(
g(z)

z

)
> 0.

III
∣∣∣ f ′(z)

g′(z) − 1
∣∣∣ < 1 where <g′(z) > 0 or g is convex.

Motivated by the above studies we introduced the following class

Υn =

{
f ∈ A : <

(
f (z)
g(z)

)
> 0, < g(z)

z(1+z)2n > 0, ∀ n ∈ N and for some g ∈ A
}

. (3)

If the mapping fn : C→ D is defined by

fn(z) =
z(1 + z)2n+2

(1− z)2 (n ∈ N). (4)

Then it follows that fn(z) belong to the class Υn and so class Υn is non empty, also the
function fn satisfy the conditions

<
(

fn(z)
g(z)

)
> 0, < g(z)

z(1 + z)2n > 0, ∀ n ∈ N and for some g ∈ A,

with g = gn, where

gn(z) =
z(1 + z)2n+1

1− z
(∀z ∈ D and n ∈ N). (5)

The functions in the class Υn need not to be univalent. Indeed

Rs(Υn) ≈
2

2n + 4 +
√
(2n + 4)2 + 4(2n + 1)

, ∀ n ∈ N,

which is the radius of univalence, the least positive root of the polynomial

pn(r) = 1− (2n + 1)r2 − (2n + 4)r.

The derivative of fn is given by

f ′n(z) = −
1

(z− 1)3 (z + 1)2n+1
(

4z− 2nz2 + 2nz− z2 + 1
)

,
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and vanishes at z = −Rs(Υn); for all n ∈ N. For n = 1, 2, 3 the class Υn reduces to the
following classes

Υ1 =

{
f ∈ A : <

(
f (z)
g(z)

)
> 0, < g(z)

z(1 + z)2 > 0, for some g ∈ A
}

,

Υ2 =

{
f ∈ A : <

(
f (z)
g(z)

)
> 0, < g(z)

z(1 + z)4 > 0, for some g ∈ A
}

,

Υ3 =

{
f ∈ A : <

(
f (z)
g(z)

)
> 0, < g(z)

z(1 + z)6 > 0, for some g ∈ A
}

.

For n = 1 the functions defined in (4) and (5) reducesto the following functions

f1(z) =
z(1+z)4

(1−z)2 , g1(z) =
z(1+z)3

1−z (6)

and satisfy

<
(

f1(z)
g1(z)

)
= < g1(z)

z(1 + z)2 = <
(

1 + z
1− z

)
> 0.

For n = 2 the functions defined in (4) and (5) reduce to the following functions

f2(z) =
z(1+z)6

(1−z)2 , g2(z) =
z(1+z)5

1−z (7)

and satisfy

<
(

f2(z)
g2(z)

)
= < g2(z)

z(1 + z)4 = <
(

1 + z
1− z

)
> 0.

For n = 3 the functions defined in (4) and (5) reduce to the following functions

f3(z) =
z(1+z)8

(1−z)2 , g3(z) =
z(1+z)7

1−z (8)

and satisfy

<
(

f2(z)
g2(z)

)
= < g2(z)

z(1 + z)6 = <
(

1 + z
1− z

)
> 0.

For 0 < α ≤ 1. Let P(α) denote the class of functions p(z) = 1 + b1z + · · · satisfying

<(p(z)) > α (∀z ∈ D).

We note that
P(0) = P ,

where P is a known class of functions with a positive, real part, or the class of Caratheodory
functions. If p ∈ P(α), then∣∣∣∣ zp′(z)

p(z)

∣∣∣∣ ≤ 2(1− α)r
(1− r)(1 + (1− 2α)r)

. (9)

In this paper, we aim to calculate radius constants for certain classes of star-like
functions related with different types of domains, including, for example, star-like functions
connected with the exponential functions, the lemniscate of Bernoulli, the sine function,
cardioid functins, the sine hyperbolic inverse function, the Nephroid function, cosine
functions and parabolic star-like functions. The results presented in this paper are sharp.
Additionally, by assigning different values to some perpetrators we obtain some interesting
special cases of our main results.
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2. Radius Problems

To solve radius problems in this article, we find a disk such that it contained the image
of Dr under the mapping z f ′(z)

f (z) for the function f belonging to the class Υn. Additionally,
for the radius constants of different subclasses of star-like functions, we take the function
w(z) = 1

1+z , which maps Dr onto the following disk∣∣∣∣ 1
1 + z

− 1
1− r2

∣∣∣∣ ≤ r
1− r2 . (10)

Theorem 1. For the functions class Υn, we have the following results

1. The S∗(α) radius for Υn is

RS∗(α) =
2(1− α)

2n + 4 +
√
(2n + 4)2 + 4(1− α)(2n + 1− α)

.

