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Abstract: By applying the Adams-Bashforth-Moulton method (ABM), this paper explores the com-
plexity and synchronization of a fractional-order laser dynamical model. The dynamics under the
variance of derivative order q and parameters of the system have examined using the multiscale
complexity algorithm and the bifurcation diagram. Numerical simulation outcomes demonstrate
that the system generates chaos with the decreasing of q. Moreover, this paper designs the coupled
fractional-order network of laser systems and subsequently obtains its numerical solution using ABM.
These solutions have demonstrated chimera states of the proposed fractional-order laser network.

Keywords: chaotic laser; network; fractional calculus; chimera state; complexity

1. Introduction

The fractional-order calculus has solved various important problems, which eventually
explained some of the natural phenomena [1–3]. In recent years [4–6], its application to
chaotic systems-based communications and encryption has attracted lots of attention,
and this is due to the high efficiency of fractional-order chaotic models [7,8]. Nevertheless,
the literature has only a few studies about the complex dynamics of fractional-order laser
chaotic systems. Therefore, this study discovers the complex dynamics of a fractional-order
laser system for broadening the applications of such models.

Complex dynamics analysis is crucial for both integer-order and fractional-order
chaotic systems, and this is due to its importance for determining proper parameters.
The most used methods are the phase portraits, bifurcation diagram, 0–1 test [9], and maxi-
mum Lyapunov exponents. The complexity of the system’s time series is considered the
most efficient technique for extracting the chaotic system’s properties [10–13]. For the time
being, the permutation entropy (PE) [14], the statistical complexity measure (fuzzy entropy
(FuzzyEn) [15], and SCM [16]), the spectral entropy (SE) [17], and the C0 algorithm [18]
are the most widely used for estimating the complexity of the time series. Meanwhile,
the SE [17] and C0 [18] algorithms are more precise methods to evaluate the complexity
of chaotic time series. Recently, Coast et al. [19] proposed multiscale SampEn (MSampEn)
to estimate the complexity of time series more reliably and accurately. By employing the
idea of multiscale, the C0 and the multiscale SE algorithms are employed to examine the
complexity performance of the fractional-order chaotic laser model [20].

Therefore, investigating the complexity of an isolated laser system is important since
it provides a basis for the study of the dynamical behaviors of a laser network. As a matter
of fact, a complex network coupled by nonlinear systems such as neurons has become
a hot research topic. Structure, dynamics, synchronization, and the stability of different
networks have been widely investigated [21–23]. As a result, coupling is widely used in the
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oscillators and nonlinear systems for the synchronization control due to its simplicity and
efficiency. Recently, chimera states in the network of coupled oscillators show emergent
patterns, which has attracted much attention of scholars [24–27]. Moreover, different kinds
of fractional-order calculuses have been introduced to the nonlinear systems [28–30], and it
is found that those systems have more complex dynamics and the derivative order is also
a bifurcation parameter. As a result, introducing the fractional derivative to the complex
networks becomes necessary.

Specifically, researchers also keep abreast of research hotspots of dynamics and syn-
chronization control in the laser networks [31–33]. For instance, Gonzélez et al. [31]
investigated synchronization emerges in a small network of delay-coupled lasers and
Şafak et al. [32] investigated the performance of a synchronous multi-color laser network
with daily sub-femtosecond timing drift. It should be noted that the coupled laser networks
are widely investigated due to the simple controls. Since the fractional-order calculuses
provide a more effective way for modeling of nonlinear systems [28–30,34], it is crucial to
study how the fractional derivative order, the coupling strength and the structure affect the
complex dynamics of the network, especially to analyze different chimera states in such
networks. In this paper, we construct a ring network of the fractional-order laser system
and analyze its dynamical behaviors, where the system parameters are chosen according
to the dynamical analysis results. Moreover, the appearance of a chimera state is explored
by varying the network coupling strength, the connection number of each node and the
fractional-order derivative order.

The remainder of this paper is arranged as follows. Section 2 introduces the system
of the fractional-order chaotic laser model and obtains its numerical solution by applying
Adams-Bashforth-Moulton (ABM). In Section 3, complexity in the fractional-order laser
system is analyzed. In Section 4, the coupled ring network of the fractional-order laser
systems is examined, and the simulation and analysis of the network are carried out.
The results are summarized in Section 5.

