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Abstract: In this paper, a new subspace gradient method is proposed in which the search direction
is determined by solving an approximate quadratic model in which a simple symmetric matrix is
used to estimate the Hessian matrix in a three-dimensional subspace. The obtained algorithm has
the ability to automatically adjust the search direction according to the feedback from experiments.
Under some mild assumptions, we use the generalized line search with non-monotonicity to obtain
remarkable results, which not only establishes the global convergence of the algorithm for general
functions, but also R-linear convergence for uniformly convex functions is further proved. The
numerical performance for both the traditional test functions and image restoration problems show
that the proposed algorithm is efficient.

Keywords: subspace method; conjugate gradient method; quadratic approximation; image restoration

1. Introduction

The Conjugate Gradient (CG) method is dedicated to solving the unconstrained
optimization problem:

min
x∈<n

f (x), (1)

where f : Rn → R is smooth and the gradient of f (x) at xk is marked gk. The advantages
of its simple form and low storage requirements make the CG method a powerful tool for
dealing with problem (1). It starts at a starting point x0 and generates an iterative sequence
{xk} in the following form:

xk+1 = xk + αkdk, k ≥ 0, (2)

that is, xk moves forward by one step αk along the search direction dk and reaches the
(k + 1)-th iteration point xk+1.

The direction dk is usually defined as

dk =

{
−gk, if k = 0,
−gk + βkdk−1, if k ≥ 1,

(3)

where βk is CG parameter. The different βk corresponds to different CG methods, such as
Polak and Ribiere (PRP) [1], Hestenes and Stiefel (HS) [2], Liu and Storey (LS) [3], Fletcher
and Reeves (FR) [4], Dai and Yuan (DY) [5], and the conjugate descent (CD) method [6].
In addition, more relevant research and the progress of CG method can be found in the
literature [7–10].
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The step size αk can be obtained by different rules. In this paper, we focus on the following
generalized line search, which has been shown to be very efficient for CG methods in [11].

f (xk + αkdk) ≤ Ck + δαkgT
k dk,

gT
k+1dk ≥ σgT

k dk,
(4)

where the definition of Ck is as follows:

C0 = f (x0), Q0 = 1, Qk+1 = Qk + 1, Ck+1 =
QkCk + fk+1

Qk+1
. (5)

From Equation (5), we can find that Ck is a convex combination of the function values
f (x0) to f (xk). The generalized line search is non-monotonic, which facilitates the establish-
ment of the global convergence of the algorithm under milder conditions.

Subspace technology plays an extraordinary role in solving large-scale unconstrained
optimization problems. As the scale of optimization problems to be dealt with continues
to expand, subspace technology has attracted increased attention from researchers. Using
subspace minimization technology with CG method, Yuan and Stoer [12] creatively pro-
posed theSMCG method, in which the approximate function of f (x) is minimized on the
subspace Ωk+1 = Span{gk+1, sk}, and the expression of the search direction is derived:

dk+1 = µkgk+1 + νksk, (6)

where µk and νk are parameters, and sk = xk+1 − xk. Obviously, the SMCG method is a
further promotion based on the CG method, and at the same time, it has a profound influ-
ence on the subsequent vigorous development of subspace technology. Based on Yuan’s
ideas above, Andrei [13] developed a new SMCG method, in which it further expands
the search direction, develops into three subspaces, and used the acceleration strategy.
Inspired by Andrei, Yang et al. [14] applied the technique of subspace minimization to
another special three-term subspace and came up with a new SMCG method. On the same
subspace, Li et al. [10] conducted a more in-depth study of Yang’s results, analyzed more
complex three-parameter situations, and set different conditions to dynamically select
the search direction under different dimensions of subspace. Subspace technology has
more extensive applications. Dai [15] proposed a new method called BBCG by fusing it
with the Barzilai–Borwein [16] method and compared the performance of several BBCG
methods proposed in the article through numerical experiments. It was found that the
BBCG3 method has better performance. Many scholars have also tried to integrate the
idea of minimizing subspace into the trust region method. For related research, readers
can refer to [17]. More research on the use of subspace technology to construct different
methods is still in progress [18–22].

The outline of this article is as follows: in Section 2, we give preliminary information.
In Section 3, the search direction is be discussed first, and then the obtained algorithm is
proposed. Based on the above-mentioned work, under some mild assumptions, the global
convergence of the algorithm for general functions is proved; more importantly, the result
of R-linear convergence for uniformly convex functions is also established. Some numerical
results for solving unconstrained opitmization problems and image restoration problems
are shown in Section 4. The conclusion and discussion are presented in Section 5.

2. Preliminary

The main work of this section is: in the subspace Ωk+1 = Span{−gk+1, sk, gk}, ac-
cording to the different dimensions of Ωk+1, the discussion is divided into three cases; then,
combined with the technique of subspace minimization, four forms of dk are determined,
and the conditions for dynamic selection of each direction are given.
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In this paper, the direction at xk+1 is expected to minimize the quadratic approximation
of the objective function,

min
d∈Ωk+1

φk+1(d) = gT
k+1d +

1
2

dT Bk+1d, (7)

on the subspace Ωk+1, where Bk+1 is regarded as an approximation of the Hessian matrix
and is positive definite. Assuming Bk+1 satisfies the modified secant equation [23]

Bk+1sk = y∗k = yk +
max{zk, 0}

sT
k sk

sk, (8)

where zk = 2( fk − fk+1) + (gk+1 + gk)
Tsk. Combined with (4), obviously, sT

k y∗k ≥ sT
k yk > 0.

