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Abstract: Climate change and air pollution are among the key drivers of energy transition worldwide.
The adoption of renewable resources can act as a peacemaker and give stability regarding the
damaging effects of fossil fuels challenging public health as well as the tension made between
countries in global prices of oil and gas. Understanding the potential and capabilities to produce
renewable energy resources is a crucial pre-requisite for countries to utilize them and to scale up clean
and stable sources of electricity generation. This paper presents a hybrid methodology that combines
the data envelopment analysis (DEA) Window model, and fuzzy technique for order of preference
by similarity to ideal solution (FTOPSIS) in order to evaluate the capabilities of 42 countries in
terms of renewable energy production potential. Based on three inputs (population, total energy
consumption, and total renewable energy capacity) and two outputs (gross domestic product and
total energy production), DEA window analysis chose the list of potential countries, including
Norway, United Kingdom, Kuwait, Australia, Netherlands, United Arab Emirates, United States,
Japan, Colombia, and Italy. Following that, the FTOPSIS model pointed out the top three countries
(United States, Japan, and Australia) that have the greatest capabilities in producing renewable
energies based on five main criteria, which are available resources, energy security, technological
infrastructure, economic stability, and social acceptance. This paper aims to offer an evaluation
method for countries to understand their potential of renewable energy production in designing
stimulus packages for a cleaner energy future, thereby accelerating sustainable development.

Keywords: renewable energy; capability; DEA; window model; triangular fuzzy number; TOPSIS;
decision making

1. Introduction

The burning of fossil fuels, such as coal and oil, which accounts for two-thirds of
all greenhouse gases [1], has dramatically increased the carbon dioxide content of the
earth’s atmosphere over the last century. As a result, the earth’s surface temperature has
risen by 1.14 degrees Celsius since records began in the late 19th century [2]. The effects
on the environment, such as more intense heat waves, rising sea levels, and changes in
plants and animals, are already being noticeable today. The intergovernmental panel on
climate change (IPCC) assumes that climate change will cause considerable economic
damage, which could become even worse in the future [3]. The energy sector alone,
from generation to consumption, contributes a lot to the exhaustion of greenhouse gases in
the air. The electricity demand has grown tremendously, which became the driving force
for developed countries to enhance their energy production using any means.
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Renewable energies play an important role in mitigating the negative consequences
of climate change. For example, analyses by the international renewable energy agency
(IRENA) show that 90% of the carbon dioxide reductions are needed to meet nationally
agreed climate targets can be achieved through safe, reliable, and affordable strategies
using renewable energy and energy efficiency [4]. In doing so, many countries and global
organizations have made significant strides towards achieving more sustainable alterna-
tives for energy generation using renewable methods. The development of solar and wind
energies has received considerable attention, as their sources are almost inexhaustible and
easy to acquire anywhere. Other countries have obtained benefits from having abundant
sources of geothermal energy. Some are also exploiting their tidal or wave to generate
electricity, yet not many countries can have enough wave power. Aside from these already
available sources of renewable energy, other countries are also investigating producing
hydrogen fuel as another source of energy, since this can be another cheaper way of energy
generation, meanwhile reducing the emission of greenhouse gases [5].

However, it has raised questions regarding how a country can exploit the potential or
even determine its capacities in renewable energy production. Many countries are now
producing energy using renewable sources, but not everyone is capable of adopting this
new trend in energy generation. Thus, for each nation, the evaluation of its potential
in producing renewable energies is the pre-requisite step in the ambition of developing
renewable energy systems. Simply stated, this assessment process can be regarded as
a multiple criteria decision-making (MCDM) problem that requires various inputs and
criteria. A general MCDM process model is shown in Figure 1 [6,7]. MCDM methods are
often the first choice of researchers to construct evaluation frames in different industries.
For renewable energy sector, MCDM techniques are commonly used to evaluate sources,
efficiency, technologies, alternatives, projects, and policies, to name a few. For example,
Ertay et al. [8] evaluate the renewable energy alternatives for a case study in Turkey,
proposing MACBETH and AHP-based multicriteria methods under fuzziness. Considering
the selection of suitable renewable energy policy as a significant issue, Mousavi et al. [9]
solved two real case studies in developing countries on renewable energy policy selection
problem. In this study, ELECTRE was presented under a hesitant fuzzy environment for
solving the multi-attribute group decision-making (MAGDM) problems in energy sector.
In order to determine the most suitable low-emission energy technologies development
in Poland, Ligus and Peternek [10] introduced a hybrid MCDM model based on FAHP
and FTOPSIS, considering a number of criteria that are defined from the viewpoint of
accomplishment of sustainable development policy goals. In a typical problem of site
selection for installing renewable energy plants, Nazari et al. [11] considered four different
locations as the primary options for utility scale PV plants installation and the best choice
is selected based on a MADM method, TOPSIS. Wang et al. [12] applied the SWOT analysis
and fuzzy AHP method to assess the renewable resources of Pakistan.
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This study will focus on determining which countries have the most capabilities
in producing renewable energy by combining quantitative and qualitative methods of
analysis. The quantitative step involves the use of Pearson’s correlation and the Window
model of data envelopment analysis (DEA), while the qualitative one will use analysis
with the fuzzy technique for order of preference by similarity to ideal solution (FTOPSIS).
In detail, the DEA Window model is used for selecting the candidate countries for the
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period 2010–2019 based on input factors, which are population, total energy consump-
tion, and total renewable energy capacity, while gross domestic product and total energy
production are considered to be output factors. Afterward, FTOPSIS is used for ranking
all potential countries based on five main criteria, which are available resources, energy
security, technological infrastructure, economic stability, and social acceptance. In the
FTOPSIS model, the rating of each alternative and the weight of each criterion are iden-
tified by linguistic value using triangular fuzzy numbers. The managerial implications
of this study enable countries to understand and expedite their potential in renewable
energy production at the center of recovery efforts to secure a structural downward trend
in carbon emissions and achieve more resilient and sustainable development.

