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Abstract: In this work we establish a few equivalent statements of a Hilbert-type integral inequality
in the whole plane related to the kernel of the arc tangent function. We prove that the constant factor,
which is associated with the cosine function, is optimal. Some special cases as well as some operator
expressions are also presented.
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1. Introduction
It - -
0< / A (x)dx < oo and 0 < / % (y)dy < oo,
0 0

then we have the following well-known Hilbert integral inequality (see [1]):

/OOO /Ooo f(ﬁf](/‘l/)dxdy < n(/ooofz(x)dx I/Ooogz(y)dy> %, 1)

where the constant factor 7 is the best possible. Recently, using weight functions, some
extensions of (1) were established in Yang’s two books (see [2,3]) and the papers [4-9].
Most of them are constructed in the quarter plane of the first quadrant.

In 2007, Yang [10] proved the following Hilbert-type integral inequality in the whole
plane (namely (x, y)-plane) involving the exponential function:

[ L

< B(35) ([t [T e Mgwa) g e

with the best possible constant factor B(%, %), A > 0, where by B(u,v) we denote the beta

function). In the papers [11-22], the authors have presented some new Hilbert-type integral
inequalities in the whole plane for which they have established optimal constant factors.
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In 2017, Hong [23] proved two equivalent statements between a Hilbert-type inequality
with the general homogenous kernel and a few parameters. This domain of research is very
vibrant with many authors investigating other types of integral inequalities (cf. [24-38]).

In this paper, we follow the idea of Hong’s work in [23] and using techniques of
real analysis as well as weight functions, we prove a few equivalent statements of a
Hilbert-type integral inequality in the whole plane related to the kernel of the arc tangent
function. The constant factor which is related to the cosine function is proved to be the best
possible. Within this work, we also consider some particular cases of interest as well as
operator expressions.

2. Some Lemmas
Forp > 0,0 < o < 1, setting h(u) := arctan £ (u > 0), we obtain

K(0) = /0 h(u)u”du
_ [T PN o1 _ 22y
= /0 (arctanm)u du (v =p“u=“7)
/Y oo _
o7 / 1y 521
= arctanv?2)v?2r du
2y Jo ( )
_ /7 oo e
= P / (arctanv%)dvﬁ
o 0
17/7 (o] gfl 17/7
= f / T do= ot (n— )
2c Jo 140 ZO'Sinnz,YU
/y
p’ T
= ——— e R;=(0,00). 3
ZUCOS% € + ( ,OO) ( )
ForR:=(—00,),6 € {-1,1},a,8 € (—1,1), we set
Xt o=|[x[+axyp:=|y[+py (xy ER),
E; @ ={teR;|t®>1},E_;={tcR;|t] <1}.
Lemma 1. Forc > 0,0 = «, B, we have
1 1 1
t 0 gt - , 4
E, 0 c {(1+9)c5+1 + (1 _g)c&—&-l} ( )
1 1 1
1014 = = . . 5
/E,b- 0 c {(1+9)c0+1 + (1 _9)c5+1} ( )

For ¢ <0, it follows that

/t;c’5—1dt:/ t50-1dt = co.
Es E_s

Proof. Setting
Ef = {te Ryt > 1}, E; = {~t € Ry;(—t)° > 1},

it follows that Es = E UE; and
el = / 146 t_C(S_ldt+/ 1—6)(—t)] “ dt
[ faven =t [ ja-o)

— 1 1 —co—1
B [(1 + g)co+1 + (1— 9)c§+1:| ¢ dt.
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1
Setting u = t° (or t = us ), we obtain