2. The S∗L radius for Υn is

RS∗L =
2
(√

2− 1
)

2n + 4 +
√
(2n + 4)2 − 4

(
1−
√

2
)(√

2− 1− 2n
) .

3. The S∗p radius for Υn is

RS∗p =
2

4n + 8 +
√
(4n + 8)2 + 4(4n + 1)

.

4. The S∗e radius for Υn is

RS∗e =
2(e− 1)

(2n + 4)e +
√
(2n + 4)2e2 + 4(2ne + e− 1)(e− 1)

.

5. The S∗c radius for Υn is

RS∗c =
4

6n + 12 +
√
(6n + 12)2 + 8(6n + 2)

.

6. The S∗sin radius for Υn is

RS∗sin
=

2 sin(1)

2n + 4 +
√
(2n + 4)2 + 4 sin(1)(2n + sin(1))

.

7. The S∗
sinh−1 radius for Υn is

RS∗
sinh−1

=
2 sinh−1(1)

2n + 4 +
√
(2n + 4)2 + 4 sinh−1(1)

(
2n + sinh−1(1)

) .

8. The S∗Ne
radius for Υn is

RS∗Ne
=

2

3n + 6 +
√
(3n + 6)2 + 4(3n + 1)

= RS∗c .
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9. The S∗cos radius for Υn is

RS∗cos
=

2(1− cos(1))

2n + 4 +
√
(2n + 4)2 + 4(2n + 1)(1− cos 1)

.

Proof. Let f ∈ Υn. We choose the function g : D→C satisfying the following inequalities

<
(

1

z(1 + z)2n

)
g(z) > 0 and <

(
f (z)
g(z)

)
> 0, (∀z ∈ D and n ∈ N). (11)

We also choose the functions p1, p2 : D→C by

p1(z) =

(
1

z(1 + z)2n

)
g(z) and p2(z) =

f (z)
g(z)

. (12)

From (11) and (12) p1(z), p2(z) ∈ P and we define f (z) by

f (z) =
zp1(z)p2(z)

(1 + z)−2n . (13)

The logarithmic differentiation of (13) gives

z f ′(z)
f (z)

= 1 +
zp′1(z)
p1(z)

+
zp′2(z)
p2(z)

+
2nz

1 + z

= 1 +
zp′1(z)
p1(z)

+
zp′2(z)
p2(z)

+ 2n− 2n
1 + z

(14)

= 2n + 1 +
zp′1(z)
p1(z)

+
zp′2(z)
p2(z)

− 2n
1 + z

.

Using (9), (10) and (14) we get∣∣∣∣ z f ′(z)
f (z)

− 1− (2n + 1)r2

1− r2

∣∣∣∣ ≤ (2n + 4)r
1− r2 . (15)

From (15), we have

<
(

z f ′(z)
f (z)

)
≥ 1− (2n + 1)r2 − (2n + 4)r

1− r2 ≥ 0 (r ≤ κn), (16)

where
κn =

2

2n + 4 +
√
(2n + 4)2 + 4(2n + 1)

.

Hence all of the radii we estimate will be less than κn.

1. The number r = RS>(α) is the zero of the polynomial (2n + 1− α)r2 + (2n + 4)r −
(1− α) = 0 in the interval [0, 1] and, so, for 0 < r ≤ RS>(α), we have from (16) that

<
(

z f ′(z)
f (z)

)
≥ 1− (2n + 1)r2 − (2n + 4)r

1− r2 ≥ α.