The study focuses on two outlooks, first is the use of this combined MCDM model
as an alternative to other methods that are used in the assessment of renewable energy
capabilities. These methods have better advantages when compared to others and they
will be discussed in the succeeding sections. In this paper, the problem of renewable energy
production capability is solved using triangular fuzzy set theory, which is effective in
handling qualitative data and uncertainty of experts’ judgment. Thus, it leads to more
robust and sustainable results when considering fuzzy conditions than deterministic ones.
The second outlook is to provide the countries under studied the analysis on how they
perform in terms of renewable energy utilization and through the presence of criteria used,
they can assess which aspects they do best and need to be improved.

The second section provides details regarding how previous studies describe the
methods and they were used in several applications. The third section describes the
materials and methods that will be used. The fourth section will provide data collection,
and the results analysis on the output data and determine which of the countries are the
most suitable to invest in renewable power generation. Finally, the last section will discuss
concluding remarks.

2. Literature Review

Several studies have been conducted in order to evaluate the renewable energy sector
while using different methods under various scopes. An example of these studies is
from Lee and Zhong [13], in which they are able to construct a composite index that
will evaluate the 50 countries’ concerns in investment through measurement of their
social, environmental, government, and economic situation, in terms of renewable energy
production. With the use of historical data from the year 2004 to 2013, they were able to
devise an investment tool that some investors can use for decision making to guide them
with their investment opportunities. Another study from Iddrisu and Bhattacharyya [14]
focused on the creation of a sustainability index in which this aspect is a common lack to
some energy indicators. Capturing the sustainability aspect will improve the measurement
tools in evaluating the energy efficiency of many countries; this study finds that the index
has a positive correlation to the existing energy development and human development
indices. The measurement indices for the evaluation of energy sustainability have been a
common interest for some research studies, including one from Cirstea et al. [15], in which
they were also able to develop what they called the renewable energy sustainability index.
The method was applied to 15 countries in Europe in assessing their weaknesses and
strengths in terms of renewable energy production. This index enables policymakers to
devise strategic solutions in improving their country’s positive indicators and reduce the
effects of the negative factors.

In spite of several measurement indices that are designed to evaluate any energy
systems, this may not be sufficient, as this only covers quantitative factors and it may be
improved by integrating other methods, such as DEA and TOPSIS. Some other studies were
also conducted using some models of DEA, such as the one from Wang et al. [16] in which
three DEA models were used (CCR, BCC, and SBM) to evaluate the total factor efficiency
of 46 potential solar power plant locations in Vietnam. After which the TOPSIS method
was applied for the ranking of the best locations. The combination of these methods made
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up the multicriteria decision making (MCDM) technique that is commonly used for many
types of industries. Another study was also conducted in Turkey by Şengül et al. [17],
wherein the authors fuzzified the TOPSIS analysis to rank the best energy supply in
the country. The study finds out that the best energy source is hydropower, followed
by geothermal, regulator, and wind power. Kaya and Kahraman [18] used the same
method and integrated the fuzzy analytical hierarchy process (AHP) in order to provide a
quantitative and qualitative evaluation of the different energy systems and removes the
uncertainties in the data set. Factors, such as technical, economic, environmental, and social
aspects, were highly considered by the experts to provide more comprehensive assessments
of several energy supplies such as biomass, hydro, wind, solar, and nuclear.

Based on a generalized framework for multi-criteria method selection, Table 1 sum-
marizes the literature of the proposed methods concerning global renewable energy assess-
ment. Most previous studies have applied DEA and DEA-based modeling approaches,
for example, CCR (Charnes–Cooper–Rhodes) [19–22], Undesirable Output [23–28],
Malmquist [24,29–31], and Window [27]. To define and obtain weights for criteria and
sub-criteria in multi-criteria evaluation of renewable energy alternatives, the most com-
monly used weighting MCDM methods are analytical hierarchy process (AHP)/Fuzzy
AHP [19,21,32–34] and the technique for order of preference by similarity to ideal so-
lution (TOPSIS)/Fuzzy TOPSIS [20,35–38]. Some frequently applied methods are boot-
strap [22,28,31], stochastic frontier analysis (SFA) [26,39], ordinary least square (OLS) [40,41],
regression model [41–43], and hybrid approaches [19–22,24,26–28,31,41]. Other recently
used multi-criteria decision making (MCDM) methods are visekriterijumska optimizacija i
kompromisno resenje (VIKOR) and preference ranking organization method for enrichment
of evaluations (PROMETHEE II) [33,44–49], and other MCDM approaches [20,21,33,50,51].

In this study, the authors considered the DEA Window analysis and FTOPSIS method
based on their advantages and purposes. The DEA Window is capable of measuring the rel-
ative technical efficiency of DMUs from one period to another while taking their efficiency
performance into consideration. While FTOPSIS can provide a ranking of alternatives based
on qualitative criteria. Unlike the ordinary TOPSIS, FTOPSIS operates in the presence of an
uncertain environment, which makes the results more robust and specific. The combination
of these two methods is suitable for this paper. These methods will be discussed more in
the fourth section of this study (i.e., theoretical framework). It is important to note that
the objective of the paper is to propose a combined model of DEA Window and Fuzzy
TOPSIS in order to come up with reliable efficiency and ranking results. To the best of
our knowledge, our paper is the first study to propose an integrated model that combines
the Window model of data envelopment analysis (DEA), and fuzzy technique for order of
preference by similarity to ideal solution (FTOPSIS), for the evaluation of renewable energy
production capabilities of 42 potential countries.
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Table 1. Summary of application studies in renewable energy evaluation.