/ t0 g = S /OO us (=151 — /Oo u=du.
E; 18] J1 1

Hence, for ¢ > 0, Formula (4) follows and for ¢ < 0, we get that
ty 0 dt = oo,

Es

Since

/ 0 1gr = / £ 0 gy
E-s o

1 1 L
- l:(1_|_9)05+1 + (1_9)c5+1:|/0 ut du,

for ¢ > 0, Equation (5) follows and for ¢ < 0, we have

/ 159~ 1dt = co.
E_s

This completes the proof of the lemma. [

In what follows, we assume that p > 1, % +% =10e{-1,1}, 0, (-1,1),p>0,
O0<o<7v, 01 €R,

h(u) = arctan % (u>0),

kf{” (0) is indicated by (3) and

2k(’7) (0.)
() _ p
Kyp (0) = =21 7 (6)
Forn e N={1,2,---}, E_1 = [-1,1], x € E;, we define the following expressions:
0 o+t -1
1) = / t P ™ dy,
(x) ) [arc an (cdys)7 Yp y
I (x) = /1 arctan — ya+’%"71dy
0 (xqyp)7 | 7P
P | ot o) (+)
I(x) := / arctan ——— ™ ody = IV (x) + IV (x).
® El[ (xgyﬁ)ylyﬂ y =100 + 1))

Since yg = |y| + By = (sgn(y) + p)y, where
-1Ly <0
sgn(y) := O,y=0 ,
Ly>0
5 _ 5110 . 5
xg = (1+wa-sgn(x))’|x]° > min (1% |a])’ (x € Ey),
se{-1,1}

and1— |a| < (T4 |a)) ™' <1+ |a| < (1—|a])~!, wehave

(L£B)xk = mop = (1= |B)(1—|af) > 0 (x € Ey). @)
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For fixed x € Es, setting u = xiyﬁ, we obtain

—6(0+47) 5
" (1_ﬁ)xzx 1
(=) _ K Py otm1
I (x) =8 b (arctan uw)u " du
x—(S((r—i-%) Mg )
> “7/ " (arctan ﬁ)u‘ﬂr%_ldu,
1-8 0 uY
—6(c+g5) 5
" r(+p)xg 1
IHx) = x“i/ (arctanﬂ)u‘”ﬂ]” Yau
+B8 Jo u
x—5(0+$) - )
> “7/ " (arctan ﬁ)u‘ﬂrﬁ_ldu,
1+8 Jo u
B —oe+g) | 1 (1-p)x} P\ o+l
I(x) = x, ll—ﬁfo (arctan m)u - dy
1 (1+,B)x§¢ p (7+L,1
—i-@/o (arctanu—v)u - du
22, ) p 0 1
o & U+7—
> 1*7,32/0 (arctan ﬁ)” mdu. (8)

Forn € N, x € F;, we define the following expressions:

-1 o4l Y
T (x) - :/ ™ " arctan ———dy,
( ) oo yﬁ (xiyﬁ)ry Y
o gyl g 0
]H) x) :/ ™ " arctan ———dy,
( ) 1 y‘B (Xﬁ]/ﬁ)v Y
ot L1 1%
J(x) @ = " arctan dy = J) (x) + T (x).
(x) L Ve (ciys)7 y (x) (x)

Since for x € E_y,

x5 = (1+a-sgn(x)’|x]° < max {(1+£]a])’} = (1—1a))7",
se{-1,1}

we have
Magpi= (14 B)(1 = la) " > (1£B)xd (x € Ey). ©)
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For fixed x € E_;, setting u = xiyﬁ, we obtain
xfé(afﬁ) o 0 -
-) R S / Ly otmly
JU7 (x) T (arctan Ln)u u
X ) e 4 L1
14 (7+7*
2 ﬁ /MMS (arCtan 1,[7'7 ) u 1 dlx[,
xﬂs(ai%") 0 Y L_1q
(Dx) = %o / LT
TV (x) 158 Jaip (arctan Ln)u du
xié(aiqi”) o 1
> = / (arctan ﬁ)u‘ﬂr 7y
1 + ;B Mtx,/S
~5(0— ) S
J(x) = x T L—ﬁ /(175)955,{ (arctan %)u” o dy
*© Py, otaz1
13 TP /1+,5)xf,{ (arctan u’Y) du
~8(0—55)
2 " 1
> xi—/ﬂ /M (arctan %)u”q" du. (10)
ap
In view of (8) and (10), we derive the lemma below:
Lemma 2. We have the following inequalities:
8o —-+)-1
L = / I(x)x,,‘(a1 ) dx
Es
2 —d(o—o+1)—1 M, P o+t
T~ ~/E§ Xy dx/o (arctan ﬁ)u " du, (11)
S(o+-1)-1
]1 — / ](x)xa(al Pn) dx
E s
2 ooy —o+1)-1 *© P\ ot+i-1
/ Xy g dx/ (arctan —)u” " “du. (12)
E_s uv