For the function fn ∈ Υn, given by (4), we have

z f ′n(z)
fn(z)

=
1− (2n + 1)r2 − (2n + 4)r

1− r2 = α
(

z = −RS>(α)

)
,

which shows that this result is sharp.
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2. Let R = RS>L
be the root (smallest positive) of the polynomial

1− (2n + 1)R2 + (2n + 4)R =
√

2
(

1− R2
)

.

Let

Ξ1(r) =
(2n + 4)r

1− r2 +
1− (2n + 1)r2

1− r2 =
1− (2n + 1)r2 + (2n + 4)r

1− r2 ,

clearly the values of the function Ξ1(r) increases for every point on that interval [0, 1),
for all n ∈ N. As a result, for 0 ≤ r < R, Ξ1(r) < Ξ1(R) =

√
2 and so, we have

(2n + 4)r
1− r2 ≤

√
2− 1− (2n + 1)r2

1− r2 , for 0 ≤ r < R. (17)

From (15) and (17) we achieve∣∣∣∣ z f ′(z)
f (z)

− 1− (2n + 1)r2

1− r2

∣∣∣∣ ≤ √2− 1− (2n + 1)r2

1− r2 .

For 0 ≤ r < R, the function Λ(r) = 1−(2n+1)r2

1−r2 (center of the above disk) shows
that Λ′(r) < 0 for every point on that interval ([0, 1], ∀n ∈ N), and lies in the
following interval

[Λ(R), 1] ⊂ (Λ(0.1), 1] ≈ (1.0− 2. 020 2× 10−2n, 1] ⊂
[

2
√

2
3

,
√

2

)
,

by [23], the disk |w− a| < ra is contained in the lemniscate region
∣∣w2 − 1

∣∣ < 1 where

ra =


√

1− a2 −
(
1− a2) 1

2
(

0 < a ≤ 2
√

2
3

)
√

2− a
(

2
√

2
3 ≤ a <

√
2
)

.

(18)

Therefore for 0 ≤ r < R, we get∣∣∣∣∣
(

z f ′(z)
f (z)

)2

− 1

∣∣∣∣∣ < 1.

For the functions fn ∈ Υn, given by (4), we have

z f ′n(z)
fn(z)

=
1− (2n + 1)R2 + (2n + 4)R

(1− R2)
=
√

2, at z = R, (19)

and hence ∣∣∣∣∣
(

z f ′n(z)
fn(z)

)2

− 1

∣∣∣∣∣ = 1. (20)

3. The number R = RS>p
is the root (smallest positive) of the polynomial

1− (2n + 1)R2 − (2n + 4)R =
1
2

(
1− R2

)
. (21)

Let

Ξ2(r) =
−(2n + 4)r

1− r2 +
1− (2n + 1)r2

1− r2 =
1− (2n + 1)r2 − (2n + 4)r

1− r2 , (22)
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clearly the values of the function Ξ2(r) decrease for every point on that interval [0, 1),
for all n ∈ N. As a result, for 0 ≤ r < R, Ξ2(r) > Ξ2(R) = 1/2 and hence we have

(2n + 4)r
1− r2 <

1− (2n + 1)r2

1− r2 − 1
2

, 0 ≤ r < R. (23)

From (15) and (23)∣∣∣∣ z f ′(z)
f (z)

− 1− (2n + 1)r2

1− r2

∣∣∣∣ < 1− (2n + 1)r2

1− r2 − 1
2

(|z| ≤ r).

For 0 ≤ r < R, the function Λ(r) = 1−(2n+1)r2

1−r2 shows that Λ′(r) < 0 for every point
on that interval ([0, 1], ∀n ∈ N), and lies in the following interval

[Λ(R), 1] ⊂ [Λ(.2), 1] ≈
[
1.0− 2.020 2× 10−2n, 1

]
⊂
(

1
2

,
3
2

)
.

By [24], we have

Ω = {|w− a| < ra} ⊂ {w ∈ C : |w− 1| < <w}. (24)

where ra is given by

ra =


a− 1

2

(
1
2 < a < 3

2

)
√

2− a
(
a > 3

2
)
.

Therefore, we get ∣∣∣∣ z f ′(z)
f (z)

− 1
∣∣∣∣ < <( z f ′(z)

f (z)

)
(|z| ≤ r).