Authors [Citation] Year

C
C

R

U
nd

es
ir

ab
le

O
ut

pu
t

M
al

m
qu

is
t

W
in

do
w

B
oo

ts
tr

ap

SF
A

O
LS

R
eg

re
ss

io
n

M
od

el

(F
uz

zy
)A

H
P

(F
uz

zy
)T

O
PS

IS

(F
uz

zy
)V

IK
O

R

(F
uz

zy
)P

R
O

M
ET

H
EE

II

O
th

er
(F

uz
zy

)M
C

D
M

Zofío and Prieto [23] 2001 x

Chien and Hu [42] 2007 x

Kaya and Kahraman [44] 2010 x x

Xie et al. [24] 2014 x x

Cicea et al. [40] 2014 x

Lee et al. [25] 2014 x

Robaina-Alves et al. [26] 2015 x x

Woo et al. [30] 2015 x

Zhang et al. [31] 2015 x x

Moutinho et al. [41] 2017 x x

Gan et al. [19] 2017 x x

Jebali et al. [22] 2017 x x

Debbarma et al. [45] 2017 x x x

Moutinho et al. [27] 2018 x x

Li et al. [20] 2018 x x x

Hussain Mirjat et al. [32] 2018 x

Andreopoulou et al. [46] 2018 x

Halkos and Petrou [28] 2019 x x

Wang et al. [39] 2019 x

Siksnelyte and Zavadskas [35] 2019 x

Gomez and Hernandez [36] 2019 x

Babatunde et al. [37] 2019 x

Seddiki and Bennadji [33] 2019 x x x

Mavi and Mavi [29] 2019 x

Rani et al. [38] 2020 x

Shah [21] 2020 x x x

Mastrocinque et al. [34] 2020 x

Wu et al. [47] 2020 x

Alkan et al. [50] 2020 x

Yücenur et al. [51] 2020 x

Zheng and Wang [48] 2020 x

Guleria and Bajaj [49] 2020 x x

Anwar et al. [43] 2021 x

This paper 2021 x x
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3. Research Process

This paper proposes a hybrid DEA window model and FTOPSIS approach for measur-
ing the capabilities of renewable energy production. Figure 2, depicted the research flow
chart, describes how this study will be conducted. The process starts by identifying the
goals and objectives while selecting the proper decision-making units (DMUs). This paper
considers 42 countries, as DMUs, spreading from America, Europe, Asia, to Africa, which
can be highly established and effective in utilizing their renewable energy.
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Figure 2. Research process.

In the first stage, the DEA window model is used to choose lists of candidate potential
countries. The input and output factors must be well distinguished, as these factors also
have a great influence on the DEA method. Based on the objective of the paper and the
list of common input and output factors for renewable energy potential assessments in
previous studies (Table 2). This paper considers three inputs (population, total energy
consumption, and total renewable energy capacity) and two outputs (gross domestic
product, total energy production). A Pearson correlation analysis will be applied to the
data to ensure that the values in the input and output factors are consistent with the
stochastic requirement of DEA. Additionally, once all of the values are correlated with one
another, DEA will proceed. The Window DEA model was chosen to provide the technical
efficiency of the DMUs in a certain period. This will enable the author to see whether the
DMUs have been efficient or not from one year to another. As to the DEA Window results,
the 42 countries will be downlisted to 10 countries. The chosen 10 countries are those that
have achieved the highest efficiency scores among the others.

In the second stage, FTOPSIS is used to rank all of the potential countries, which
is from DEA Window model. Table 3 lists down the different criteria used by several
studies. These criteria are also considered for use in this paper, including the availability
of resources, energy security, technological infrastructure, economic stability, and social
acceptance. Within the context of energy capability assessments, availability of resources,
energy security, and technological infrastructure are traditional key system measurements.
Additionally, the focus on sustainable development has increased, so economic stability
and social acceptance are quintessential factors in long-term profitability and resilience.
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The final optimal ranking is suggested according to the shortest geometric distance from
the fuzzy positive ideal solution (NPIS) and the longest geometric distance from the fuzzy
negative ideal solution (FNIS) values. This method will be able to determine the top three
countries that have the greatest capabilities in producing renewable energies.

Table 2. List of common input and output factors for renewable energy potential assessments used in data envelopment
analysis (DEA) Window model.

No. Authors Year Input Factors Output Factors Application Areas

1 Zhou et al. [52] 2006 Population
Total energy supply

GDP
CO2 emissions 30 OECD countries

2 Choi et al. [53] 2012
Capital

Labor force
Total energy consumption

GDP
CO2 emissions 30 Chinese cities

3 Xie et al. [24] 2014
Fuel and nuclear

Labor force
Installed capacity

Power generation
CO2 emissions 26 OECD countries

4 Cicea et al. [40] 2014
GDP per capita

Renewable energy investment
Energy intensity

CO2 intensity 22 European
countries

5 Robaina-Alves et al.
[26] 2015

Labor productivity
Capital investment

Renewable energy consumption

GDP
Greenhouse gases

26 European
countries

6 Moutinho et al. [41] 2017

Labor
Capital

Weight of fossil energy
Share of renewable energy in GDP

GDP
Greenhouse gases

26 European
countries

7 Moutinho et al. [27] 2018

Share of renewable energy consumption
Energy usage

Population density
Labor productivity

GDP
CO2 emissions

16 Latin America
countries

8 This paper 2021
Population

Total energy consumption
Total renewable energy capacity

GDP
Total energy production

42 potential
countries in

renewable energy

Note: gross domestic product (GDP), organization for economic cooperation and development (OECD).

Table 3. All criteria used in fuzzy technique for order of preference by similarity to ideal solution (FTOPSIS) model.

Main Criteria Description Literature Review

Availability of resource The nature and structure of locations, i.e.,
ecology, geology, land use

Uyan [54], Carrión et al. [55], Sabo et al. [56],
Idris et al. [57], Massimo et al. [58],

Chamanehpour and Akbarpour [59]

Energy security Description of environmental effects, which is
paramount to human security

Augutis et al. [60], Bekhrad et al. [61],
Wang et al. [62], Hamed and Bressler [63],

Lucas et al. [64]

Technological
infrastructure

The technology investment, the distance from
power network, power generators,

transportation infrastructure

Ozdemir and Sahin [65], Demirel and Yalcinn [66],
Uyan [54], Carrión et al. [55], Sabo et al. [56],

Toklu and Uygun [67]

Economic
stability

The demand for electricity consumption,
fixed and variable cost, i.e., construction cost,

operation and management cost

Ozdemir and Sahin [65], Demirel and Yalcinn [66],
Uyan [54], Kengpol et al. [68], Wang et al. [69]

Social
acceptance

Influence of protection law, public acceptance,
legal and regulation compliance

Talinli et al. [70], Wüstenhagen et al. [71],
Wang et al. [16], Paletto et al. [72], Wang et al. [69]
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4. Theoretical Framework
4.1. DEA Window Model

