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Abstract: This article presents a study devoted to the emerging method of synthesized optimal
control. This is a new type of control based on changing the position of a stable equilibrium point.
The object stabilization system forces the object to move towards the equilibrium point, and by
changing its position over time, it is possible to bring the object to the desired terminal state with the
optimal value of the quality criterion. The implementation of such control requires the construction
of two control contours. The first contour ensures the stability of the control object relative to some
point in the state space. Methods of symbolic regression are applied for numerical synthesis of a
stabilization system. The second contour provides optimal control of the stable equilibrium point
position. The present paper provides a study of various approaches to find the optimal location of
equilibrium points. A new problem statement with the search of function for optimal location of the
equilibrium points in the second stage of the synthesized optimal control approach is formulated.
Symbolic regression methods of solving the stated problem are discussed. In the presented numerical
example, a piece-wise linear function is applied to approximate the location of equilibrium points.

Keywords: synthesized optimal control; symbolic regression; control synthesis; genetic program-
ming; trajectory tracking

1. Introduction

Russian neurophysiologist, Nobel laureate Ivan Pavlov in his Lectures on the work of
the cerebral hemisphere [1] said: “Every material system can exist as an entity only so long
as its internal forces of attraction, cohesion, etc., are equilibrated with the external forces
influencing it. This applies in equal measure to such a simple object as a stone and to the
most complex chemical substance, and it also holds good for the organism. As a definite
material system complete in itself, the organism can exist only so long as it is in equilibrium
with the environment”. Pavlov assumed that all complex physiological organisms aimed
to balance external influences. In this regard, new modern computational methods can be
considered to have emerged to counterbalance new complex computational problems.

The present work is devoted to the development and application of the synthesized
optimal control method [2]. It was developed according to Pavlov’s paradigm for balancing
the challenges of new complex control problems. It is a new approach to optimal control
based on the control of the equilibrium point of a stabilized object. The approach is in two
stages. Initially, a stabilization system is introduced into the control object, so the object
obtains a special property—a special stable equilibrium point appears. It is known that the
object possess good properties for control when its mathematical model in the phase space
has a stable equilibrium point. The equilibrium point can be changed after some time, but
the object, being stabilized, maintains equilibrium at each moment of time. Then, the object
can be controlled by optimally changing the position of the stable equilibrium point.

The key stage of the considered approach is the solution of the control synthesis
problem for constructing the stabilization system. The challenge is to find a mathematical
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expression for the control function. In the general case, this control function must have a
special property: when it is inserted into the differential equations of the mathematical
model of the control object, then a special stable equilibrium point appears in the space
of solutions of these differential equations. All solutions of differential equations from a
certain region of initial conditions will tend to this singular point of attraction.

Most of the known methods of control synthesis are associated with specifics of the
model of the control object [3–6]; for example, analytical methods [7–10], as well as the use
of various controllers [11–13]. However, there are now general numerical approaches to
solve the synthesis problem based on application of symbolic regression methods [14–19].
These can be applied to find a solution without reference to specific model equations.

These methods belong to the class of machine learning control [20–22]. They allow
automatically by means of computer searching for the desired mathematical expression
in a coded form. When it comes to a machine search for mathematical expressions, it is
usually assumed that the researcher firstly determines a structure of the mathematical
expression accurate to parameters, and then the computer looks for the optimal values of
these parameters in accordance with some given criterion. Popular neural networks [23–27]
are also used for these purposes. In this respect, neural networks are also functions of a
given structure, in which it is necessary to find the optimal values of a large number of
parameters. Symbolic regression methods, in contrast to neural networks, allow to search
for the optimal structure of the desired function together with the optimal parameters of
this function. In this context, this approach is more unambiguous and universal. Moreover,
the received function is described in a way which is understandable to a researcher, not a
black box as in the case with neural networks. It can be said that symbolic regression is
a generalization of neural networks. Therefore, all analytical problems, where solutions
must be obtained in the form of functions, can now be solved automatically by computers.
Nonlinear and differential equations, integrals, inverse functions and other problems can
now be solved by numerical symbolic regression methods.