The result is sharp for the function fn defined in (4), satisfies, at z = −R

z f ′n(z)
fn(z)

=
1− (2n + 1)R2 − (2n + 4)R

1− R2 =
1
2

,

therefore
z f ′n(z)
fn(z)

− 1 =
1
2
= <

(
z f ′n(z)
fn(z)

)
.

4. The number R=RS>e
is the root (least positive) of the polynomial

1− (2n + 1)R2 − (2n + 4)R = e−1
(

1− R2
)

, (25)

clearly the values of the function

Ξ2(r) =
−(2n + 4)r

1− r2 +
1− (2n + 1)r2

1− r2 =
1− (2n + 1)r2 − (2n + 4)r

1− r2 ,

decreases for every point on that interval [0, 1), for all n ∈ N. As a result, for 0 ≤ r < R,
Ξ2(r) > Ξ2(R) = 1/e and hence we have

(2n + 4)r
1− r2 <

1− (2n + 1)r2

1− r2 − 1
e

. (26)
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From (15) and (26), we have∣∣∣∣ z f ′(z)
f (z)

− 1− (2n + 1)r2

1− r2

∣∣∣∣ ≤ 1− (2n + 1)r2

1− r2 − 1
e

, (|z| ≤ r).

For 0 ≤ r < R, the function Λ(r) = 1−(2n+1)r2

1−r2 shows that Λ′(r) < 0 for every point
on that interval([0, 1], ∀n ∈ N), and lies in the following interval

[Λ(R), 1] ⊂ [Λ(.2), 1] ≈
[
1.0− 2.020 2× 10−2n, 1

]
⊂
(

1
e

,
e + e−1

2

)
.

By [25] we have

{w ∈ C : |w− a| < ra} ⊂ {w ∈ C : |log w(z)| < 1}, (27)

where

ra =

{
a− 1

e , 1
e < a ≤ e+e−1

2
e− a e+e−1

2 < a ≤ e.

Hence for 0 ≤ r < R we have∣∣∣∣log
(

z f ′(z)
f (z)

)∣∣∣∣ < 1 (|z| ≤ r). (28)

The result is sharp for the function fn defined in (4), satisfies at z = −R

z f ′n(z)
fn(z)

=
1− (2n + 4)R− (2n + 1)R2

1− R2 =
1
e

,

and so ∣∣∣∣log
z f ′n(z)
fn(z)

∣∣∣∣ = ∣∣∣∣log
(

1− (2n + 4)R− (2n + 1)R2

1− R2

)∣∣∣∣ = 1.

5. The number R=RS>c
is the least positive root of the equation

1− (2n + 1)R2 − (2n + 4)R =
1
3

(
1− R2

)
, (29)

clearly the values of the function

Ξ2(r) =
−(2n + 4)r

1− r2 +
1− (2n + 1)r2

1− r2 =
1− (2n + 1)r2 − (2n + 4)r

1− r2 ,

decreases for every point on that interval [0, 1), for all n ∈ N. As a result, for 0 ≤ r < R,
Ξ2(r) > Ξ2(R) = 1/3 and hence we have

(2n + 4)r
1− r2 <

1− (2n + 1)r2

1− r2 − 1
3

. (30)

From (15) and (30), we have∣∣∣∣ z f ′(z)
f (z)

− 1− (2n + 1)r2

1− r2

∣∣∣∣ ≤ 1− (2n + 1)r2

1− r2 − 1
3

, (|z| ≤ r).

For 0 ≤ r < R, the function Λ(r) = 1−(2n+1)r2

1−r2 showing that Λ′(r) < 0 for every point
on that interval ([0, 1], ∀n ∈ N), and lies in the following interval

[Λ(R), 1] ⊂ [Λ(.2), 1] ≈
[
1.0− 2.020 2× 10−2n, 1

]
⊂
(

1
3

,
5
3

)
.



Symmetry 2021, 13, 2448 10 of 16

It follows from [18] that

{w ∈ C : |w− a| < ra} ⊂ Ωc, (31)

where

ra =

{
a− 1

3 , 1
3 < a ≤ 5

3
3− a 5

3 < a ≤ 3.

and Ωc is the region bounded by cardioid{
x + iy :

(
9x2 + 9y2 − 18x + 5

)2
− 16

(
9x2 + 9y2 − 6x + 1

)}
.