The Pearson is generally used in previous studies, which describes the linear rela-
tionship of two factors, where +1 presents a total positive linear, 0 presents no linear,
and −1 presents a total negative linear. Isotropic is an essential DEA data assumption.
The relationship between the inputs and outputs will be verified before using the DEA
model, which means that it should be in a total positive linear relationship. The Pearson
correlation index is one of the best statistical tests for estimating the correlation between
two factors. The correlation coefficient formula of Pearson’s rab of two factors a and b is
calculated, as seen in Equation (1) [73,74].

rab =
∑n

i=1 aibi − ∑n
i=1 ai ∑n

i=1 bi
n√(

∑n
i=1 ai

2 − (∑n
i=1 ai)

2

n

)(
∑n

i=1 bi
2 − (∑n

i=1 bi)
2

n

) (1)

where n is the sample size; ai bi denote the individual sample points that are related to i.
Because the homogeneity and isotonicity are two critical DEA data assumptions, these

use the correlation test as an imperative step before using DEA. It is certain that there is an
isotonic condition between input and output factors. The input and output data must have
a positive correlation (i.e., the closer the value to +1, the better positive linear correlation),
as can be seen in Figure 3.
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The DEA Window model is nonparametric in the DEA method. It is a useful model to
detect the tendency of DMUs over multiple periods with respect to multiple inputs and
outputs [75]. The procedures of DEA window mode are presented, as follows.

Assume that the DEA window model has r inputs to produce s outputs. Let DMUt
n

represent the nth DMU with (n = 1, 2, 3, . . . , N), which are observed in T period with
(t = 1, 2, 3, . . . , T). Thus, the sample has N × T observations and an observation n in
period t. Subsequently, the input and output vectors of DMUt

n are shown as follows [76].
Equation (2) presents the r-dimensional input vector of DMUt

n.

At
n =

[
a1t

n , a2t
n , . . . , art

n

]′
(2)

Equation (3) presents the s-dimensional output vector of DMUt
n.

Bt
n =

[
b1t

n , b2t
n , . . . , bst

n

]′
(3)

The window starting at the time k, 1 ≤ k ≤ T and with the width w, 1 ≤ w ≤ T − k,
is denoted by kw and has N × w observations. Consequently, the matrix of inputs (Akw)
and the outputs (Bkw) of each window (kw) are presented, as follows.
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The matrix of inputs is presented in Equation (4).

Akw =
[

ak
1, ak

2, . . . , ak
N , ak+1

1 , ak+1
2 , . . . , ak+1

N , ak+w
1 , ak+w

2 , . . . , ak+w
N

]
(4)

The matrix of outputs is presented in Equation (5).

Bkw =
[
bk

1, bk
2, . . . , bk

N , bk+1
1 , bk+1

2 , . . . , bk+1
N , bk+w

1 , bk+w
2 , . . . , bk+w

N

]
(5)

The input-oriented DEA window model for DMUt
n is solved using a form of linear

programming, as can be seen in the mathematical model (6), below.

∅′kwt = min
∅,α

∅

such that

−Akw α +∅a′t ≥ 0

Bkw α− b′t ≥ 0

αn ≥ 0 (n = 1, . . . , N × w)

(6)

4.2. Fuzzy TOPSIS Model

Triangular fuzzy number is the basic concept of fuzzy theory to deal with uncertainty
environment problems [77]. The fuzzy technique for order preference by similarity to
ideal solution (FTOPSIS) was extended from the TOPSIS method for group decision-
making under fuzzy environment [78]. Based on the concept of TOPSIS, the optimal
result of FTOPSIS is defined by calculating the distance between the fuzzy positive ideal
solution (FPIS) and the fuzzy negative ideal solution (FNIS). The procedures of FTOPSIS
are presented, as follows.

Step 1: identifying the criteria that significantly affect renewable energy production
by a summary of previous literature. Subsequently, decision-makers assess the importance
of the criteria using the linguistic weighting value in Table 4.

Table 4. Linguistic value for the important weight of each criteria.

Symbol Definition Scale of Triangular Fuzzy Number

VL Very low (0, 0, 0.1)
L Low (0, 0.1, 0.3)

ML Medium low (0.1, 0.3, 0.5)
M Medium (0.3, 0.5, 0.7)

MH Medium high (0.5, 0.7, 0.9)
H High (0.7, 0.9, 1)

VH Very high (0.9, 1, 1)

Step 2: evaluating the ratings of all alternatives (i.e., by decision-makers) with respect
to criteria using the linguistic rating value in Table 5.

Table 5. Linguistics value for the rating of all alternatives.

Symbol Definition Scale of Triangular Fuzzy Number

VP Very poor (0, 0, 1)
P Poor (0, 1, 3)

MP Medium poor (1, 3, 5)
F Fair (3, 5, 7)

MG Medium good (5, 7, 9)
G Good (7, 9, 10)

VG Very good (9, 10, 10)
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Step 3: converting the linguistic values into triangular fuzzy numbers in order to
obtain the fuzzy weight w̃k

j of criteria Cj by kth decision-makers and fuzzy rating x̃k
ij of

alternative Ai with respect to criteria Cj by kth decision-makers. Subsequently, the fuzzy
decision matrix and fuzzy weight are built, as can be seen in Equations (7)–(10).

D̃ =


x̃11 x̃11 · · ·
x̃21 x̃22 · · ·

x̃11
x̃2n

...
...

...
x̃m1 x̃m2 · · ·

...
x̃mn

 (7)

x̃ij =
1
k

(
x̃1

ij(+)x̃2
ij(+) . . . (+)x̃k

ij

)
(8)

W̃ = [w̃1, w̃2, . . . , w̃n] (9)

w̃j =
1
k

(
w̃1

j (+)w̃2
j (+) . . . (+)w̃k

j

)
(10)

where x̃ij, w̃j are the linguistic values by using triangular fuzzy number, x̃ij =
(
aij, bij, cij

)
,

w̃j =
(
wj1, wj2, wj3

)
; x̃k

ij, w̃k
j denote the performance rating and the important weight of

kth decision-makers, respectively, x̃k
ij =

(
ak

ij, bk
ij, ck

ij

)
, w̃k

j =
(

wk
j1, wk

j2, wk
j3

)
; i = 1, 2, . . . , m,

j = 1, 2, . . . , n.
Step 4: building fuzzy normalized decision matrix, as shown in Equations (11)–(15).