Thus, symbolic regression methods allow a mathematical expression describing the
stabilization system that ensures the presence of an equilibrium point in the state space to
be found. According to the approach, the synthesized function includes a set of parameters
that affect the position of the equilibrium point. Optimal control is realized by changing the
position of the equilibrium point. In previous works on synthesized optimal control [2,28],
the theoretical foundations of the method were presented and comparative estimates with
other known approaches to solving the optimal control problem were given. The emphasis
was placed on the substantiation of an approach to control based on the equilibrium point
and on the numerical solution of the synthesis problem based on symbolic regression
methods. One of the main features of the synthesized approach is in practical feasibility
of the received numerical solutions of the optimal control problem for complex systems.
In applied devices, the control system requires additional adjustments because there are
always some differences between real control systems and analytical solutions made using
models of the control objects. Thus, to implement analytical solutions into practice, it is
necessary to construct additional stabilization systems, which modify the object model
as a whole, significantly complicating it. As a result, analytical trajectories are no longer
optimal. The synthesized solution can be implemented to the object without additional
construction of a stabilization system.

In the present paper, the research of the synthesized optimal control approach is
aimed at studying ways to control equilibrium points. Particularly, this can be just a set of
points. In the general case, the vector of parameters that effect the positions of equilibrium
points can be considered as some function. In this work, the problem statement of optimal
movement according to a set of equilibrium points is presented (Section 2), methods for
solving the stated problem are proposed (Sections 3 and 4) and a computational example
(Section 5) is provided to demonstrate how the approach performs the task with piece-wise
linear functions defining the positions of the equilibrium points.
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2. Problem of Optimal Movement on Trajectory Determined by a Set of Points

The mathematical model of a control object is given in the form of the ordinary
differential equation system

ẋ = f(x, u), (1)

where x ∈ Rn, u ∈ U ⊆ Rm, U is a compact set, m ≤ n.
Given initial conditions

x(0) = x0. (2)

The ordered set of points is given

Y = (y∗,1, . . . , y∗,N), (3)

where y ∈ Rl , l ≤ n.
The formulas of transformation from state space vector x to the vector y are determined

y = w(x), (4)

where
w(x) : Rn → Rl . (5)

The control is to be found in the form

u = v(t) ∈ U (6)

to deliver minimum to the functional

J = t f + a1

N

∑
k=1

min
t
‖y∗,k −w(x(t))‖ → min

u∈U
, (7)

where t f is a finishing time,

t f =

{
t, if t < t+and ‖y∗,N −w(x(t))‖ ≤ ε
t+, otherwise

, (8)

a1 is a weight coefficient, t+ and ε are given positive numbers.
To solve this problem (1)–(8), the control function can be found as

u = h(g(k, t)−w(x(t))) ∈ U, (9)

where

g(k, t) =
{

y∗,k, if (t− tk−1 < ∆) ∧ (‖y∗,k −w(x(t))‖ > ε1)
k← k + 1, tk ← t, otherwise

, (10)

k = 1, . . . , N − 1, t0 = 0, g(N, t) = y∗,N , ∆ and ε1 are given small positive numbers.

3. Synthesized Optimal Control

For solution of the problem (1)–(8), the synthesized optimal control approach was used.
According to the approach, firstly, it is necessary to solve the control synthesis problem and to
provide existence of a stable equilibrium point in the phase space of differential Equation (1).
For this purpose, the control function with the following properties must be found

u = g(x∗ − x), (11)

where x∗ is a constant vector, x∗ = [x∗1 . . . x∗n]T . The function is such that if it is inserted
into right side of differential Equations (1), there is an equilibrium point in the state space

x̃(x̃∗) ∈ Rn (12)
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f(x̃(x̃∗), g(x̃− x∗)) = 0, (13)

det(λE−A) = λn + bn−1λn−1 + . . . + b1λ + b0 =
n

∏
j=1

(λ− λj) = 0, (14)