3. Proposed Method
3.1. Direction Selection

According to the above discussion, as is known, the subspace may have three dif-
ferent dimensions; based on that, we analyze the selection of the search direction in the
next section.

Case I: dim(Ωk+1) = 3.
In this case, the direction can be expressed as

dk+1 = akgk+1 + bksk + ckgk, (9)

where ak, bk, ck are parameters to be determined. Substituting (9) into (7), we get

{ak, bk, ck} = arg min
(a,b,c)

 ‖gk+1‖2

gT
k+1sk

gT
k+1gk

T a
b
c

+
1
2

 a
b
c

T ρk+1 gT
k+1y∗k wk

gT
k+1y∗k sT

k y∗k gT
k y∗k

wk gT
k y∗k ρk

 a
b
c

, (10)

where ρk = gT
k Bk+1gk, ρk+1 = gT

k+1Bk+1gk+1, wk = gT
k+1Bk+1gk. Inspired by the BBCG

method [11], we set

wk = ξk
gT

k+1gk‖yk‖2

sT
k yk

, ξk =

{
max{0.9ξk−1, 1.2}, if αk > 1,
min{1.1ξk−1, 1.75}, otherwise,

(11)

where ξk is an adaptive parameter, and its value remains the same throughout the whole
paper. Setting ξ0 = 1.5, we not only find that 1.2 ≤ ξk ≤ 1.75, but we also show that its
numerical performance is better than a constant. The matrix in (10) is represented by Dk.

The positive definiteness of Dk is presented in Lemma 1. Now that we assume that Dk
is positive definite, the unique solution of (10) can be calculated as follows: ak

bk
ck

 = − 1
4k

 χ θ1 θ2
θ1 θ θ3
θ2 θ3 ν

 ‖gk+1‖2

gT
k+1sk

gT
k+1gk

, (12)

where

4k = |Dk| = ρk+1χ + wkθ2 + gT
k+1y∗k θ1,

χ = ρk(sT
k y∗k )− (gT

k y∗k )
2,

ν = ρk+1(sT
k y∗k )− (gT

k+1y∗k )
2,

θ3 = wk(gT
k+1y∗k )− ρk+1(gT

k y∗k ),
θ1 = wk(gT

k y∗k )− ρk(gT
k+1y∗k ),

θ = ρkρk+1 − (wk)
2,

θ2 = (gT
k y∗k )(gT

k+1y∗k )− wk(sT
k y∗k ).
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If Dk is positive definite, then4k > 0, so

ρk+1 ≥
−wkθ2 − gT

k+1y∗k θ1

χ
= hk. (13)

Setting nk = 1− (gT
k y∗k )

2

ρk(sT
k y∗k )

and substituting the variable value in Equation (12), we get

χ = nkρk(sT
k y∗k ),

hk =
(

w2
k

ρk
+

(gT
k+1y∗k )

2

sT
k y∗k

− 2wk(gT
k+1y∗k )(gT

k y∗k )
ρk(sT

k y∗k )
)

nk
.

(14)

Considering the formula in Equation (13), we compute ρk+1 as

ρk+1 = ξkmax{hk, N}, (15)

where N = N1‖gk+1‖2, N1 = max{ ‖y
∗
k‖

2

sT
k y∗k

, 4‖y∗k‖
4‖g∗k ‖

2

ρk(sT
k y∗k )

2 }.
In order to make the algorithm perform better, in a manner similar to [7,24], we set

the following conditions:
ρ0 ≤ nk, (16)

ζ1 ≤
sT

k yk

‖sk‖2 ≤
‖y∗k‖

2

sT
k y∗k

≤ ζ2, (17)

ζ1 ≤
ρk
‖gk‖2 ,

4‖y∗k‖
4‖g∗k‖

2

ρk(sT
k y∗k )

2
≤ ζ2, (18)

where ζ1, ζ2 are positive constants, ρ0 ∈ (0, 1).
Now, we prove that Dk is positive definite.

Lemma 1. If ρk+1 is calculated by Equation (15), then the matrix Dk is positive definite.

Proof. Using mathematical induction and ρ0 ∈ (0, 1), we can get ρk+1 ≥ ξk N > 0; because

ρk+1 >
‖gk+1‖2‖y∗k‖

2

sT
k y∗k

, so ν = ρk+1(sT
k y∗k )− (gT

k+1y∗k )
2 > 0; since ρk+1 > hk =

−wkθ2−gT
k+1y∗k θ1

χ ,

therefore4k = |Dk| = ρk+1χ + wkθ2 + gT
k+1y∗k θ1 > 0.