R̃ =
[
r̃ij
]

m×n, i = 1, 2, . . . , m; j = 1, 2, . . . , n (11)

r̃ij =

(
aij

c+j
,

bij

c+j
,

cij

c+j

)
, j ∈ B (12)

r̃ij =

(
a−j
cij

,
a−j
bij

,
a−j
aij

)
, j ∈ C (13)

c+j = maxi
{

cij
∣∣i = 1, 2, . . . , m

}
if j ∈ B (14)

a−j = mini
{

aij
∣∣i = 1, 2, . . . , m

}
if j ∈ C (15)

where B, C are set of benefit and cost criteria, respectively.
Step 5: building fuzzy weighted normalized decision matrix, Equations (16)–(17).

Ṽ =
[
ṽij
]

m×n, i = 1, 2, . . . , m; j = 1, 2, . . . , n (16)

ṽij = r̃ij(×)w̃j (17)

Step 6: calculating FPIS A+ (the most level) and FNIS A− (the worst level).

A+ =
(

ṽ+1 , . . . , ṽ+j , . . . , ṽ+n
)

(18)

A− =
(

ṽ−1 , . . . , ṽ−j , . . . , ṽ−n
)

(19)

where ṽ+j = (1, 1, 1), ṽ−j = (0, 0, 0), j = 1, 2, . . . , n.

Step 7: calculating the distance (d+i and d−i ) of each alternative, i.e., distance measure-
ment between two fuzzy numbers.

d̃+i =
n

∑
j=1

d
(

ṽij, ṽ+j
)

, i = 1, 2, . . . , m (20)
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d̃−i =
n

∑
j=1

d
(

ṽij, ṽ−j
)

, i = 1, 2, . . . , m (21)

Step 8: calculating the closeness coefficient of each alternative, as in Equation (20).

C̃Ci =
d̃−i

d̃+i + d̃−i
, i = 1, 2, . . . , m (22)

Step 9: determining the ranking order of all alternatives. The optimal solution is closer
to the FPIS A+ (the most level) and farther from the FNIS A− (the worst level) as C̃Ci
approaches to 1.

5. Results Analysis
5.1. Data Collection

Table 6 shows a list of countries used in the paper. There are 42 countries, including
14 countries in the European Union, four countries in the commonwealth of independent
states (CIS), two countries in North America, five countries in Latin America, seven coun-
tries in Asia, two countries in the Pacific, four countries in Africa, and four countries
in the Middle East. Because of unavailable data, this paper is limited to the number of
countries. Hence, there are 42 countries with renewable energy where the related data are
collected for the period 2010–2019, from Enerdata [79], IRENA [80], and Worldbank [81].
Table 7 shows descriptive statistics of inputs and outputs. Note that population (PO, unit:
million), total energy consumption (TEC, unit: Mtoe), total renewable energy capacity
(TREC, unit: MW), gross domestic product (GDP, unit: billion), and total energy production
(TEP, unit: Mtoe).

Table 6. List of countries used in the paper.

DMUs Country Region DMUs Country Region

1 Belgium European Union 21 Argentina Latin America
2 Czech Republic European Union 22 Brazil Latin America
3 France European Union 23 Chile Latin America
4 Germany European Union 24 Colombia Latin America
5 Italy European Union 25 Mexico Latin America
6 Netherlands European Union 26 China Asia
7 Poland European Union 27 India Asia
8 Portugal European Union 28 Indonesia Asia
9 Romania European Union 29 Japan Asia

10 Spain European Union 30 Malaysia Asia
11 Sweden European Union 31 South Korea Asia
12 United Kingdom European Union 32 Thailand Asia
13 Norway European Union 33 Australia Pacific
14 Turkey European Union 34 New Zealand Pacific
15 Kazakhstan CIS 35 Algeria Africa
16 Russia CIS 36 Egypt Africa
17 Ukraine CIS 37 Nigeria Africa
18 Uzbekistan CIS 38 South Africa Africa
19 Canada North America 39 Iran Middle East
20 United States North America 40 Kuwait Middle East

41 Saudi Arabia Middle East

42 United Arab
Emirates Middle East

Note: CIS denotes commonwealth of independent states.
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Table 7. Descriptive statistics of input and output factors.

Minimum Maximum Mean Std. Deviation

Population 2.99 1397.72 125.31 279.36
Total energy consumption 18 3284 277.89 547.07

Total renewable energy capacity 0 758,626 37,848.41 82,491.48
Gross domestic product 46.68 21,433.23 1636.98 3165
Total energy production 5 2684 280.38 497.12

Source: calculated by authors.

It is very important to check that all of the inputs and outputs must have a positive
correlation before applying the DEA model. The Pearson correlation test is applied to check
data assumptions (i.e., homogeneity and isotonicity condition). The values of coefficient
correlation are always between −1 and +1. Table 8 shows the Pearson correlation index
of inputs and outputs. The results indicate that the correlation among these factors is in a
positive relationship and significant at the 0.01 level. Hence, the collected data can be used
for the DEA window model.

Table 8. Pearson correlation index of input and output factors.

PO TEC TREC GDP TEP

Population
(PO)

Pearson index 1 0.758 ** 0.711 ** 0.474 ** 0.657 **
p-value 0.000 0.000 0.000 0.000

Sample size 420 420 420 420 420

Total energy
consumption

(TEC)

Pearson index 0.758 ** 1 0.884 ** 0.870 ** 0.936 **
p-value 0.000 0.000 0.000 0.000

Sample size 420 420 420 420 420

Total renewable energy
capacity
(TREC)

Pearson index 0.711 ** 0.884 ** 1 0.747 ** 0.788 **
p-value 0.000 0.000 0.000 0.000

Sample size 420 420 420 420 420

Gross domestic
product
(GDP)

Pearson index 0.474 ** 0.870 ** 0.747 ** 1 0.780 **
p-value 0.000 0.000 0.000 0.000

Sample size 420 420 420 420 420

Total energy
production

(TEP)

Pearson index 0.657 ** 0.936 ** 0.788 ** 0.780 ** 1
p-value 0.000 0.000 0.000 0.000

Sample size 420 420 420 420 420

Note: ** denotes correlation is significant at the 0.01 level (2-tailed).