Hence
S f (Dr) ⊂ ϕ5(D) (0 ≤ r < R).

The result is sharp for the function fn defined in (4). At z = −R∣∣∣∣ z f ′n(z)
fn(z)

∣∣∣∣ = ∣∣∣∣(1− (2n + 4)R− (2n + 1)R2

1− R2

)∣∣∣∣ = 1
3
= ϕ5(−1) ∈ ∂c ϕ5(D). (32)

6. The number R=RS>sin
is the root (least positive) of the equation

1− (2n + 1)R2 − (2n + 4)R = (1− sin(1))
(

1− R2
)

, (33)

Clearly, the values of the function

Ξ2(r) =
−(2n + 4)r

1− r2 +
1− (2n + 1)r2

1− r2 =
1− (2n + 1)r2 − (2n + 4)r

1− r2 ,

decrease for every point on that interval [0, 1), for all n ∈ N. As a result, for 0 ≤ r < R,
Ξ2(r) > Ξ2(R) = 1/1− sin(1) and hence we have

(2n + 4)r
1− r2 <

1− (2n + 1)r2

1− r2 + sin(1)− 1. (34)

From (15) and (34), we have∣∣∣∣ z f ′(z)
f (z)

− 1− (2n + 1)r2

1− r2

∣∣∣∣ ≤ 1− (2n + 1)r2

1− r2 + sin(1)− 1, (|z| ≤ r).

For 0 ≤ r < R, the function Λ(r) = 1−(2n+1)r2

1−r2 shows that Λ′(r) < 0 for every point
on that interval ([0, 1], ∀n ∈ N) and lies in the following interval

[Λ(R), 1] ⊂ [Λ(.2), 1] ≈
[
1.0− 2.020 2× 10−2n, 1

]
⊂ ( 1− sin(1), 1 + sin(1)).

It follows from [20] that

{w ∈ C : |w− a| < ra} ⊂ Ωs ⊂ {w ∈ C : |w(z)− 1| < sinh(1)}, (35)

where Ωs is the image of D under the mapping ϑ0(z) = 1 + sin z and ra is given by

ra =


a + sin 1− 1 (1− sin 1 < a ≤ 1)

1 + sin 1− a (1 < a ≤ 1 + sin 1).

Hence
S f (Dr) ⊂ ϕ6(D) (0 ≤ r < R).
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The result is sharp for the function fn defined in (4). At z = −R∣∣∣∣ z f ′n(z)
fn(z)

∣∣∣∣ =

∣∣∣∣(1− (2n + 4)R− (2n + 1)R2

1− R2

)∣∣∣∣
= 1− sin(1) = ϕ6(−1) ∈ ∂c ϕ6(D). (36)

7. The number R=RS>
sinh−1

is the root (least positive) of the polynomial

1− (2n + 1)R2 − (2n + 4)R =
(

1− sinh−1(1)
)(

1− R2
)

, (37)

Clearly, the values of the function

Ξ2(r) =
−(2n + 4)r

1− r2 +
1− (2n + 1)r2

1− r2 =
1− (2n + 1)r2 − (2n + 4)r

1− r2 ,

decrease for every point on that interval [0, 1), for all n ∈ N. As a result, for 0 ≤ r < R,
Ξ2(r) > Ξ2(R) = 1/1− sinh−1(1) and hence we have

(2n + 4)r
1− r2 <

1− (2n + 1)r2

1− r2 + sinh−1(1)− 1. (38)

From (15) and (38), we have∣∣∣∣ z f ′(z)
f (z)

− 1− (2n + 1)r2

1− r2

∣∣∣∣ ≤ 1− (2n + 1)r2

1− r2 + sinh−1(1)− 1, (|z| ≤ r).