Case II: dim(Ωk+1) = 2.
We define dk as

dk+1 = akgk+1 + bksk, (19)

where ak, bk are parameters. Similarly, substituting Equation (19) into the approximation
function (7), we find

{ak, bk} = arg min
(a,b)

(
‖gk+1‖2

gT
k+1sk

)T( a
b

)
+

1
2

(
a
b

)T(
ρk+1 gT

k+1y∗k
gT

k+1y∗k sT
k y∗k

)(
a
b

)
. (20)

If4k = ρk+1(sT
k y∗k )− (gT

k+1y∗k )
2 > 0, then Equation (20) has a unique solution:(

ak
bk

)
=

1
4k

(
(gT

k+1y∗k )(gT
k+1sk)− (sT

k y∗k )‖gk+1‖2

(gT
k+1y∗k )‖gk+1‖2 − ρk+1(gT

k+1sk)

)
. (21)

Similar to the way that Equation wk in (11) is evaluated, we set ρk+1 = ξk
‖gk+1‖2‖y∗k‖

2

sT
k y∗k

;

apparently,4k > 0. Furthermore, for the better performance of the algorithm, we require
relevant variables to satisfy the condition in Equation (17).
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As we all know, DY and HS methods have some good properties. For example, the
finite termination of HS is helpful to improve the convergence rate. In view of the above
considerations, we put forward an idea; when the conditions

ζ1 ≤
sT

k yk

‖sk‖2 ,
‖gk+1‖‖dk‖

dT
k yk

≤ ζ3, (22)

|gT
k+1ykgT

k+1dk|
dT

k yk‖gk+1‖2
≤ ζ3, (23)

are met, we take
dk+1 = −gk+1 + βkdk, βk = max{βHS

k , βDY
k }, (24)

where ζ3 ∈ [0, 1).
Above all, in the case of two-dimensional subspace, when the condition (17) is estab-

lished, dk takes Equations (19) and (21); when the inequalities in Equations (22) and (23)
are true, dk is calculated by Equation (24).

Case III: dim(Ωk+1) = 1.
When dim(Ωk+1) = 1, we adopt the method of the steepest descent, namely dk+1 = −gk+1.

3.2. Description of DSCG Algorithm

In this section, we first introduce an acceleration strategy (Algorithm 1) [25] which
has been shown to be quite efficient for the CG method. Then, we present our dynamically
adjusted subspace conjugate gradient algorithm (DSCG, Algorithm 2) and prove that the
direction satisfies sufficient descent.

Algorithm 1: Acceleration Strategy.
Step 1: Compute: z = xk + αkdk, gz = ∇ f (z) and yz = gk − gz;
Step 2: Compute: ak = αkgT

k dk and bk = −αkyT
k dk;

Step 3: If bk > 0, then, compute ηk = − ak
bk

and update the variables as
xk+1 = xk + ηkαkdk, otherwise update the variables as xk+1 = xk + αkdk.

Algorithm 2: DSCG.

Step 1: Given x0 ∈ <n, α
(0)
0 , ε > 0 , ζ1,ζ2,ζ3 ∈ [0, 1). Let d0 := −g0 and k := 0.

Step 2: When ‖gk‖ ≤ ε, stop, otherwise go to step 3.
Step 3: Compute a stepsize αk that satisfies conditions (4) and (5), then adopt

Algorithm 1 (acceleration strategy).
Step 4: Compute the direction dk.
• Step 4.1: If the conditions (17) holds, compute dk+1 by Equations (19) and (21),

and go to Step 5;
• Step 4.2: If the conditions (22) and (23) holds, compute dk+1 by Equation (24),

and go to Step 5;
• Step 4.3: If the conditions (16)–(18) hold, compute dk+1 by Equations (9) and (12),

and go to Step 5;
• Step 4.4: Otherwise, set dk+1 = −gk+1.
Step 5: Set k := k + 1, and go to step 2.

3.3. Convergence Analysis

In this subsection, we focus on the convergence properties of the proposed algorithm
(DSCG). The sufficient descent condition is crucial for a gradient descent algorithm. In
order to establish the sufficient descent condition for the DSCG method, we firstly introduce
the following lemma.
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Lemma 2. If dk+1 is generated by Equations (9) and (12) or by Equations (19) and (20), then

gT
k+1dk+1 ≤ −

‖gk+1‖4

ρk+1
, (25)

holds.

Proof. If dk+1 is generated by Equations (19) and (20), we get

gT
k+1dk+1 = −‖gk+1‖4

4k
[sT

k y∗k − 2
(gT

k+1y∗k )(gT
k+1sk)

‖gk+1‖2 + ρk+1(
gT

k+1sk

‖gk+1‖2 )
2]

≤ −‖gk+1‖4

4k
Hmin(

gT
k+1sk

‖gk+1‖2 )

= −‖gk+1‖4

4k
H(

gT
k+1y∗k
ρk+1

)

= −‖gk+1‖4

4k

4k
ρk+1

= −‖gk+1‖4

ρk+1
,

(26)

where Hmin(
gT

k+1sk
‖gk+1‖2 ) represents the minimum value of function sT

k y∗k − 2
(gT

k+1y∗k )(gT
k+1sk)

‖gk+1‖2 +

ρk+1(
gT

k+1sk
‖gk+1‖2 )

2 with
gT

k+1sk
‖gk+1‖2 as the variable.

When dk+1 is given by Equations (9) and (12),

gT
k+1dk+1 =

 ‖gk+1‖2

gT
k+1sk

gT
k+1gk

T a
b
c


= − 1
4k

 ‖gk+1‖2

gT
k+1sk

gT
k+1gk

 χ θ1 θ2
θ1 θ θ3
θ2 θ3 ν

 ‖gk+1‖2

gT
k+1sk

gT
k+1gk


= −‖gk+1‖4

4k
ϕ(x, y),

(27)

taking x =
gT

k+1gk
‖gk+1‖2 , y =

gT
k+1sk
‖gk+1‖2 as independent variable, where ϕ(x, y) = νx2 + 2θ3xy +

θy2 + 2θ2x + 2θ1y + χ.
From Lemma 1, we find that ν > 0, νθ− θ2

3 = 4kρk+1 > 0; that is, there is a minimum
value for ϕ(x, y), which is calculated to be ϕ(x, y)min = 4k

ρk+1
.