5.2. Results of DEA Window Model

Figure 4 shows the average efficiency score of the whole countries, which significantly
fluctuated for the period 2010–2019. From 2010–2011, the average score increased from
0.56 to 0.6 (i.e., the peak value for the whole period). From 2011–2016, the average score
continuously decreased. In particular, the average score steadily decreased to 0.59 in 2014,
and then dramatically dropped to 0.53 in 2016 (i.e., the bottom value for the whole period).
From 2016–2018, the average score began to recover, increased to 0.56 in 2018, and then
suddenly dropped to 0.55 in 2019 due to the impact of the Covid-19 crisis on renewable
energy systems around the world [82].

In this stage, DEA window model, i.e., a useful model of DEA to detect the tendency of
DMUs over multiple periods with respect to multiple inputs and outputs, is used to choose
lists of candidate potential countries based on input factors, which are population, total en-
ergy consumption, total renewable energy capacity, and output factors, which are gross
domestic product and total energy production. Table 9 shows the average efficiency ranking
of 42 countries for the whole period 2010–2019. From the results, the top 10 potential coun-
tries with high average efficiency score in 2010–2019 are Norway, United Kingdom, Kuwait,
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Australia, Netherlands, United Arab Emirates, United States, Japan, Colombia, and Italy.
These candidate countries are used for ranking in the next stage using FTOPSIS model.
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Table 9. The average efficiency ranking of 42 countries (2010–2019).

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 Avg Rank

Belgium 0.78 0.79 0.74 0.74 0.77 0.66 0.65 0.69 0.76 0.72 0.73 12
Czech Republic 0.38 0.42 0.38 0.37 0.37 0.34 0.35 0.38 0.43 0.43 0.38 31

France 0.71 0.78 0.73 0.76 0.78 0.66 0.67 0.70 0.75 0.73 0.73 13
Germany 0.72 0.81 0.75 0.78 0.81 0.69 0.71 0.74 0.80 0.78 0.76 11

Italy 0.73 0.79 0.75 0.79 0.85 0.69 0.71 0.74 0.78 0.77 0.76 10
Netherlands 0.94 1.00 0.92 0.95 0.98 0.82 0.81 0.84 0.90 0.89 0.90 5

Poland 0.55 0.53 0.46 0.44 0.46 0.39 0.37 0.38 0.40 0.41 0.44 25
Portugal 0.58 0.61 0.57 0.60 0.61 0.51 0.52 0.54 0.61 0.61 0.58 21
Romania 0.33 0.35 0.33 0.36 0.37 0.34 0.35 0.38 0.43 0.43 0.37 33

Spain 0.64 0.68 0.61 0.66 0.68 0.57 0.59 0.61 0.66 0.64 0.63 16
Sweden 0.67 0.78 0.74 0.79 0.78 0.69 0.67 0.70 0.71 0.68 0.72 14

United Kingdom 1.00 1.00 0.96 0.94 1.00 0.94 0.88 0.88 0.95 0.96 0.95 2
Norway 1.00 1.00 1.00 1.00 0.95 0.97 1.00 1.00 0.97 0.97 0.99 1
Turkey 0.43 0.43 0.44 0.48 0.45 0.39 0.37 0.34 0.31 0.30 0.39 30

Kazakhstan 0.43 0.41 0.45 0.44 0.45 0.41 0.38 0.41 0.42 0.40 0.42 28
Russia 0.36 0.39 0.39 0.41 0.39 0.35 0.35 0.35 0.35 0.37 0.37 32

Ukraine 0.14 0.16 0.17 0.19 0.16 0.14 0.14 0.15 0.16 0.17 0.16 42
Uzbekistan 0.24 0.23 0.23 0.26 0.27 0.31 0.30 0.26 0.26 0.27 0.26 40

Canada 0.60 0.66 0.67 0.66 0.64 0.54 0.53 0.56 0.58 0.58 0.60 19
United States 0.76 0.78 0.79 0.80 0.82 0.84 0.85 0.88 0.91 0.94 0.84 7

Argentina 0.41 0.47 0.48 0.47 0.45 0.49 0.46 0.51 0.44 0.40 0.46 24
Brazil 0.48 0.56 0.51 0.49 0.47 0.36 0.37 0.41 0.37 0.36 0.44 26
Chile 0.41 0.44 0.42 0.42 0.44 0.40 0.39 0.42 0.43 0.42 0.42 29

Colombia 0.77 0.89 0.95 0.83 0.81 0.70 0.65 0.70 0.71 0.68 0.77 9
Mexico 0.50 0.53 0.51 0.53 0.54 0.48 0.44 0.45 0.47 0.48 0.49 22
China 0.24 0.26 0.27 0.28 0.29 0.29 0.28 0.29 0.31 0.31 0.28 38
India 0.23 0.23 0.22 0.22 0.22 0.22 0.22 0.24 0.23 0.24 0.23 41

Indonesia 0.45 0.54 0.53 0.52 0.49 0.47 0.48 0.49 0.48 0.49 0.49 23
Japan 0.87 0.97 0.98 0.79 0.73 0.65 0.73 0.72 0.73 0.75 0.79 8

Malaysia 0.37 0.38 0.38 0.34 0.35 0.33 0.32 0.33 0.35 0.34 0.35 34
South Korea 0.61 0.63 0.62 0.64 0.64 0.58 0.56 0.58 0.60 0.55 0.60 20
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Table 9. Cont.