>

My

Lemma 3. If there exists a constant M, such that for any nonnegative measurable functions f(x)

and g(y) in R, the following inequality

I = /j:o /j:o [arctan (xg;jﬁw]f(x)g(y)dxdy

< M[/O; P (x)d T[/O;yg(l_”)_lgq(y)dy}]

holds true, then we have o = 0.

~ (n € N), we consider the functions

1y_1 a+q%,—1 E
fn(x)i—{ *u X EEs gn(y)i—{yﬁ yEEL

O,y S R\E,l

(13)
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and by (4) and (5), we obtain
1 1
— [ee] _ _ D (o] _ _ ﬁ
noio= [ JIE: S (x)dx]p [ / v gl (y)ay

= () ()

= n

1 1 7
) + d
(1+a)nt! (1—06)"“1
1 1 V
1 + 1 < .
1+p)nt (1-p) !
By (11) and (13) (for f = fu, g = gn), we have

2 oot 1)—1,  [Map 1
/ Xy (=orty) dx/ (arctan — P yu" Ydu
E; 0 u

X

P
< L= / / [arctan AT 1fn( )gn(y)dxdy
< MJ; <o

Since for any L_(n€N),c—0y+ 1 <0, by Lemma 1 it follows that

—d(o—op+1)-1
/xa( 1) gy — o,
Es

In view of " .
B 1
/ (arctan ﬁ)ugJr 7 ldu >0,
0 uv

we derive that co < Mfl < 00, which is a contradiction.
Ifo> o, (n € N), we consider the functions

~ 301+ ) -1 U—qin—l
Fulx) :—{ w Txek | gy :—{ v " WER
0,x € R\F;s 0,y € R\E;

and by (4) and (5), we obtain

I —Um A A dx]p{/ i )y |
_ AT :
B </E—5 e dx) ( Eq ]/15 d]/)
., 1 N 1 1”
(1+a)" 5l (1—a)~a+!

X
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By (12) and (13) (for f = ﬁ,g = gu), we have

2 —o+1)— g 1
@/&d xi(m ot lalx/ (arctan%)ug 7y

Ma//g
<n=[_[ [arctan >]fn() 2(y)dxdy
< MJ < oo

0301 (neN), o —o+ % < 0, by Lemma 1 it follows that
N 1
/ xi((rl_m—ﬁ)_ldx = o
Fs

o0 1
/ (arctan ﬁ)ug 7y >0,
Mg u

In view of

we have co < MTZ < 00, which is a contradiction.
Hence, we conclude that 07 = .
This completes the proof of the lemma. O

For 07 = o, we also get the lemma below:

Lemma 4. If there exists a constant M, such that for any nonnegative measurable functions f(x)
and g(y) in R, the following inequality

/700 [m [arctan (xg;ﬁwlf(x)g(y)dxdy

1o 1
< M[/ xé’““s‘”‘lf*’(x)dxﬁ/ yi O gy | (14)

holds true, then we have K‘yﬁ) (0) < M.

Proof. For oy = o, by (8), we have

S(o—2E)-1 _
L = /I(x)x,x(a e = 1) 41,
Es
— Slo—Ly—1 Slo—Ly_q
Il( b = I(*>(x)xa(g ) dx,11(+) = I(+)(x)xa(g ) dx.
Es Es
In view of the presented results, for n > (,y ) we obtain
)
- - 1 g1 [P Py, ot m
I = 15/ X /0 (arctanu—y)u i dudx
_ Y i Pyl
= 15 Xy {/0 (arctanﬁ)u - dy
*© O\ otid-1
/ (arctan —)u" " “du|dx
(1- .B)xa ur
_ 1 1 QI
L=B|(1+a)nt? (1—&)”1]% ST
1 —2-1 [ Py,
—ﬂ E, Xy /( ﬁ)xa(arctan u”Y) mdudx. (15)
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For v > 0 +d (d > 0), we have that (arctan L‘%)u‘”d is continuous in (0, o), and
(arctan L%)u‘”d —0 (u— o).