For 0 ≤ r < R, the function Λ(r) = 1−(2n+1)r2

1−r2 shows that Λ′(r) < 0 for every point
on that interval([0, 1], ∀n ∈ N), and lies in the following interval

[Λ(R), 1] ⊂ [Λ(.2), 1] ≈
[
1.0− 2. 020 2× 10−2n, 1

]
⊂
(

1− sinh−1(1), 1 + sinh−1(1)
)

.

By [26], we have

{w ∈ C : |w− a| < ra} ⊂ Ωsinh−1 ⊂
{

w ∈ C : |w(z)− 1| < π

2

}
, (39)

where Ωsinh−1 is the image of D under the mapping Ψ0(z) = 1 + sinh−1 z and ra is
given by

ra =


a−

(
1− sinh−1(1)

) (
1− sinh−1(1) < a ≤ 1

)
1 + sinh−1(1)− a

(
1 < a ≤ 1 + sinh−1(1)

)
.

Hence
S f (Dr) ⊂ ϕ8(D) (0 ≤ r < R).

The result is sharp for the function fn defined in (4). At z = −R∣∣∣ z f ′n(z)
fn(z)

∣∣∣ = ∣∣∣( 1−(2n+4)R−(2n+1)R2

1−R2

)∣∣∣ = 1− sinh−1(1) = ϕ8(−1) ∈ ∂c ϕ8(D). (40)

8. The number R=RS>Ne
is the root (least positive) of the polynomial

1− (2n + 1)R2 − (2n + 4)R =
1
3

(
1− R2

)
, (41)
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Clearly, the values of the function

Ξ2(r) =
−(2n + 4)r

1− r2 +
1− (2n + 1)r2

1− r2 =
1− (2n + 1)r2 − (2n + 4)r

1− r2 ,

decrease for every point on that interval [0, 1), for all n ∈ N. As a result, for 0 ≤ r < R,
Ξ2(r) > Ξ2(R) = 1/3 and hence, we have

(2n + 4)r
1− r2 <

1− (2n + 1)r2

1− r2 − 1
3

. (42)

From (15) and (42), we have∣∣∣∣ z f ′(z)
f (z)

− 1− (2n + 1)r2

1− r2

∣∣∣∣ ≤ 1− (2n + 1)r2

1− r2 − 1
3

, (|z| ≤ r).

For 0 ≤ r < R, the function Λ(r) = 1−(2n+1)r2

1−r2 shows that Λ′(r) < 0 for every point
on that interval([0, 1], ∀n ∈ N), and lies in the following interval

[Λ(R), 1] ⊂ [Λ(.2), 1] ≈
[
1.0− 2.020 2× 10−2n, 1

]
⊂
(

1
3

, 1
]

.

By [19] we have
{w ∈ C : |w− a| < ra} ⊂ ΩNe, (43)

where ΩNe is the region bounded by the nephroid and ra is given by

ra =


a− 1

3 ,
(

1
3 < a ≤ 1

)
5
3 − a

(
1 ≤ a ≤ 5

3
)
.

Hence
S f (Dr) ⊂ ϕ2(D) (0 ≤ r < R).

The result is sharp for the function fn defined in (4). At z = −R∣∣∣∣ z f ′n(z)
fn(z)

∣∣∣∣ = ∣∣∣∣(1− (2n + 4)R− (2n + 1)R2

1− R2

)∣∣∣∣ = 1
3
= ϕ2(−1) ∈ ∂c ϕ2(D). (44)

9. The number R=RS>cos
is the root (least positive) of the equation

1− (2n + 1)R2 − (2n + 4)R = cos(1)
(

1− R2
)

, (45)

Clearly, the values of the function

Ξ2(r) =
−(2n + 4)r

1− r2 +
1− (2n + 1)r2

1− r2 =
1− (2n + 1)r2 − (2n + 4)r

1− r2 ,

decrease for every point on that interval [0, 1), for all n ∈ N. As a result, for 0 ≤ r < R,
Ξ2(r) > Ξ2(R) = 1/ cos(1) and hence we have

(2n + 4)r
1− r2 <

1− (2n + 1)r2

1− r2 − cos(1). (46)

From (15) and (46), we have∣∣∣∣ z f ′(z)
f (z)

− 1− (2n + 1)r2

1− r2

∣∣∣∣ ≤ 1− (2n + 1)r2

1− r2 − cos(1), (|z| ≤ r).
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For 0 ≤ r < R, the function Λ(r) = 1−(2n+1)r2

1−r2 showing that Λ′(r) < 0 for every point
on that interval ([0, 1], ∀n ∈ N), and lies in the following interval

[Λ(R), 1] ⊂ [Λ(.2), 1] ≈
[
1.0− 2. 020 2× 10−2n, 1

]
⊂
(

cos(1),
cos(1) + cosh(1)

2

]
.