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 Avg Rank

Thailand 0.28 0.30 0.29 0.28 0.27 0.26 0.25 0.26 0.28 0.29 0.28 39
Australia 0.82 0.94 1.00 1.00 0.97 0.93 0.85 0.90 0.92 0.86 0.92 4

New Zealand 0.52 0.60 0.61 0.65 0.66 0.58 0.61 0.65 0.66 0.66 0.62 18
Algeria 0.74 0.79 0.75 0.72 0.68 0.54 0.56 0.55 0.53 0.47 0.63 17
Egypt 0.32 0.33 0.36 0.36 0.36 0.38 0.35 0.27 0.28 0.31 0.33 36

Nigeria 0.43 0.43 0.46 0.48 0.50 0.46 0.38 0.37 0.38 0.39 0.43 27
South Africa 0.40 0.44 0.43 0.38 0.32 0.30 0.27 0.30 0.31 0.30 0.35 35

Iran 0.35 0.37 0.34 0.29 0.28 0.27 0.30 0.31 0.30 0.27 0.31 37
Kuwait 0.87 0.98 1.00 0.99 1.00 0.93 0.94 0.92 0.93 0.87 0.94 3

Saudi Arabia 0.66 0.73 0.69 0.73 0.66 0.57 0.62 0.63 0.71 0.69 0.67 15
United Arab

Emirates 0.83 1.00 1.00 0.98 0.95 0.82 0.84 0.87 0.90 0.82 0.90 6

Source: calculated by authors.

5.3. Results of Fuzzy TOPSIS Model

The top 10 potential countries with a higher average technical efficiency in renewable
energy production, which were selected from the results of DEA window model, are used
for ranking using the FTOPSIS model. In the FTOPSIS model, the final optimal ranking is
suggested based on five main criteria, which are available of resources, energy security,
technological infrastructure, economic stability, and social acceptance, as can be seen in
Figure 5. These five main criteria that significantly affect renewable energy production
are selected according to the decision-makers’ experience and relevant studies in the past
few decades.
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According to the procedures of FTOPSIS, fuzzy decision matrix and fuzzy weights
of all alternatives, fuzzy normalized decision matrix, and fuzzy weighted normalized
decision matrix are presented in Tables 10–12, respectively.

Table 10. Fuzzy decision matrix and fuzzy weights of all alternatives.

C1 C2 C3 C4 C5

A1 (1, 3, 5) (7.667, 9.333, 10) (7.667, 9, 9.667) (6.333, 7.667, 8.333) (7.667, 9.333, 10)
A2 (5.667, 7.667, 9.333) (6.333, 8, 9.333) (7.667, 9, 9.667) (5.667, 7.667, 9) (6.333, 8, 9.333)
A3 (7, 9, 10) (6.333, 8.333, 9.667) (5.667, 7.333, 8.333) (5.667, 7.667, 9) (5.667, 7.667, 9.333)
A4 (5, 7, 9) (7.667, 9.333, 10) (6.333, 8.333, 9.667) (8.333, 9.667, 10) (7, 8.667, 9.667)
A5 (5, 7, 8.667) (5, 6.667, 8) (6.333, 8, 9) (7.667, 9, 9.667) (7.667, 9.333, 10)
A6 (5, 7, 8.667) (2.333, 3.333, 4.667) (2.667, 4.333, 6.333) (3.333, 4.333, 5.333) (1.333, 3, 5)
A7 (7.667, 9.333, 10) (7, 8.667, 9.667) (7.667, 9.333, 10) (6.333, 8.333, 9.667) (6.333, 8.333, 9.667)
A8 (5, 7, 8.667) (7.667, 9.333, 10) (7.667, 9.333, 10) (7, 9, 10) (7.667, 9, 9.667)
A9 (4.333, 6.333, 8) (6.333, 8, 9) (3, 5, 7) (6.333, 8.333, 9.667) (5.667, 7.667, 9)

A10 (5.667, 7.333, 8.667) (7, 9, 10) (6.333, 8, 9) (4.333, 6.333, 8.333) (4.333, 6.333, 8)
Weight (0.367, 0.567, 0.767) (0.833, 0.967, 1) (0.567, 0.767, 0.9) (0.433, 0.633, 0.8) (0.3, 0.5, 0.667)

Source: calculated by authors.

Table 11. Fuzzy normalized decision matrix.

C1 C2 C3 C4 C5

A1 (0.1, 0.3, 0.5) (0.767, 0.933, 1) (0.767, 0.9, 0.967) (0.633, 0.767, 0.833) (0.767, 0.933, 1)
A2 (0.567, 0.767, 0.933) (0.633, 0.8, 0.933) (0.767, 0.9, 0.967) (0.567, 0.767, 0.9) (0.633, 0.8, 0.933)
A3 (0.7, 0.9, 1) (0.633, 0.833, 0.967) (0.567, 0.733, 0.833) (0.567, 0.767, 0.9) (0.567, 0.767, 0.933)
A4 (0.5, 0.7, 0.9) (0.767, 0.933, 1) (0.633, 0.833, 0.967) (0.833, 0.967, 1) (0.7, 0.867, 0.967)
A5 (0.5, 0.7, 0.867) (0.5, 0.667, 0.8) (0.633, 0.8, 0.9) (0.767, 0.9, 0.967) (0.767, 0.933, 1)
A6 (0.5, 0.7, 0.867) (0.233, 0.333, 0.467) (0.267, 0.433, 0.633) (0.333, 0.433, 0.533) (0.133, 0.3, 0.5)
A7 (0.767, 0.933, 1) (0.7, 0.867, 0.967) (0.767, 0.933, 1) (0.633, 0.833, 0.967) (0.633, 0.833, 0.967)
A8 (0.5, 0.7, 0.867) (0.767, 0.933, 1) (0.767, 0.933, 1) (0.7, 0.9, 1) (0.767, 0.9, 0.967)
A9 (0.433, 0.633, 0.8) (0.633, 0.8, 0.9) (0.3, 0.5, 0.7) (0.633, 0.833, 0.967) (0.567, 0.767, 0.9)

A10 (0.567, 0.733, 0.867) (0.7, 0.9, 1) (0.633, 0.8, 0.9) (0.433, 0.633, 0.833) (0.433, 0.633, 0.8)

Source: calculated by authors.

Table 12. Fuzzy weighted normalized decision matrix.