2. Dynamics of the Fractional-Order Laser System

Here, we briefly describe the fractional-order of a laser model. Subsequently, we
obtain its solution by the ABM.

2.1. System Model

Maxwell–Bloch equations are partial differential equations that formulate the chaotic
scenario of a laser model. These equations describe the dynamics of a two-state quantum in-
teracting with the electromagnetic mode of an optical resonator. Using some transformation
on Maxwell–Bloch equations, we introduce a set of ODEs as follows [35,36]

ẋ1 = −a(x1 − x3)−
(
x2

1 + x2
2
)
(Q2x1 + Q1x2),

ẋ2 = −a(x2 − x4)−
(
x2

1 + x2
2
)
(Q1x1 −Q2x2),

ẋ3 = −(x3 − dx4) + (c− x5)x1,
ẋ4 = −(x4 − dx3) + (c− x5)x2,
ẋ5 = −bx5 + x1x3 + x2x4,

(1)

where Q1, Q2, a, b, c, and d are control parameters. Chaos and multi-periodic orbits of the
system (1) appear for different sets of parameters [35].

Suppose that q ∈ (0, 1] is a fractional derivational order. Thus, the corresponding
fractional-order laser system is defined by

Dq
t0

x1 = −a(x1 − x3)−
(
x2

1 + x2
2
)
(Q2x1 + Q1x2),

Dq
t0

x2 = −a(x2 − x4)−
(
x2

1 + x2
2
)
(Q1x1 −Q2x2),

Dq
t0

x3 = −(x3 − dx4) + (c− x5)x1,
Dq

t0
x4 = −(x4 − dx3) + (c− x5)x2,

Dq
t0

x5 = −bx5 + x1x3 + x2x4,

(2)



Symmetry 2021, 13, 341 3 of 14

where, Dq
t0

is known as the Caputo fractional-order derivative [37], which is given by

Dq
t0

x(t) =

{
1

Γ(1−q)

∫ t
t0

ẋ(τ)
(t−τ)q dτ, 0 < q < 1,

ẋ(t), q = 1,
(3)

2.2. Solution Based on the Adams-Bashforth-Moulton Algorithm

For obtaining the solution of the system (2), we use the Adams-Bashforth-Moulton
(ABM) algorithm [38], which is given by{

Dq
t0

x(t) = f (t, x(t)), 0 ≤ t ≤ T,

x(k)(0) = x(k)0 , k = 0, 1, 2, · · · , dqe − 1,
(4)

where x(k)(0) = x(k)0 represent the initial condition.
Now, let us introduce the Volterra integral equation, which is given by

x(t) =
dqe−1

∑
k=0

x(k)0
tk

k!
+ Jq

t f (t, x(t)), (5)

where,

Jq
t x(t) =

1
Γ(q)

∫ t

0
(t− τ)q−1x(τ)dτ, (6)

is the fractional-order integral. It is crucial to state that the Volterra integral equation is
equivalent to the system (4).

However, consider h = T/N, tj = jh (j = 0, 1, · · · , N ∈ Z+), then the discrete solution
of system (4) is denoted as

xh(tn+1) =
dqe−1

∑
k=0

x(k)0
tk
n+1
k! + hq

Γ(q+2) f (tn+1, xq
h(tn+1)),

+ hq

Γ(q+2)

n
∑

j=0
φj,n+1 f (tj, xh(tj)),

(7)

in which

xq
h
(tn+1) =

dqe−1

∑
k=0

x(k)0
tk
n+1
k!

+
1

Γ(q)

n

∑
j=0

ϕj,n+1 f (tj, xh(tj)), (8)

ϕj,n+1 =
hq

q
[(n− j + 1)q − (n− j)q], 0 ≤ j ≤ n, (9)

φj,n+1 =


nq+1 − (n− q)(n + 1)q, j = 0,
(n− j + 2)q+1 + (n− j)q+1 − 2(n− j + 1)q+1, 1 ≤ j ≤ n,
1, j = n + 1.