Therefore, we can also get gT
k+1dk+1 ≤ −

‖gk+1‖4

ρk+1
.

Lemma 3. Suppose dk+1 is generated by the DSCG algorithm. Then, there is a constant c3 > 0,
such that

gT
k+1dk+1 ≤ −c3‖gk+1‖2. (28)

Proof. Based on the form of direction, we analyze this in three cases:
Case I: if dk+1 = −gk+1, let c3 = 1

2 , and thus it is proved.
Case II: When the direction is binomial, the following information must be considered.
We first discuss the case where dk+1 is given by Equations (19) and (21); here, for

ρk+1 = ξk
‖gk+1‖2‖y∗k‖

2

sT
k y∗k

, combined with the conditions (11), (17) and Lemma 2, the following

results can be obtained:
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ρk+1 ≤ 2ζ2‖gk+1‖2, gT
k+1dk+1 ≤ −

1
2ζ2
‖gk+1‖2. (29)

When dk is determined by Equation (24), for βk = βDY
k , we have

gT
k+1dk+1 = −‖gk+1‖2 + βkgT

k+1dk

≤ −‖gk+1‖2 +
‖gk+1‖2‖gk+1‖‖dk‖

dT
k yk

≤ −(1− ζ3)‖gk+1‖2,

(30)

for βk = βHS
k ; similarly, using (23), the same result can be obtained.

Case III: When the direction is computed by Equations (9) and (12), considering
Lemma 2, we first prove that ρk+1 has an upper bound.

|hk| = |
(

w2
k

ρk
+

(gT
k+1y∗k )

2

sT
k y∗k

− 2wk(gT
k+1y∗k )(gT

k y∗k )
ρk(sT

k y∗k )
)

nk
|

≤ |(
4‖y∗k‖

4‖g∗k‖
2

ρk(sT
k y∗k )

2
+
‖y∗k‖

2

sT
k y∗k

)‖gk+1‖2 + 2
wk√

ρk

gT
k+1y∗k√
sT

k y∗k

gT
k y∗k√

ρksT
k y∗k
|/nk

≤ (2N1‖gk+1‖2 + 2
|wk|√

ρk

|gT
k+1y∗k |√
sT

k y∗k
)/nk

≤ (2N + 2
√

N
√

N)/nk

≤ 4N
ρ0

(31)

The above formula follows from Equations (11), (14), (15), and χ > 0. By using the
conditions in Equations (16) and (17), we have

ρk+1 = ξkmax{hk, N} ≤ 2
4N
ρ0

=
8N1‖gk+1‖2

ρ0
≤ 8ζ2‖gk+1‖2

ρ0
. (32)

Finally, using the conclusion of Lemma 2, it is concluded that

gT
k+1dk+1 ≤ −

‖gk+1‖4

ρk+1
≤ − ρ0

8ζ2
‖gk+1‖2. (33)

Summarizing all the above cases, we take

c3 = max{1
2

,
1

2ζ2
, (1− ζ3),

ρ0

8ζ2
}, (34)

and thus complete the proof.

In the remainder of this subsection, the global convergence of the algorithm for general
functions is proved; more importantly, the result of R-linear convergence for uniformly
convex functions is also established in this section. We first introduce two necessary
assumptions.

Assumption 1. Function f : Rn → R is continuously differentiable and has a lower bound on Rn.

Assumption 2. The gradient function g(x) is Lipschitz continuous with a constant L > 0; i.e.,

‖g(x)− g(y)‖ ≤ L‖x− y‖, x, y ∈ <n, (35)
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which means that ‖yk‖ ≤ L‖sk‖. Remarkably, Assumption 1 is milder than the usual assumption:
the level set D = {x ∈ <n : f (x) ≤ f (x0)} is bounded.

Lemma 4. Supposing αk is generated by a generalized line search (4) and satisfies Assumption 2, then

αk ≥
(1− σ)|gT

k dk|
L‖dk‖2 . (36)

Proof. By the line search condition (4), we get

(σ− 1)gT
k dk ≤ (gk+1 − gk)

Tdk = yT
k dk ≤ ‖yk‖‖dk‖ ≤ αkL‖dk‖2,

Since σ < 1 and gT
k dk < 0, then (36) holds immediately.

Lemma 5. If αk fulfills the generalized line search conditions (4), (5) and Assumption 1 holds,
it follows that

fk ≤ Ck, ∀k. (37)

Proof. From (4) and gT
k dk < 0 , there is fk+1 ≤ Ck. Condition (5) shows that

Qk+1Ck+1 = QkCk + fk+1 ≤ QkCk + Ck = (Qk + 1)Ck, (38)

namely, Ck+1 ≤ Ck. Then,

QkCk + fk+1 = QkCk+1 + Ck+1 ≤ QkCk + Ck+1, (39)

which means fk+1 ≤ Ck+1.