λj = αj + iβ j, j = 1, . . . , n, (15)

where
αj < 0, j = 1 . . . , n, (16)

i =
√
−1,

A =
∂f(x̃(x∗), g(x∗ − x̃(x∗)))

∂x
, (17)

E is n× n unit matrix.
In the result of the synthesis problem solution, a new mathematical model of control

object is obtained
ẋ = f(x, g(x∗ − x)). (18)

In this model (18), there is a new control vector x∗. This vector x∗ has the same
dimension n as the main state space vector x. There is a domain of values

x∗ ∈ X∗ ⊆ Rn (19)

where the system (18) always has a stable equilibrium point x̃(x∗) in the phase space.
Therefore, the system (18) is controlled by changing the position of the equilibrium point.

Now, in the second stage of the synthesized optimal control approach, it is necessary
to find a control function in the form

x∗ = v(t) (20)

for optimization of criterion (7).
The found control can be implemented directly in the on-board computer of the control

object. Here, it is not necessary to design a stabilization system for movement of the control
object in an optimal trajectory.

When solving the control synthesis problem, the given trajectory (3) is not taken into
account; therefore, in the second stage, the optimal control problem can be solved for any
given trajectory.

4. Numerical Methods
4.1. Methods for the Control Synthesis Problem

The control synthesis problem is the most difficult with regard to realization of the
synthesized optimal control. In control theory, for the synthesis problem, different analytical
methods are used. These are backstepping integrator [8], design of aggregated controller [9],
synthesis on the base of Lyapunov functions [10] and others. All analytical methods are
not universal as they are connected with the mathematical model of the control object.
Technical methods have the same disadvantages [11]. To insert a controller in the control
object, it is necessary to know which control vector component affects which state vector
component. Transformation of the mathematical model to the linear equation system can
be made correctly only for stable system in neighborhood of a stable equilibrium point.

In the synthesized optimal control approach, to solve the control synthesis problem,
machine learning control by symbolic regression is applied. These methods code the mathe-
matical expression on the base of elementary functions sets and search the optimal code of
mathematical expression by a special genetic algorithm.

Symbolic regression learning of control is a universal numerical tool for the synthesis
problem and it is independent of the mathematical model of the control object. However, the
application of symbolic regression methods is very difficult since the search for the function
must be carried out in a space where there is no metric. Furthermore, there are only a few
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research groups in the world dealing with this issue. The majority uses genetic program-
ming [16,17,20,29–31]. It codes a mathematical expression in the form of a computing tree
and presents this code in the form of an array in computer memory. GP has a computational
drawback that consists of the fact that different mathematical expressions have codes of
different lengths. There are many other symbolic regression methods that have fixed lengths
of code, such as Cartesian genetic programming [32], network operator [33] and complete
binary analytic programming [34]. In the application example of the present paper, the
method of the network operator was applied. It is based on the principle of small variations
of the basic solution [35]. The main idea of the principle is that the search for a function
begins not with a random possible solution, but with some given possible solution, which is
called the basic solution. The basic solution can also be random if there is no preliminary data
on the desired function. However, if the developer has some experience or intuition, then he
can put them in the description of the basic solution. The application of this principle helps
to significantly narrow the search space and overcome the mentioned difficulty of search
space complexity, which allows for the synthesis problems to be solved in a reasonable time.

To solve the control synthesis problem, it is necessary for the mathematical model of
the control object (1) to give a set of initial conditions

X0 = {x0,1, . . . , x0,K} ⊆ Rn, (21)

and one terminal condition
x∗ ∈ Rn. (22)

The found optimal control function (11) has to satisfy the optimal value of the criterion

Js = max{t f ,i : i = 1, . . . , K} → min, (23)

where t f ,i is the time it takes to achieve the terminal condition (22) from the initial condition
x0,i, i = 1, . . . , K,

t f ,i =

{
t, if t < t+and ‖x∗ − x(t, x0,i)‖ ≤ ε0
t+, otherwise

, (24)

x(t, x0,i) is a partial solution of the differential equation system (1) from the initial condition
x0,i, i ∈ {1, . . . , K}.