(10)

Now, we employ the function “FDE12.m” (https://www.mathworks.com/matlabcentral/
fileexchange/32918-predictor-corrector-pece-method-for-fractional-differential-equations
(accessed on 20 January 2021)) under Matlab software to implement the ABM algorithm.
However, Figure 1 shows the phase diagrams of system (2) for different values of the
derivative order q. As shown in this figure, a periodic circle and chaotic attractor are
observed with derivative order q = 0.98 and 0.998, respectively.

https://www.mathworks.com/matlab central/fileexchange/32918-predictor-corrector-pece-method-for-fractional-differential-equations
https://www.mathworks.com/matlab central/fileexchange/32918-predictor-corrector-pece-method-for-fractional-differential-equations
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(a) (b)

Figure 1. Phase portraits with a = 2, b = 0.8, c = 70, d = 0.01, Q1 = 0.005 and Q2 = 0.01:
(a) q = 0.98; (b) q = 0.998.

3. Complexity in the Fractional-Order Laser Chaotic System
3.1. Bifurcation Analysis

To investigate the dynamics of system (2), three different cases are considered as
follows. It is crucial to state here that the initial values of the system in these three cases are
set as x0 = [0.1, 0.2, 0.3, 0.4, 0.5], and the sequence length is N = 104 with removing the first
104 points of data.

(1) Fix a = 2.0, b = 0.8, c = 70, d = 0.01, Q1 = 0.005, Q2 = 0.01 and vary q from 0.98 to 1 with
a step size of 8× 10−5. Figure 2a,b depict the dynamics of system (2) using two significant
analyses, which are the bifurcation diagram and Lyapunov exponents, respectively. Multi-
periodic or periodic appears when q takes smaller values, but it becomes to be chaotic
when q > 0.993. As a result, with the derivative order, system (2) owns bright dynamics.

(2) Fix b = 0.8, c = 70, d = 0.01, Q1 = 0.005, Q2 = 0.01, q = 0.999 and vary a from 1 to 5
with a step size of 0.016. Figure 2b,e shows that the system is totally chaotic with different
values of parameter a, and the largest Lyapunov exponents increase with the growth of
parameter a. It means that the complexity of the system increases with the growing values
of a.

(3) Fix a = 2.0, c = 100, d = 0.01, Q1 = 0.005, Q2 = 0.01, q = 0.98 and vary c from 70
to 200 with a step size of 0.52. The dynamics of system (2) are depicted in Figure 2c,f.
As shown in Figure 2c,f, the system becomes too chaotic when c > 148. However, starting
from q = 0.98, the maximum Lyapunov exponent is close to zero.

(b) (c)(a)

(e) (f)(d)

Figure 2. Dynamics of the system (2): (a–c) the bifurcation diagrams versus q, a, and c varying, respectively; (d–f) LEs
versus q, a, c varying, respectively.
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According to the bifurcation diagram results in the above three cases, the system is
chaotic with a relatively large derivative order q, the parameters a and c. Vary q from 0.95
to 1 with a step size of 5× 10−4, and vary a from 1 to 5 with a step size of 0.04. The largest
Lyapunov exponents contour plot of the system is illustrated in Figure 3a. Obviously,
the system has relatively large Lyapunov exponents in the top right corner of the parameter
plane. Meanwhile, the minimum order for chaos is about q = 0.96 according to Figure 3a.
Moreover, we vary the derivative order 0.97 to 1 with a step size of 3× 10−4, and increase
c from 70 to 200 with a step size of 1.3. The largest Lyapunov exponents contour plot is
depicted in Figure 3b. It is clear that the higher complexity values of the system appear
with larger values of q and the smaller values of c.

(b)(a)

Figure 3. Maximum Lyapunov exponent based contour plots: (a) q− a plane; (b) q− c plane.

3.2. Multiscale Complexity Analysis

Suppose that the time series {x(n), n = 0, 1, 2, 3, · · · , N − 1}, and its corresponding
discrete Fourier transformation is given by

X(k) =
N−1

∑
n=0

x(n)e−j 2π
N nk =

N−1

∑
n=0

x(n)Wnk
N , (11)

where k = 0, 1, · · · , N − 1 and j =
√
−1 is the imaginary unit. If the power of a discrete

power spectrum with the kth frequency is |X(k)|2, then the probability of this frequency is
defined as

Pk =
|Xk|2

N/2−1
∑

k=0
|Xk|2

. (12)

Using the discrete Fourier transformation, the summation runs from k = 0 to k =
N/2− 1. The entropy of this probability distribution with the same summation limits in
Equation (8) is [17]

SE(x) =
1

ln(N/2)

N/2−1

∑
k=0

Pk ln Pk. (13)

Assume the square value of {X(k), k = 0, 1, 2, · · · , N − 1} is

GN =
1
N

N−1

∑
k=0
|X(k)|2. (14)