Lemma 6. Let dk+1 be generated by the DSCG algorithm. Then, there is a constant c4 > 0 such that

‖dk+1‖ ≤ c4‖gk+1‖. (40)

Proof. Similarly, we analyze it in three cases.
Case I: If dk+1 = −gk+1, let c4 = 1, and thus it is proved.
Case II: If dk+1 is given by Equation (24), from Assumption 2 and condition (22),

‖dk+1‖ = ‖ − gk+1 + βkdk‖

≤ ‖gk+1‖+
‖gk+1‖‖yk‖‖dk‖

dT
k yk

≤ (1 +
L
ζ1

)‖gk+1‖. (βk = βHS
k )

(41)

When βk = βDY
k , using the same method, we can get (41).

Now, if dk is calculated by Equations (19) and (21), where ρk+1 = ξk
‖gk+1‖2‖y∗k‖

2

sT
k y∗k

,

conditions (11) and (17) hold, then

4k = ρk+1(sT
k y∗k )− (gT

k+1y∗k )
2

= sT
k y∗k (ρk+1 −

(gT
k+1y∗k )

2

sT
k y∗k

)

≥ sT
k yk(

1
5
‖gk+1‖2‖y∗k‖

2

sT
k y∗k

)

≥ 1
5

ζ1‖sk‖2 ‖gk+1‖2‖y∗k‖
2

sT
k y∗k

(42)
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Applying the above results, combined with Cauchy inequality and triangle inequality,
we have

‖dk+1‖ = ‖akgk+1 + bksk‖

≤ 1
4k

(|gT
k+1y∗k ||g

T
k+1sk|‖gk+1‖+ |(gT

k+1y∗k )‖gk+1‖2 + ρk+1(gT
k+1sk)|‖sk‖

≤ 1
4k

(2‖sk‖‖y∗k‖+
ρk+1‖sk‖2

‖gk+1‖2 )‖gk+1‖3

≤
5sT

k y∗k
ζ1‖sk‖2‖y∗k‖2 (2‖sk‖‖y∗k‖+

ρk+1‖sk‖2

‖gk+1‖2 )‖gk+1‖

= (
10sT

k y∗k
ζ1‖sk‖‖y∗k‖

+
5ξk
ζ1

)‖gk+1‖

≤ (
10sT

k y∗k
ζ1‖sk‖‖y∗k‖

+
10
ζ1

)‖gk+1‖

≤ 20
ζ1
‖gk+1‖.

(43)

Case III: When dk is computed by Equations (9) and (12), Similarly, let us first discuss
a lower bound of4k. Based on Equations (11), (13), and (15), we have

4k = ρk+1χ + wkθ2 + gT
k+1y∗k θ1

= χ(ρk+1 −
−wkθ2 − gT

k+1y∗k θ1

χ
)

= χ(ρk+1 − hk)

≥ χ(1.2max{hk, N} − hk)

≥ 1
5

χN.

(44)

Defining χ1 = ρk(sT
k y∗k ), from Equations (14) and (16), we have χ = χ1nk ≥ χ1ρ0 >

0; therefore,

4k ≥
1
5

χ1ρ0N. (45)

Then,

‖dk+1‖ = ‖akgk+1 + bksk + ckgk‖

=
1
4k

 ‖gk+1‖2

|gT
k+1sk|
|gT

k+1gk|

 |χ| |θ1| |θ2|
|θ1| |θ| |θ3|
|θ2| |θ3| |ν|

 ‖gk+1‖
‖sk‖
‖gk‖


≤ ‖gk+1‖
4k

(χ1‖gk+1‖2 + 4ek
√

χ1N1‖gk+1‖2 + 2ik
√

χ1(N + ρk+1) + jkρk+1)

≤ 5‖gk+1‖
χ1ρ0N

(χ1‖gk+1‖2 + 4ek
√

χ1N1‖gk+1‖2 + 2ik
√

χ1(N + ρk+1) + jkρk+1)

≤ ‖gk+1‖(
5

ρ0N1
+

20
ρ0
√

N1

ek√
χ1

+
10(ρ0 + 8)

(ρ0)2
ik√
χ1

+
40

(ρ0)2
jk
χ1

),

(46)

where ek = ρk‖sk‖ +
√

sT
k y∗k‖gk‖, andik = ‖sk‖‖gk‖, jk = ρk‖sk‖2 + sT

k y∗k‖gk‖2. From
Equations (15), (17), and (18), we obtain

ζ1 ≤
‖y∗k‖

2

sT
k y∗k

≤ N1,
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ek√
χ1

=
‖sk‖√
sT

k y∗k
+
‖gk‖√

ρk
≤ 2√

ζ1
,

ik√
χ1

=
‖sk‖‖gk‖√

ρk(sT
k y∗k )

≤ 1
ζ1

,

jk
χ1

=
‖sk‖2

sT
k y∗k

+
‖gk‖2

ρk
≤ 1

ζ1
+

1
ζ1

=
2
ζ1

.

Based on the above results, it can be deduced further that

‖dk+1‖ ≤ (
5

ρ0ζ1
+

40
ρ0ζ1

+
10(ρ0 + 8)

(ρ0)2
1
ζ1

+
40

(ρ0)2
2
ζ1

)‖gk+1‖

≤ (
55ρ0 + 160

ρ2
0ζ1

)‖gk+1‖.
(47)

In conclusion, let

c4 = min{1 + L
ζ1

,
20
ζ1

,
55ρ0 + 160

ρ2
0ζ1

}, (48)

and thus (40) holds.