When solving the control synthesis problem (1), (21)–(24) every control function (11) is
inserted into the right part of the mathematical model (18) in the form of a special symbolic
regression code. For calculation of the criterion (23), a special algorithm calculates a value
of control by the code of control function (11).

4.2. Methods for the Optimal Control Problem

The formal mathematical statement for the optimal control problem in the second stage
consists of that for the mathematical model of the control object (18). It is necessary to find
control in the form (20) in order to provide the optimal value of the quality criterion (7).

For numerical solution of the optimal control problem, the axis of time was divided into
some intervals. In each interval, the control function (20) is approximated as a function of
time defined with accuracy to values of some parameters. This allows for the transformation
of the optimal control problem from infinite dimension optimization to a nonlinear pro-
gramming problem in the space with finite dimension. The dimension of the search space
is equal to a number of parameters in each interval multiplied by the number of intervals.
For example, if the control function is approximated in each interval as a piece-wise linear
function, then a number of parameters is equal to the number of intervals plus one. The
piece-wise linear control function (20) has the following form

x∗i = qk+(i−1)d + (qk+(i−1)d+1 − qk+(i−1)d)
t− k∆t

∆t
, (25)
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where q = [q1 . . . qdn]
T is the vector of searched parameters, k is the interval number, k∆t ≤

t < (k + 1)∆t, ∆t is a time interval, d is a number of interval boundaries, k = 1, . . . , d− 1,
i = 1, . . . , n.

To solve the optimization problem, various numerical methods of optimization can
be used. However, many studies have shown [36–39] that the most effective methods for
solving the problem are evolutionary algorithms, in so as far as, generally, the objective
functional could be not unimodal.

5. Computational Example

As an example, consider the problem of optimal control for one mobile robot following
the given trajectories.

The mathematical model of a robot has the following form

ẋ1 = 0.5(u1 + u2) cos(x3),
ẋ2 = 0.5(u1 + u2) sin(x3),
ẋ3 = 0.5(u1 − u2),

(26)

where x = [x1 x2 x3]
T is a vector of state space, u = [u1 u2]

T is a control vector.
Restrictions on control are given

− 10 ≤ ui ≤ 10, i = 1, 2. (27)

Initial conditions are set
xi(0) = 0, i = 1, 2, 3. (28)

The program trajectory is given as an ordered set of N = 40 points

Y = (y∗,1 = [y∗,11 x∗,12 y∗,13 ]T , . . . , y∗,40 = [y∗,40
1 y∗,40

2 y∗,40
3 ]T). (29)

In this example, spaces Rl and Rn coincide

y =




y1
y2
y3


 = w(x) =




1 0 0
0 1 0
0 0 1






x1
x2
x3


. (30)

In the first stage, the synthesis problem (1), (21)–(24) was solved. For the solution, the
network operator method was used. As a result, the following control function was received

ui =





10, if ũi > 10
−10, if ũi < −10
ũi, otherwise

, i = 1, 2, (31)

where
ũ1 = ρ16(A) + sgn(x∗3 − x3) + ρ19(r3(x∗3 − x3)) +

3√D + (ρ23(A) + D)−1, (32)

ũ2 = ρ23(sin(x∗1 − x1) + ρ19(r2(x∗2 − x2)) + tanh(r1(x∗1 − x1)) + r2(x∗2 − x2) + r3(x∗3 − x3))+

ũ1 + sgn(x∗1 − x1) + ρ16(A) + arctan(B) + sin(E), (33)