In addition, suppose

X̃(k) =
{

X(k) i f |X(k)|2 > ξGN
0 i f |X(k)|2 ≤ ξGN

, (15)

where ξ is a control parameter, then the C0 complexity algorithm can be defined as [18]
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C0(x, r) =

N−1
∑

k=0
|X(k)− X̃(k)|2

N−1
∑

n=0
|X(k)|2

. (16)

Now, the consecutive coarse-graining of a one-dimensional discrete time series is
given by [19]

yτ(j) =
1
τ

jτ−1

∑
(j−1)τ

x(j), (17)

where 1 ≤ j ≤ [N/τ], τ represents the non-overlapping window length. Distinctly,
for τ = 1, the sequence yτ represents the prime sequence {x(n), n = 0, 1, 2, · · · , N − 1}.
However, the multiscale complexity in this paper is defined as [20]

MSE =
1

τmax

τmax

∑
τ=1

SE(yτ), (18)

and

MC0 =
1

τmax

τmax

∑
τ=1

C0(yτ). (19)

MSE and MC0 are employed to estimate the complexity of system (2), where the maxi-
mum scale factor τmax = 25. Complexity results with q varying are plotted in Figure 4a,d,
and complexity results with a and c are plotted in Figure 4b–e and Figure 4c–f, respec-
tively. Meanwhile, complexity results in the q− a and q− c parameter planes are shown
in Figure 5. Firstly, it is obvious that the complexity results coincide with the bifurca-
tion diagram and Lyapunov exponents. Secondly, it means that the system exhibits high
complexity for real applications. Here, we vary a from 1 to 5 with a step size of 0.04,
and increase c from 70 to 200 with a step size of 1.3. The complexity contour plots with
q = 0.98, 0.99 and 0.999 are shown in Figure 6. It can be observed that the wider region
of high complexity values appear when q takes larger values. Meanwhile, the system
exhibits larger complexity values when parameter c is larger, and the system has wider
range of high complexity when the parameter a is relatively larger. In conclusion, q, a,
and c determines the complexity performance of the system.

(b) (c)(a)

(d) (e)
(f)

Figure 4. Complexity analysis results of the fractional-order laser system: (a) MSE with the derivative order q varying;
(b) MSE with the parameter a varying; (c) MSE with the parameter c varying; (d) MC0 with the derivative order q varying;
(e) MC0 with the parameter a varying; (f) MC0 with the parameter c varying.
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(a) (b)

(c) (d)

Figure 5. Complexity measure results based contour plots: (a) q− c plane using MC0 algorithm; (b) q− c plane using MSE
algorithm; (c) q− a plane using MC0 algorithm; (d) q− a plane using MSE algorithm.

(a) (b) (c)

(d) (e) (f)

Figure 6. Complexity results based contour plots in a− c plane: (a) MC0 complexity with q = 0.98; (b) MC0 complexity
with q = 0.99; (c) MC0 complexity with q = 0.999; (d) MSE complexity with q = 0.98; (e) MSE complexity with q = 0.99;
(f) MSE complexity with q = 0.999.
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4. Network Dynamics of the Fractional-Order Laser Systems
4.1. Building of the Laser Network

In this section, the coupled ring network of different identical fractional-order laser
systems is proposed. The equations of the network are defined as

Dq
t0

xi,1 = −a(xi,1 − xi,3)−
(

x2
i,1 + x2

i,2

)
(Q2xi,1 + Q1xi,2) +

κ
2K ∑

j∈Nodes

(
xj,1 − xi,1

)
,

Dq
t0

xi,2 = −a(xi,2 − xi,4)−
(

x2
i,1 + x2

i,2

)
(Q1xi,1 −Q2xi,2),

Dq
t0

xi,3 = −(xi,3 − dxi,4) + (c− xi,5)xi,1,
Dq

t0
xi,4 = −(xi,4 − dxi,3) + (c− xi,5)xi,2,

Dq
t0

xi,5 = −bxi,5 + xi,1xi,3 + xi,2xi,4,

(20)

where κ is the coupled strength, 2K is the number of the nearby nodes, Nodes contains the
index of the nearby nodes, and there are N nodes (i = 1, 2, · · · , N) in the network. In this
paper, each node contains a fractional-order laser system. As a matter of fact, the node i is
connected with its nearby 2K nodes. Figure 7 shows the networks of 50 nodes with different
values of K. When K = 1, each node is connected with its two neighbors. The dynamics of
this kind of network are investigated by He et al. [39] but with different systems. When
K > 1, there are more connections, and the network becomes more and more complicated
with the increase of K.
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Figure 7. Examples of the proposed networks with 50 nodes: (a) K = 1; (b) K = 2; (c) K = 5;
(d)·K = 15.