Theorem 1. Assuming that Assumptions 1 and 2 hold, the sequence {xk} is generated by the
DSCG algorithm, and we have

lim
k→∞

in f ‖gk‖ = 0. (49)

Proof. According to the generalized line search conditions (4) and (5), we know that

fk+1 ≤ Ck + δαkgT
k dk, Qk+1 = Qk + 1, Ck+1 =

QkCk + fk+1
Qk+1

, (50)

Combined with Lemmas 3, 4, and 6, it follows that

fk+1 ≤ Ck −
(1− σ)δ

L
(

gT
k dk

‖dk‖
)2

≤ Ck −
(1− σ)δc2

3
Lc2

4
‖gk‖2

= Ck − β‖gk‖2 (β =
(1− σ)δc2

3
Lc2

4
).

(51)

Since
Qk+1 = Qk + 1 = k + 2,

therefore,

Ck+1 ≤
QkCk + Ck − β‖gk‖2

Qk+1
= Ck −

β‖gk‖2

Qk+1
. (52)

According to Assumption 1 and Lemma 5, it can be seen that Ck+1 has a lower bound,
and so

∞

∑
k=0

‖gk‖2

Qk+1
< ∞. (53)

Thus, we proved that Equation (49) holds.
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Theorem 2. Supposing that Assumptions 1 and 2 hold, f is a uniformly convex function, and the
unique minimizer is x∗, the sequence {xk} is generated by the DSCG algorithm. For all k, there
exists â > 0 such that αk ≤ â, τmax < 1. Then, there is a constant θ ∈ (0, 1), which makes

fk − f (x∗) ≤ θk( f0 − f (x∗)). (54)

Proof. In the proof of Lemma 5, we know that Ck > Ck+1 > f (x∗), which implies that

0 <
Ck+1 − f (x∗)

Ck − f (x∗)
< 1, ∀k ≥ 0. (55)

Denote r = lim
k→∞

sup Ck+1− f (x∗)
Ck− f (x∗) ; obviously, r ∈ [0, 1].

Let us first analyze the case when r = 1. Now, there is a subsequence {xkj
} such that

lim
j→∞

Ckj+1 − f (x∗)
Ckj
− f (x∗) = 1. (56)

From Equation (2.15) of [26], we know that 0 < 1− τmax ≤ 1
Qk
≤ 1. Thus, there exists

a convergent subsequence { 1
Qkj

+1}. We assume that

lim
j→∞

1
Qkj

+ 1
= r1, (57)

and so 0 < r1 ≤ 1.
Through the expression of Ck+1 (1.6), we have

Ckj+1 − f (x∗)

Ckj
− f (x∗)

= (1− 1
Qkj

+ 1
) +

1
Qkj

+ 1

fkj+1 − f (x∗)

Ckj
− f (x∗)

. (58)

Combining the above three formulas, it is obvious that

lim
j→∞

fkj+1 − f (x∗)

Ckj
− f (x∗)

= 1. (59)

Based on Equation (3.4) of [26], we know that the uniformly convex function f has the
following property:

fkj+1 − f (x∗) ≤ γ‖gkj+1‖2 (60)

It is known that αk ≤ â, g is Lipschitz continuous; thus, it follows that

‖gkj+1‖ ≤ ‖gkj+1 − gkj
‖+ ‖gkj

‖

≤ L‖xkj+1 − xkj
‖+ ‖gkj

‖

= Lαkj
‖dkj
‖+ ‖gkj

‖

≤ (1 + Lâc4)‖gkj
‖

(61)

Therefore, fkj+1 − f (x∗) ≤ γ(1 + Lâc4)
2‖gkj

‖2, and

0 <
fkj+1 − f (x∗)

Ckj
− f (x∗)

≤
γ(1 + Lâc4)

2‖gkj
‖2

Ckj
− f (x∗)

. (62)

Condition (51) means that

fkj+1 − f (x∗) ≤ Ckj
− f (x∗)− β‖gkj

‖2, (63)
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and
fkj+1 − f (x∗)

Ckj
− f (x∗)

≤ 1−
β‖gkj

‖2

Ckj
− f (x∗)

. (64)

From Equation (59), we can see that

lim
j→∞

‖gkj
‖2

Ckj
− f (x∗)

= 0. (65)

Combined with condition (62),

lim
j→∞

fkj+1 − f (x∗)

Ckj
− f (x∗)

= 0 (66)

Obviously, this conflicts with Equation (59), so r 6= 1; i.e.,

lim
k→∞

sup
Ck+1 − f (x∗)

Ck − f (x∗)
= r < 1 (67)

Thus, there is an integer k0 > 0 such that

Ck+1 − f (x∗)
Ck − f (x∗)

≤ r +
1− r

2
=

1 + r
2

< 1, ∀k ≥ k0. (68)

It is deduced that 0 < max
0≤k≤k0

{Ck+1− f (x∗)
Ck− f (x∗) } = r̂ < 1. Define θ = max{ 1+r

2 , r̂}, from

condition (55); obviously,

Ck+1 − f (x∗) ≤ θ(Ck − f (x∗)), 0 < θ < 1. (69)

It follows from condition (69) that

Ck+1 − f (x∗) ≤ θ(Ck − f (x∗)) ≤ θk+1(C0 − f (x∗)). (70)

Lemma 5 ( fk ≤ Ck) and C0 = f0 imply that (54) holds.