A = x∗1 − x1 + tanh(tanh(r1(x∗1 − x1)) + r2(x∗2 − x2)sgn(x∗1 − x1) + r3(x∗3 − x3))+

sin(x∗1 − x1) + ρ19(r2(x∗2 − x+2)) + tanh(r1(x∗1 − x1)) + r2(x∗2 − x2)sgn(x∗1 − x1) + r3(x∗3 − x3), (34)

B = ρ19(r2(x∗2 − x2)sgn(x∗1 − x1)) + tanh(r1(x∗1 − x1)) + r2(x∗2 − x2)sgn(x∗1 − x1) + r3(x∗3 − x3))+

arctan(r1(x∗1 − x1)) + ρ4(sin(x∗1 − x1) + sgn(A) + 3

√
3
√

x∗1 − x1 + A+

ρ4(r1(x∗1 − x1)) + tanh(z7) + r2(x∗2 − x2)sgn(x∗1 − x1) + r3(x∗3 − x3) + sgn(z12) +
3
√

x∗1 − x1 + A, (35)
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C = ρ9(x∗3 − x3) + arctan(r1) + sgn(r1(x∗1 − x1)) + ρ23(sin(x∗1 − x1) + B+

ρ19(r2(x∗2 − x2)sgn(x∗1 − x1)) + tanh(r1(x∗1 − x1)) + r2(x∗2 − x2)sgn(x∗1 − x1) + r3(x∗3 − x3)), (36)

D = sin(r3(x∗3 − x3)) + sin(x∗1 − x1) + ρ19(r2(x∗2 − x2)sgn(x∗1 − x1) + tanh(r1(x∗1 − x1))+

r2(x∗2 − x2)sgn(x∗1 − x1) + r3(x∗3 − x3) +
(

3
√

x∗1 − x1 + A
)3

+ tanh(C), (37)

E = ρ16(A) + sgn(x∗3 − x3) + ρ19(r3(x∗3 − x3)) +
3√D + (ρ23(A) + D)−1 (38)

ρ16(z) =
{

z, if |z| < 1
sgn(z), otherwise

, ρ19(z) = sgn(z) exp(−|z|),

ρ23(z) = z− z3, ρ4(z) = sgn(z)
√
|z|, ρ9(z) =

{
1, if z > 0
0, otherwise

,

r1 = 14.72876, r2 = 2.02710, r3 = 4.02222. z9 = r3x3, z10 = ρ8(z7) + z8 + z9z11 =
ρ12(x1) + ρ19(z8) + z10 z12 = x1 + ρ8(z10) + z11 z13 = ρ15(x1) + z12 z14 = ρ4(z7) + z10 +
ρ10(z12) + z13 z15 = ρ13(z7) + ρ4(z11) + ρ10(z12) + ρ15(z13) + z14 z16 = ρ9(x3) + ρ13(r1) +
ρ10(z7) + ρ23(z11) + z15z17 = ρ12(z9) + z11 + ρ14(z13) + ρ8(z16), z18 = z17,z19 = z18,z20 =
ρ23(z12) + z19z21 = ρ10(x3) + ρ19(z9) + ρ15(z18) + ρ5(z20)z22 = ρ16(z12) + z21u1 = z22u2 =
ρ10(x1) + ρ23(z11) + ρ16(z12 + ρ13(z15) + ρ12(z22) + u1

In the second stage, the optimal control problem (7), (18), (20) was solved. The control
function was searched in the form (25).