To find all the connected nodes (Nodes), Algorithm 1 is designed. The input of
variables are i, K and N. Here, we have 1 ≤ i ≤ N, 2K < N. For instance, when K = 1,
i = 1 and N = 50, the nodes found are j = 50 and j = 2, while if i = 10, the nodes find
are j = 9 and j = 11. The output of the function is a matrix, thus nodes found for i = 1 is
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Nodes = [50, 2]. Then the equations can be programmed, realized using the found Nodes,
namely, j takes values from the matrix Nodes.

Algorithm 1 Find the index of neighbors of node i, the function name is Find Nodes
(i, K, N).

Input: i, K, N
Output: Nodes

if i + K ≤ N then
Node1 = i + 1 7→ i + K;

else
Node1 = [i + 1 7→ N, 1 7→ K− (N − i)];

end if
if i− K > 0 then

Node2 = i + 1 7→ i + K;
else

Node2 = [1 7→ i− 1, N − K + i 7→ N];
end if
Nodes = [Node1, Node2];

4.2. Synchronization and Chimera States in the Network

According to the complexity results and phase diagrams, which have been shown
in Figure 1, we choose the system parameters a = 2.0, b = 0.8, c = 70, d = 0.01, Q1 = 0.005
and Q2 = 0.05. When q = 0.98, the system is periodic, while q = 0.998, the system is
chaotic. Meanwhile, the number of the nodes in the network is 500, namely, N = 500.
The initialization of network is set using random numbers. As a result, in the simulations,
we choose it as x0 = random(5 ∗ N, 1). Meanwhile, let us define the network error with
respect to time as

Error(t) =
1
N

(
N

∑
i=2
|xi,1 − xi−1,1|+ |xN,1 − x1,1|

)
. (21)

It shows the difference between different nodes. If Error(t→ ∞)→ 0, the network is
synchronized. Otherwise, there is no synchronization. Meanwhile, if there are coexisting
zero and nonzero values, chimera states can be observed.

The dynamics of the network with different values of q and number of connections
K are investigated. Figure 8 demonstrates the spatiotemporal patterns of the ring net-
work of fractional-order laser systems with 500 nodes and couple strength κ = 5. When
q = 0.98, the spatiotemporal patterns of the network are shown in Figure 8a–c, and the
errors are shown in Figure 8d–f. Meanwhile, q = 0.998, the simulation results are shown
in Figure 8g–l. When K = 10, the networks with q = 0.98 and 0.998 are not synchronized.
However, when q = 0.98 and K takes larger values, the network is synchronized. Moreover,
when q = 0.998 and K equals 50 and 100, it can be seen in Figure 8g–l that the spatiotempo-
ral behaviors demonstrate the coherent and incoherent states, thus there are chimera states.
As a result, when q = 0.998 and κ = 5, there is no synchronization with different K. We
fix q = 0.998 and K = 100, the spatiotemporal patterns of the network are obtained after
three simulations and the results are shown in Figure 9. Since the initial conditions of each
experiment is different due to the randomness, it shows that the network is also sensitive
to the initial values.

Let the coupling strength κ = 5 and derivative order q =0.98 and 0.998, and vary
the connection number K =15, 55, 95, 125 and 155. Each experiment is carried out two
times with different initial conditions, and the network errors with respect to time are
shown in Figure 10a–d. It shows that the network can be synchronized when q = 0.98
and K > 15. However, when q = 0.998, it shows in Figure 10c,d that the network cannot
be synchronized and non-stationary chimera states are observed, where the positions of
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coherent and incoherent oscillators vary in time. Fix the connection number K = 50 and
derivative order q =0.98 and 0.998, and the coupling strength κ is set as 5, 15, 25, 35 and
45. The analysis results are shown in Figure 10e–h. For each q, the experiments are carried
two times and they are obtained with different initial conditions. Obviously, the network is
synchronized when q = 0.98 and the chimera state is observed when q = 0.998. Generally,
larger coupling strength κ and more connections K cannot make the network synchronized.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 8. Spatiotemporal patterns and errors of the ring network of fractional-order laser systems with 500 nodes and the
couple strength κ = 5: (a–c) Spatiotemporal patterns with q = 0.98 and K equal to 10, 50, 100, respectively; (d–f) errors with
q = 0.98 and K equal to 10, 50, 100, respectively; (g–i) spatiotemporal patterns with q = 0.998 and K equal to 10, 50, 100,
respectively; (j–l) errors with q = 0.998 and K equal to 10, 50, 100, respectively.
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(a) (b) (c)