By [27] we have

{w ∈ C : |w− a| < ra} ⊂ ∆cos ⊂ {w ∈ C : |w(z)− 1| < cosh 1− 1}, (47)

where ra is given by

ra =


a− cos 1

(
cos(1) < a ≤ cos(1)+cosh(1)

2

)
1 + sin 1− a

(
cos(1)+cosh(1)

2 < a ≤ cosh(1)
)

.

Hence
S f (Dr) ⊂ ϕ3(D) (0 ≤ r < R).

The result is sharp for the function fn, defined in (4). At z = −R, we have∣∣∣∣ z f ′n(z)
fn(z)

∣∣∣∣ = ∣∣∣∣(1− (2n + 4)R− (2n + 1)R2

1− R2

)∣∣∣∣ = cos(1) = ϕ3(−1) ∈ ∂c ϕ3(D). (48)

By putting n = 1 in Theorem 1 we get the following result.

Corollary 1. For the class Υ1, the following results hold:

1. For any 0 ≤ α < 1, the radius RS∗(α) is the root (least positive) of the polynomial

(3− α)r2 + 6r− (1− α) = 0. (49)

2. The S∗L radius for Υ1 is
RS∗L ≈ 0.070343.

3. The S∗p radius for Υ1 is
RS∗p ≈ 0.080625.

4. The S∗e radius for Υ1 is
RS∗e ≈ 0.10089.

5. The S∗c radius for Υ1 is
RS∗c ≈ 0.10611.

6. The S∗sin radius for Υ1 is
RS∗sin

≈ 0.13199.

7. The S∗
sinh−1 radius for Υ1 is

RS∗
sinh−1

≈ 0.13778.

8. The S∗Ne
radius for Υ1 is

RS∗Ne
≈ 0.10611 = RS∗c .

9. The S∗cos radius for Υ1 is
RS∗cos ≈ 0.07435.

These results are sharp for the function f1 given by (6).
By putting n = 2 in the Theorem 1 we get the following result.
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Corollary 2. For the class Υ2, the following results hold:

1. The S∗(α) radius for Υ2 is

RS∗(α) =
1− α

4 +
√

16 + (1− α)(5− α)
.

2. The S∗L radius for Υ2 is
RS∗L ≈ 0.053038.

3. The S∗p radius for Υ2 is
RS∗p ≈ 0.060445.

4. The S∗e radius for Υ2 is
RS∗e ≈ 0.075697.

5. The S∗c radius for Υ2 is
RS∗c ≈ 0.079634.

6. The S∗sin radius for Υ2 is
RS∗sin

≈ 0.099225.

7. The S∗
sinh−1 radius for Υ2 is

RS∗
sinh−1

≈ 0.10362.

8. The S∗Ne
radius for Υ2 is

RS∗Ne
≈ 0.079634 = RS∗c .

9. The S∗cos radius for Υ2 is
RS∗cos

≈ 0.055731.

These results are sharp for the function f2 given by (7). By putting n = 3 in the
Theorem 1 we get the following result.

Corollary 3. For the class Υ3, the following results holds

1. The S∗(α) radius for Υ3 is

RS∗(α) =
2(1− α)

10 +
√

100 + 4(1− α)(2n + 1− α)
.

2. The S∗L radius for Υ3 is
RS∗L ≈ 0.042427.

3. The S∗p radius for Υ3 is
RS∗p ≈ 0.048473.

4. The S∗e radius for Υ3 is
RS∗e = 0.060763.

5. The S∗c radius for Υ3 is
RS∗c ≈ 0.063941.

6. The S∗sin radius for Υ3 is
RS∗sin

= 0.079791.