In the first experiment, the goal trajectory describes function sinus on the plane
{x1; x2}

y∗,1i = 0, i = 1, 2, 3 (39)

y∗,j1 = y∗,j−1
1 + ∆1, j = 2, . . . , 40, (40)

y∗,j2 = 10 sin

(
y∗,j1 π

10

)
, j = 2, . . . , 40, (41)

y∗,j3 = arctan

(
y∗,j2 − y∗,j−1

2
∆1

)
, j = 2, . . . , 40. (42)

where ∆1 = 0.5.
In the search, the following values of parameters were used: ∆t = 0.28, t+ = 5.6. In

total, there were 20 intervals and d = 21 parameters for each component. To find vector a
with 63 components, q = [q1 . . . q63]

T . The parameters had the following constraints

−2 ≤ q1+3k ≤ 22
−12 ≤ q2+3k ≤ 12
−0.5π ≤ q3+3k ≤ 0.5π

, k = 1, . . . , 21. (43)

To solve the problem particle swarm optimization [40] (PSO) algorithm was applied.
As a result, the following solution was found:

q = [18.074 16.838 18.12 11.388 18.379 11.768 11.513 19.312 6.4712 20.686 12.367 16.460
14.280 21.869 21.999 21.974 21.204 21.994 21.992 22.000 22.000 10.438 − 4.645
3.847 8.718 2.988 5.609 5.462 3.956 4.437 − 3.960 0.784 − 0.185 − 7.510 − 10.515
−9.344 − 9.5199.0666.529 − 2.842 − 2.623 − 1.674 − 0.487 1.236 1.547 − 0.310
1.0902 0.514 − 0.015 0.005 − 0.492 0.801 − 0.651 − 1.535 0.881 1.099 − 0.505
−0.272 1.379 1.567 0.894 1.404 1.547]T

(44)

The value of functional (7) is J = 6.4004. In Figure 1 projections of trajectories on the
plane {x1; x2} are presented. In the Figure 1 blue line is the given trajectory, black line is
the trajectory of mobile robot with found optimal control.
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Figure 1. Projections of the given and found trajectories on the horizontal plane.

In Figure 2–4 plots of optimal trajectories xi(t), i = 1, 2, 3 (black lines) and optimal
controls x∗i (t), i = 1, 2, 3 (red lines) are presented.

Figure 2. Optimal trajectory x1(t) (black) and optimal control x∗1(t) (red).

Figure 3. Optimal trajectory x2(t) (black) and optimal control x∗2(t) (red).
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Figure 4. Optimal trajectory x3(t) (black) and optimal control x∗3(t) (red).

As seen from the plots, optimal trajectories and their goal control trajectory of the
position of equilibrium points do not coincide. According to synthesized control, the vector
x∗(t) in control function (25) determines the position of a stable equilibrium point in the
current moment, t. However, according to the criterion (7) the control object should strive
to reach ordered points on the trajectory as quickly as possible, so the control point x∗

should be located behind the point on the trajectory. The control object must not stop at the
trajectory point, and it must go through it or near it. The object moves more slowly near
the equilibrium point than far from it. Therefore, this is the reason why the equilibrium
points trajectory coincides with the trajectory of the object movement.

In the second experiment, the trajectory in the form of a square was considered. The
points were defined by the following Equations (39) and

y∗,i1 = y∗,i−1
1 + ∆2, i = 2, . . . , 11, (45)

y∗,i2 = 0.5y∗,i1 , i = 2, . . . , 11, (46)

y∗,i3 = arctan

(
y∗,i2 − y∗,i−1

2
∆2

)
, i = 2, . . . , 11, (47)

where ∆2 = 0.7,
y∗,i1 = y∗,i−1

1 + ∆3, i = 12, . . . , 21, (48)

y∗,i2 = −2y∗,i1 + 17.5, i = 12, . . . , 21, (49)

y∗,i3 = arctan

(
y∗,i2 − y∗,i−1

2
∆3

)
, i = 12, . . . , 21, (50)

where ∆3 = 0.35,
y∗,i1 = y∗,i−1

1 + ∆4, i = 22, . . . , 31, (51)

y∗,i2 = 0.5y∗,i1 − 8.75, i = 22, . . . , 31, (52)

y∗,i3 = arctan

(
y∗,i2 − y∗,i−1

2
∆4

)
, i = 22, . . . , 31, (53)

where ∆4 = −0.7,
y∗,i1 = y∗,i−1

1 + ∆5, i = 32, . . . , 41, (54)

y∗,i2 = −2y∗,i1 , i = 32, . . . , 41, (55)

y∗,i3 = arctan

(
y∗,i2 − y∗,i−1

2
∆5

)
, i = 32, . . . , 41, (56)

Figure 4. Optimal trajectory x3(t) (black) and optimal control x∗3(t) (red).