C1 C2 C3 C4 C5

A1 (0.037, 0.17, 0.384) (0.639, 0.902, 1) (0.435, 0.69, 0.87) (0.274, 0.486, 0.666) (0.23, 0.466, 0.667)
A2 (0.208, 0.435, 0.716) (0.527, 0.774, 0.933) (0.435, 0.69, 0.87) (0.246, 0.486, 0.72) (0.19, 0.4, 0.622)
A3 (0.257, 0.51, 0.767) (0.527, 0.806, 0.967) (0.321, 0.562, 0.75) (0.246, 0.486, 0.72) (0.17, 0.384, 0.622)
A4 (0.184, 0.397, 0.69) (0.639, 0.902, 1) (0.359, 0.639, 0.87) (0.361, 0.612, 0.8) (0.21, 0.434, 0.645)
A5 (0.184, 0.397, 0.665) (0.416, 0.645, 0.8) (0.359, 0.614, 0.81) (0.332, 0.57, 0.774) (0.23, 0.466, 0.667)
A6 (0.184, 0.397, 0.665) (0.194, 0.322, 0.467) (0.151, 0.332, 0.57) (0.144, 0.274, 0.426) (0.04, 0.15, 0.334)
A7 (0.281, 0.529, 0.767) (0.583, 0.838, 0.967) (0.435, 0.716, 0.9) (0.274, 0.527, 0.774) (0.19, 0.416, 0.645)
A8 (0.184, 0.397, 0.665) (0.639, 0.902, 1) (0.435, 0.716, 0.9) (0.303, 0.57, 0.8) (0.23, 0.45, 0.645)
A9 (0.159, 0.359, 0.614) (0.527, 0.774, 0.9) (0.17, 0.384, 0.63) (0.274, 0.527, 0.774) (0.17, 0.384, 0.6)

A10 (0.208, 0.416, 0.665) (0.583, 0.87, 1) (0.359, 0.614, 0.81) (0.187, 0.401, 0.666) (0.13, 0.316, 0.534)

Source: calculated by authors.

As the final ranking from FTOPSIS model, Table 13 and Figure 6 indicate the top three
countries that have the most capabilities in renewable energy production, in which the
United States, Japan, and Australia ranked the first, second, and third, with scores of 0.5774,
0.5767, and 0.5714, respectively.
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Table 13. Distance measurement and closeness coefficient of each alternative.

Alternative Countries d+
i d−i CCi Rank

A1 Norway 2.53389 2.78231 0.52336 7
A2 United Kingdom 2.44247 2.91216 0.54386 4
A3 Kuwait 2.50178 2.86652 0.53397 5
A4 Australia 2.30395 3.07180 0.57142 3
A5 Netherlands 2.52475 2.79734 0.52561 6
A6 United Arab Emirates 3.53176 1.71309 0.32662 10
A7 United States 2.27166 3.10339 0.5774 1
A8 Japan 2.27273 3.09668 0.57673 2
A9 Colombia 2.74876 2.59387 0.48551 9

A10 Italy 2.60542 2.75456 0.51391 8
Source: calculated by authors.
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6. Discussions and Conclusions

For an evaluation of renewable energy production potential of 42 countries spreading
from America, Europe, Asia, to Africa, this study proposed a hybrid methodology that
combines the data envelopment analysis (DEA) Window model, and fuzzy technique for
order of preference by similarity to ideal solution (FTOPSIS). In the first stage, the DEA
Window model was applied to choose the potential DMUs (countries) for the period
2010–2019 based on input factors, which are population, total energy consumption, and to-
tal renewable energy capacity, while gross domestic product and total energy production
are considered to be the output factors. Thus, 10 potential countries, including Norway,
United Kingdom, Kuwait, Australia, Netherlands, United Arab Emirates, United States,
Japan, Colombia, and Italy, were selected. In the next stage, FTOPSIS was used for ranking
all potential countries based on five main criteria, which are available resources, energy
security, technological infrastructure, economic stability, and social acceptance. In the
FTOPSIS model, the rating of each alternative and the weight of each criterion are identi-
fied by linguistic value using triangular fuzzy numbers. By doing that, the FTOPSIS model
pointed out the top three countries (United States, Japan, and Australia) that have the most
capabilities in producing renewable energies.

The generation of renewable energy in the United States reached an all-time high in
2019 of 11.6 billion British thermal units [83]. In another context, Australia continues to lead
the world in deploying renewable energy according to a new analysis from The Australian
National University (ANU), namely, the per capita roll-out of solar and wind-generated
energy contributes to lower greenhouse gas emissions and declining electricity prices [84].
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For Japan, the country is known as one of the world’s biggest energy consumers and
energy importers, dependent on imports from other countries for almost 96% of its primary
energy production. The government recognized the energy supply sensitivity and decided
to restructure the diversification of the energy mix, renewable energies, enhancement
of energy performance, and reduction of carbon emissions. Different renewable energy
technologies are also now being taken into account as substitute sources of energy and
promising ways of supplying domestic energy, as well as crucial factors to enhance the
reliability of the energy supply [85].

The contributions of the paper are three-fold. (1) This study is the first to propose a
hybrid MCDM model that combines the data envelopment analysis (DEA) Window model,
and fuzzy technique for order of preference by similarity to ideal solution (FTOPSIS) for
the evaluation of renewable energy production potential. (2) The results of this paper
provide comprehensive and practical insights for 42 countries around the world to review
and investigate their renewable energy potential. Besides mitigating climate change and
accelerating sustainable development, renewable energy is also key in the responses to
unprecedented crises, such as the Covid-19 pandemic crisis [86]. (3) The authors expect
that this study can be used as a useful guideline for countries to evaluate their potential
not only in renewable energy, but also in any industries’ development.

For future studies involving quantitative and qualitative approaches, the authors
suggest investigating new assessment factors that can impact the production capacities of
renewable energy in order to enhance the resolution of the empirical results. The procedure
and methods that were introduced by the paper can also be considered to explore the
capabilities of many countries in other aspects of energy, such as the use of hydrogen fuel.
Implementing these methods will only require tailor fitting the criteria to see whether some
countries are in a state of low or high readiness in utilizing earth-friendly and low-cost
energy production and consumption. The authors hope that future research regarding
renewable energies can be helpful for many countries’ governments and policymakers
to assess their current performance in terms of their use of their renewable resources.
This paper is also evidence that combining MCDM methods can be a more effective
evaluation model. Their results can be compared together to obtain highly accurate results.
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