Figure 9. Spatiotemporal patterns of the ring network of fractional-order laser systems with 500 nodes, the couple strength
κ = 5, the derivative order q = 0.998 and the connections number K = 100: (a) the first time; (b) the second time; (c) the
third time.
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Figure 10. Errors of the ring network of fractional-order laser systems with 500 nodes: (a) κ = 5, q = 0.98, different K and
the experiment of the first time; (b) κ = 5, q = 0.98, different K and the experiment of the second time; (c) κ = 5, q = 0.998,
different K and the experiment of the first time; (d) κ = 5, q = 0.998, different K and the experiment of the second time;
(e) K = 50, q = 0.98, different κ and the experiment of the first time; (f) K = 50, q = 0.98, different κ and the experiment of
the second time; (g) K = 50, q = 0.998, different κ and the experiment of the first time; (h) K = 50, q = 0.998, different κ and
the experiment of the second time.

Therefore, it can be concluded that the network is hard to be synchronized when
the fractional-order laser system is chaotic (q = 0.998). Furthermore, the network is
synchronized with proper coupling strength and connection numbers when the laser
system is periodic (q = 0.98). Since each node contains a fractional-order laser system, the
network is a fractional-order network, and its dynamics are determined by the derivative
order q. Meanwhile, states of the network are determined by the initial conditions, and the
chimera states are observed in the network. We hold the opinion that the laser network can
have complex dynamical behaviors.

5. Discussion

For the neural process in nature, there are many potential applications regarding
the chimera states. For instance, the bump states in the neural system localized regions
of coherent oscillation surrounded by incoherence deduced the chimera states. Further-
more, various types of neuronal diseases, including schizophrenia, Parkinson’s disease,
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Alzheimer’s disease, and epileptic seizures connect to the sorting of co-existence of syn-
chronization and desynchronization [40]. However, as far as we know, although the optical
chimera state is not a new topic and it has already been reported [41,42], there are few
reports on the chimera state of the fractional-order laser network. As a matter of fact, an
optical chimera state was observed in the experiments and simulations, and it shows that
the amplitude-phase coupling is necessary for the formation of the chimera states.

Here, the network investigated is a ring coupled network with limited numbered
neighbor links. In real situations, the network can be with other structures. However,
the analysis results can be concluded that the fractional-order laser network can have
complex dynamics and even show chimera states. The main reason comes from the
complex dynamics of the laser system the amplitude-phase coupling. When the original
laser system is chaotic, chimera states are observed. Otherwise, when the original laser
system is periodic, the network can be synchronized.

However, we still hope there will be more experiments, which can point out the
existence of fractional-order laser systems or can better explain the physical significance.
Meanwhile, the existence of chimera states in the laser is observed. However, applications
of chimera states in the laser system should be further investigated.

6. Conclusions

This paper has explored the complexity and synchronization of a fractional-order
laser system. Multiscale SE and C0 algorithms have been applied to analyze the com-
plexity performance of the time series of the system. Meanwhile, the ring network of the
fractional-order laser models has been built with the presence of periodic and chaotic states.
The following conclusions are stressed.

(1) Symmetric chaotic attractors and periodic circuits are observed, and chaos is found
in the system.

(2) It can be observed that the fractional-order laser system has a wide range of high
complexity regions in the parameter planes.

(3) It exhibits rich dynamics with the variance of q, a, and c, which was verified by a
bifurcation diagram, phase diagram, MSE complexity and MC0 complexity.

(4) Simulation results show that the chimera states can be observed only when the
laser systems exhibit chaotic behaviors. Meanwhile, the network is synchronized with the
periodic behaviors of the systems.

In fact, our analysis has demonstrated the complex behaviors of the proposed fractional-
order laser network, especially the existence of different kinds of chimera states. Our next
work will focus on the applications of chimera states in the fractional-order laser network.
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