7. The S∗
sinh−1 radius for Υ3 is

RS∗
sinh−1

= 0.083356.
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8. The S∗Ne
radius for Υ3 is

RS∗Ne
≈ 0.063941 = RS∗c .

9. The S∗cos radius for Υ3 is
RS∗cos

= 0.04 457 9.

These results are sharp for the function f3 given by (8).

3. Concluding Remarks and Observations

In our present investigation, we have calculated radius constants for certain classes
of star-like functions related with different types of domains, including, for example, the
star-like functions connected with the exponential functions, the lemniscate of Bernoulli,
sine functions, cardioid functions, sine hyperbolic inverse functions, Nephroid functions,
cosine functions and parabolic star-like functions. We have, then, shown that the results
presented in this paper are sharp. Additionally, by assigning different values to some
perpetrators we have obtained some interesting and remarkable special cases in form
of corollaries.

In concluding our current investigation, we would like to bring to the attention of
interested readers the possibility of studying fundamental or quantum (or q-) general-
izations of the results we have elaborated here. The interested readers may also use
iteration processes to develop an approximate common fixed point of the mapping z f ′(z)

f (z)
(see, for details, [28,29]). Srivastava’s recently published survey-cum-expository review
study [30] also shows that [31] has impacted and driven this research area. However, as
Srivastava (see [30], p. 340 and [32], Section 5, pp. 1511–1512) has previously proved the
(p, q)-variations of the intended q-results because the forced-in parameter p is insignifi-
cant, it will lead to insubstantial work. Furthermore, in light of Srivastava’s more recent
article [32], the interested reader should be advised not to be misled to believe that the
so-called k-Gamma function provides a “generalization” of the classical (Euler’s) Gamma
function. Similar remarks will apply, also, to all of the usages of the so-called k-Gamma
function including (for example) the so-called (k, s)-extensions of the Riemann–Liouville
integral and other operators of fractional integral and fractional derivatives.

Author Contributions: Conceptualization, M.H., M.A. and N.K.; methodology, C.Z., M.A. and K.A.;
software, N.K. and B.K.; validation, C.Z., M.H. and M.A.; formal analysis, M.A. and N.K.; investiga-
tion, C.Z., M.H., K.A. and B.K.; resources, M.A. and N.K.; writing—original draft preparation, M.H.,
K.A. and B.K.; writing—review and editing, B.K.; visualization, C.Z. and K.A.; supervision, M.A. and
N.K.; funding acquisition, C.Z. and B.K. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors are grateful to the editor and the reviewers for their valuable
comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Grunsky, H. Neue abschätzungen zur konformen abbildung ein-und mehrfachzusammenhngender bereiche. Schr. Dtsch. Math.

Ver. 1934, 43, 140–143.
2. Reade, M.O. On close-to-convex univalent functions. Mich. Math. 1955, 3, 59–62. [CrossRef]
3. Shi, L.; Srivastava, H.M.; Khan, M.G.; Khan, N.; Ahmad, B.; Khan, B.; Mashwani, W.K. Certain Subclasses of Analytic Multivalent

Functions Associated with Petal-Shape Domain. Axioms 2021, 10, 291. [CrossRef]
4. Ebadian, A.; Cho, N.E.; Adegani, E.A.; Yalçın, S. New Criteria for Meromorphic star-likeness and Close-to-Convexity. Mathematics

2020, 8, 847. [CrossRef]
5. Naeem, M.; Hussain, S.; Mahmood, T.; Khan, S.; Darus, M. A New Subclass of Analytic Functions Defined by Using Salagean

q-Differential Operator. Mathematics 2019, 7, 458. [CrossRef]
6. Liu, L.; Liu, J.-L. Properties of Certain Multivalent Analytic Functions Associated with the Lemniscate of Bernoulli. Axioms 2021,

10, 160. [CrossRef]

http://doi.org/10.1307/mmj/1031710535
http://dx.doi.org/10.3390/axioms10040291
http://dx.doi.org/10.3390/math8050847
http://dx.doi.org/10.3390/math7050458
http://dx.doi.org/10.3390/axioms10030160


Symmetry 2021, 13, 2448 16 of 16
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