4. Numerical Results

In this section, we report the numerical performance of the DSCG algorithm from two
aspects. Firstly, the algorithm is compared with TTS [13] and CG_DESCENT [27] algorithms
on the normal unconstrained problem; secondly, the algorithm is applied to the image
restoration problem, and the numerical results are observed.The running environment
of all codes is a PC with 2.20 GHz CPU, 4.00 GB RAM memory, and the Windows 10
operating system.

4.1. Unconstrained Problem

The experiment selected 73 test functions, as shown in Table 1.
The dimensions of the function were set as £ºn = 3000, n = 6000, and n = 9000.
The iteration stop criterion is as follows: if ‖g(x)‖ < 10−6 or the number of iterations

exceeds 1000 and stop1 < 10−5, then the algorithm will terminate, where stop1 =
| fk+1− fk |
| fk |

,

when | fk| > 10−5; otherwise, stop1 = | fk+1 − fk|.
The parameters used by the algorithm are δ = 0.1, σ = 0.8, ζ1 = 10−7, ζ2 = 105, ζ3 = 10−5,

ρ0 = 0.8.
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The initial stepsize selection strategy [27] is

α
(0)
0 =


1.0, if ‖x0‖∞ < 10−30 and ‖ f0‖∞ < 10−30,
2 | f0|
‖g0‖

, if ‖x0‖∞ < 10−30 and ‖ f0‖∞ ≥ 10−30,

min{1.0, ‖x0‖∞
‖g0‖∞

}, if ‖x0‖∞ ≥ 10−30 and ‖g0‖∞ < 107,

min{1.0, max{ ‖x0‖∞
‖g0‖∞

, 1
‖g0‖∞

}}, if ‖x0‖∞ ≥ 10−30 and ‖g0‖∞ ≥ 107,

where ‖ · ‖∞ represents the infinite norm.
TTS and CG_DESCENT use the parameters in their code. We apply the profiles of

Dolan and Moré [28] to evaluate the effectiveness of the three algorithms and discuss the
performance profiles of the algorithm in CPU, NFG, and NI in detail.

The meanings of some symbols in the text are as follows:
N0: The serial number of the test problem;
CPU: The running time of algorithm (seconds);
NFG: Total evaluation numbers of function and gradient;
NI: The number of iterations.

Table 1. The test problems.

Test Problems No. Test Problems No.

Extended Freudenstein and Roth Function 1 ARWHEAD Function (CUTE) 38
Extended Trigonometric Function 2 ARWHEAD Function (CUTE) 39

Extended Rosenbrock Function 3 NONDQUAR Function (CUTE) 40
Extended White and Holst Function 4 DQDRTIC Function (CUTE) 41

Extended Beale Function 5 EG2 Function (CUTE) 42
Extended Penalty Function 6 DIXMAANA Function (CUTE) 43

Perturbed Quadratic Function 7 DIXMAANB Function (CUTE) 44
Raydan 1 Function 8 DIXMAANC Function (CUTE) 45
Raydan 2 Function 9 DIXMAANE Function (CUTE) 46

Diagonal 1 Function 10 Partial Perturbed Quadratic Function 47
Diagonal 2 Function 11 Broyden Tridiagonal Function 48
Diagonal 3 Function 12 Almost Perturbed Quadratic Function 49

Hager Function 13 Tridiagonal Perturbed Quadratic Function 50
Generalized Tridiagonal 1 Function 14 EDENSCH Function (CUTE) 51

Extended Tridiagonal 1 Function 15 VARDIM Function (CUTE) 52
Extended Three Exponential Terms Function 16 STAIRCASE S1 Function 53

Generalized Tridiagonal 2 Function 17 LIARWHD Function (CUTE) 54
Diagonal 4 Function 18 DIAGONAL 6 Function 55
Diagonal 5 Function 19 DIXON3DQ Function (CUTE) 56

Extended Himmelblau Function 20 DIXMAANF Function (CUTE) 57
Generalized PSC1 Function 21 DIXMAANG Function (CUTE) 58

Extended PSC1 Function 22 DIXMAANH Function (CUTE) 59
Extended Powell Function 23 DIXMAANI Function (CUTE) 60

Extended Block Diagonal BD1 Function 24 DIXMAANJ Function (CUTE) 61
Extended Maratos Function 25 DIXMAANK Function (CUTE) 62

Extended Cliff Function 26 IXMAANL Function (CUTE) D63
Quadratic Diagonal Perturbed Function 27 DIXMAAND Function (CUTE) 64

Extended Wood Function 28 ENGVAL1 Function (CUTE) 65
Extended Hiebert Function 29 FLETCHCR Function (CUTE) 66

Quadratic Function QF1 Function 30 COSINE Function (CUTE) 67
Extended Quadratic Penalty QP1 Function 31 Extended DENSCHNB Function (CUTE) 68
Extended Quadratic Penalty QP2 Function 32 DENSCHNF Function (CUTE) 69

A Quadratic Function QF2 Function 33 SINQUAD Function (CUTE) 70
Extended EP1 Function 34 BIGGSB1 Function (CUTE) 71

Extended Tridiagonal-2 Function 35 Partial Perturbed Quadratic PPQ2 Function 72
BDQRTIC Function (CUTE) 36 Scaled Quadratic SQ1 Function 73
TRIDIA Function (CUTE) 37
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When the problem dimension is 9000, the CG_DESCENT method only solves 64 prob-
lems, while the other two methods successfully complete all the problems. Compared with
other methods, the method represented by the top curve in a performance profile drawing
can solve the most problems in the best time range.