As seen from the plots, optimal trajectories and their goal control trajectory of the
position of equilibrium points do not coincide. According to synthesized control, the vector
x∗(t) in control function (25) determines the position of a stable equilibrium point in the
current moment, t. However, according to the criterion (7) the control object should strive
to reach ordered points on the trajectory as quickly as possible, so the control point x∗

should be located behind the point on the trajectory. The control object must not stop at the
trajectory point, and it must go through it or near it. The object moves more slowly near
the equilibrium point than far from it. Therefore, this is the reason why the equilibrium
points trajectory coincides with the trajectory of the object movement.

In the second experiment, the trajectory in the form of a square was considered. The
points were defined by the following Equations (39) and

y∗,i1 = y∗,i−1
1 + ∆2, i = 2, . . . , 11, (45)

y∗,i2 = 0.5y∗,i1 , i = 2, . . . , 11, (46)

y∗,i3 = arctan

(
y∗,i2 − y∗,i−1

2
∆2

)
, i = 2, . . . , 11, (47)

where ∆2 = 0.7,
y∗,i1 = y∗,i−1

1 + ∆3, i = 12, . . . , 21, (48)

y∗,i2 = −2y∗,i1 + 17.5, i = 12, . . . , 21, (49)

y∗,i3 = arctan

(
y∗,i2 − y∗,i−1

2
∆3

)
, i = 12, . . . , 21, (50)

where ∆3 = 0.35,
y∗,i1 = y∗,i−1

1 + ∆4, i = 22, . . . , 31, (51)

y∗,i2 = 0.5y∗,i1 − 8.75, i = 22, . . . , 31, (52)

y∗,i3 = arctan

(
y∗,i2 − y∗,i−1

2
∆4

)
, i = 22, . . . , 31, (53)

where ∆4 = −0.7,
y∗,i1 = y∗,i−1

1 + ∆5, i = 32, . . . , 41, (54)

y∗,i2 = −2y∗,i1 , i = 32, . . . , 41, (55)

y∗,i3 = arctan

(
y∗,i2 − y∗,i−1

2
∆5

)
, i = 32, . . . , 41, (56)
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where ∆5 = −0.35,
The optimal control problem had the following parameters t+ = 4.8, ∆t = 2.4. The

vector of parameters included 63 components. The constraints on the parameters were

−2 ≤ q1+3k ≤ 15
−12 ≤ q2+3k ≤ 8

−0.5π ≤ q3+3k ≤ 0.5π
, k = 1, . . . , 21. (57)

Particle swarm optimization [40] (PSO) algorithm was used for the solution.
The optimal values of parameters were

q = [11.713 12.049 11.075 2.216 7.729 9.378 6.723 12.249 14.714 14.395 12.629 9.562
−0.576 − 1.997 − 1.998 0.180 0.832 − 1.976 − 1.860 − 1.963 − 1.963 2.887
−2.593 5.988 − 1.803 0.593 4.089 6.419 − 1.526 1.047 − 2.163 − 2.196 − 9.116
−6.031 − 5.418 − 7.228 − 2.923 − 6.839 − 2.463 − 0.255 3.917 − 0.131
0.403 − 1.461 1.200 0.338 1.471 0.053 − 1.431 0.213 − 0.591 − 0.096 − 1.451
0.7988 − 0.934 0.451 0.348 1.0291 − 1.512 − 0.566 − 0.125 1.424 − 1.025]T .