As shown in Figure 1, it is clear that the DSCG method is superior to other algorithms
in terms of CPU time. Thiss corresponds to the top curve and can solve 47.49% of the test
problems in the shortest time. In contrast, TTS is the fastest at solving 40.64% of the test
problems, and CG_DESCENT is the fastest for only 9.59% of problems.

Now, let us focus on Figure 2. By comparison, it is found that DSCG requires fewer
functions and gradient evaluations than other algorithms, which helps to simplify cal-
culation and improve algorithm efficiency. It can solve 58.9% of the test problems with
minimal function and gradient evaluations. TTS can solve 28.77% of the test problems with
the least amount of function and gradient evaluations. The proportion of CG_DESCENT
corresponds to 13.24%.

In addition, Figure 3 shows the performance comparison results of each algorithm in
terms of the number of iterations. It can be seen from the figure that the performance of the
DSCG algorithm is outstanding, as it can solve 64.38% of the problems with the minimum
number of iterations. At the same time, TTS and CG_DESCENT have the least iterations in
52.05% and 7.76% of the problems, respectively.

The above three pictures of CPU, NFG, and NI contain some similar information. It
is concluded that in the given test set, DSCG performs very well, with numerical results
superior to those of TTS and CG_DESCENT.
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Figure 1. Performance profiles for the CPU.
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Figure 3. Performance profiles for the NI.

4.2. Image Restoration Problem

The proposed DSCG is also applied to the problem of image restoration in this sub-
section. For more professional work in the field of image processing, please see [29,30]. In
two scenes with different noise values, the blurred original image is repaired to make the
picture clear and recognizable. This work has a wide range of applications in many fields
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of production and life, with important practical significance, and is also a difficult subject
in the field of optimization. Its basic model is b = Ax + ς, where x ∈ <n is the original
image, A ∈ <m×n is the blur matrix, ς ∈ <m represents noise, and b ∈ <m is the image
observed after noise reduction. The unknown noise value ς is usually obtained through

min
x∈<n

‖Ax + b‖2, (71)

but because the image system is susceptible to noise and lack of information, it is difficult
to obtain a satisfactory solution. In order to overcome the above shortcoming, the least
square model is usually introduced,

min
x∈<n

‖Ax + b‖2 + λ‖Υx‖1, (72)

where Υ is the linear operator, ‖ · ‖1 represents the l1 norm, and λ is the regularization
parameter used to weigh the data item and the regularization term.

Stop condition: | fk+1− fk |
| fk |

< 10−3 or ‖xk+1‖−‖xk‖
‖xk‖

< 10−3;
Tested picture: Barbara (512× 512), Baboon (512× 512).
The specific image repair results of the two algorithms under different noise values are

shown in Figures 4 and 5. Obviously, for a given set of pictures, both algorithms successfully
completed the repair. Let us focus on the comparison on Table 2, which presents the CPU
time spent in the repair process of algorithms.

(a) (b)

(c) (d)

Figure 4. 20% noise. (a) original image; (b) DSCG; (c) TTS; (d) CG_DESCENT.

Many works have focused on the image restoration problem, and more detailed refer-
ences can be found in [31–34]. In this paper, we display the original image to be repaired, and
the repaired results of DSCG, TTS, and CG_DESCENT from left to right.

Summarizing the information contained in the pictures and tables in this section, we
have obtained two conclusions: (i) both algorithms are capable of repairing pictures within
a reasonable time frame; (ii) with noise interference of 20% and 50%, DSCG is shown to be
a promising algorithm.



Symmetry 2021, 13, 2450 17 of 19

(a) (b)

(c) (d)

Figure 5. 50% noise. (a) original image; (b) DSCG; (c) TTS; (d) CG_DESCENT.

Table 2. CPU time spent by algorithms (seconds).

20% Noise Barbara Baboon Total

DSCG 1.2656 1.2813 2.5469
TTS 1.2813 1.2656 2.5469

CG_DESCENT 1.4219 1.2969 2.7188

50% Noise Barbara Baboon Total

DSCG 2.0625 1.9688 4.0313
TTS 2.125 2.1719 4.2969

CG_DESCENT 2.0313 2.1875 4.2188

5. Conclusions and Discussion

In this paper, an algorithm for dynamically adjusting direction was proposed, which
corresponds to the directions of four calculation forms by satisfying different conditions.
We discuss the selection of directions in a special three-term subspace using modified
secant equations, subspace minimization techniques, and acceleration strategies. The algo-
rithm has a good property: each search direction satisfies the sufficient descent condition.
We use the nonmonotonic generalized line search to obtain remarkable results: under
some mild assumptions, we not only prove the global convergence of the general function
algorithm but also further prove the R-linear convergence of the uniformly convex function.
Interestingly, we apply this algorithm to image restoration, and the algorithm has good
numerical performance in both the unconstrained and image restoration problems, which
fully demonstrates the efficiency of this algorithm.
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