(58)

The value of the functional (7) was 5.0544. Projections on the horizontal plane {x1; x2}
of given (blue lines) and found (black lines) trajectories are presented in Figure 5.

Figure 5. Projections of trajectories on the horizontal plane.

Plots of optimal trajectories and controls are presented in Figures 6–8.

Figure 6. Optimal trajectory x1(t) (black) and optimal control x∗1(t) (red) for movement on square.
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Figure 7. Optimal trajectory x2(t) (black) and optimal control x∗2(t) (red) for movement on square.
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Figure 7. Optimal trajectory x2(t) (black) and optimal control x∗2(t) (red) for movement on square.

Figure 8. Optimal trajectory x3(t) (black) and optimal control x∗3(t) (red) for movement on square.

As can be seen from the graphs, the obtained control based on the synthesized optimal
control allows for the problem to be solved with a given accuracy. In Figures 6–8, the effect
of non-coincidence of the trajectories of the equilibrium points and the trajectories of the
object’s movement is also observed, which is quite understandable, as in the first example,
in view of the presence of a performance criterion in the functional.

6. Conclusions

The optimal control problem of movement along a given trajectory determined in the
form of a points set is considered. The quality criterion consists of trajectory travel time
and accuracy. To solve the problem, the synthesized optimal control was used. The main
advantage of the solution achieved using this approach is that it can be realized on the
on-board computer without additional construction of a stabilization system. According
to synthesized optimal control, firstly the control synthesis problem is solved and then a
control is performed by changing equilibrium point location. The position of the equilib-
rium point is defined by some parametric vector, which corresponds to the state vector.
In this work, for the first time—in contrast to other works devoted to the synthesized
approach—an optimal function of time is used to control the equilibrium point position.
In the experiment, two different trajectories for a mobile robot consisting of forty points
were considered. For the control synthesis problem, a machine learning control method
of the network operator was applied. Computational experiments have shown that the
found optimal trajectories of the parametric vector do not coincide with the points of the
trajectory, but the control object moves along the given trajectory fast enough and with a
high accuracy.

Thus, we have demonstrated that the synthesized optimal control method is a mathe-
matical approach to solve the optimal control problem in terms of the quality functional.

Figure 8. Optimal trajectory x3(t) (black) and optimal control x∗3(t) (red) for movement on square.

As can be seen from the graphs, the obtained control based on the synthesized optimal
control allows for the problem to be solved with a given accuracy. In Figures 6–8, the effect
of non-coincidence of the trajectories of the equilibrium points and the trajectories of the
object’s movement is also observed, which is quite understandable, as in the first example,
in view of the presence of a performance criterion in the functional.

6. Conclusions

The optimal control problem of movement along a given trajectory determined in the
form of a points set is considered. The quality criterion consists of trajectory travel time
and accuracy. To solve the problem, the synthesized optimal control was used. The main
advantage of the solution achieved using this approach is that it can be realized on the
on-board computer without additional construction of a stabilization system. According
to synthesized optimal control, firstly the control synthesis problem is solved and then a
control is performed by changing equilibrium point location. The position of the equilib-
rium point is defined by some parametric vector, which corresponds to the state vector.
In this work, for the first time—in contrast to other works devoted to the synthesized
approach—an optimal function of time is used to control the equilibrium point position.
In the experiment, two different trajectories for a mobile robot consisting of forty points
were considered. For the control synthesis problem, a machine learning control method
of the network operator was applied. Computational experiments have shown that the
found optimal trajectories of the parametric vector do not coincide with the points of the
trajectory, but the control object moves along the given trajectory fast enough and with a
high accuracy.

Thus, we have demonstrated that the synthesized optimal control method is a mathe-
matical approach to solve the optimal control problem in terms of the quality functional.
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The approach is quite universal as it is not tied to specific properties of the control object
model or a type of trajectory, nor does it require manual selection of control channels or
selection and adjustment of controllers. The development of the control system occurs
automatically using modern computational machine learning methods.
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