There exists a positive constant M, such that

(arctan u%)u‘”'d <My (u € [myp,00)).
By (4), it follows that
_d_1 [ 1 _
0 < /E(; Xg " /(liﬁ)xg(arctan %)u‘”ﬂ“ dudx
—o(d+-1)—1
5 0 M [- x e dx
< M1/ Xy " 1(/ ‘u_d+‘11"_1du>dx: 1on ‘ -
Es (1-B)x4 (1— IB)U*W
)M 1 N 1

namely

1 -1 [ P\ ot+i-1 _
T8 Eo_x,x /(liﬁ)xg(arctanu—,y)u - dudx = O(1),

and then by (15), it follows that

nt 1-8 (1+a)itl (1 —a)it! n
Similarly, we have
Lo Kt 1 1 ] o -
nlt 1+ (1+a)itl  (1—a)it! n o’
By (14) (for f = fu,g = gn), we have
Lo Y 0y <« Ly
I = = < =
k= (11 + 1 ) < —MJ.
For n — oo, by Fatou’s lemma (cf. [39]), (16) and (17), we obtain
2 27 () 2 pl2 \i
1-p2 1—a%2 — 1—a2 1-p2) 7
namely
(7r)
™M (o) = 2ky (o)
$op @) = Gy gy =M
This completes the proof of the lemma. [
Lemma 5. We define the following weight functions:
* © oo—1
ws(oyy) = = ‘7/ arctan x’dx (y € R), (18)
(0,y Y ool (xgyﬁ)vl o y

@s(o,x) @ =8 /Jo [arctan (X‘S]F;l;)W]ygldy (x €R). (19)
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Then we have

2 _p2
S ay) = 5 ase ) =K (0) (uy € R\(0)) 0)

Proof. For fixed y € (—o0,0) U (0, 00), setting u = xﬁyﬁ, we obtain

0
W(S((T,]/) = yg /700 [arctan (xégﬁ) ] iofldx

® P so—1
—i—y%/o [arctan TNk ] X0y

2k ().
1—a2’

_ 2 « P o—1 _
= 1_a2/0 (arctanu—v)u du =

for fixed x € (—c0,0) U (0, 00), setting u = Xf‘y/g, it follows that

0
[ o—1
@s(0,x) = x07 / arctan d
oo () |78

oo * Qo o—1
+xa/0 [arctan (x;iy,;)’*]yﬁ dy

(7)
_ 2 " Py, — 2k ()
= 1_52/0 (arctan ,y) du = e

Hence, we derive (20).
This completes the proof of the lemma. O

3. Main Results and Some Particular Cases
Theorem 1. If M is a constant, then the following statements (i), (ii) and (iii) are equivalent:

(i) For any f(x) > 0, we have the following inequality:

oo 0 p
] o= [/_oo ]/E071 (/ [arctan (x,,fy),g) ]f(x)dx) dy]

1

< [T R ] e1)

1
p

(ii) for any f(x),g(y) > 0, we have the following inequality:

I = / / [arctan (civs)7 ]f( )g(y)dxdy

1 1
M[/ xg(”mlf”(x)dxr[/ v (y)dy| (22)

IN

(iii) 01 = o, and K"} () < M.
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Proof. (i) = (ii). By Holder’s inequality (cf. [40]), we get

L L/f:,<yg_;h/f;[a“*an-Cw§;”71f<x>dx> (55" 75t )y

< I{ /- y,%“"“g%y)dy} " (23)

Then by (21), we have (22).
(ii) = (iii). By Lemma 1, we have 07 = ¢. Then by Lemma 2, we get Kyﬁ) (o) <M.
(iii) = (i). For oy = o, by Holder’s inequality with weight (see [40]) and (18),

we have
r
°° 4
arctan x)dx
(/w[ el )
(o=1)/p (60—1)/q b
o Yp Xa
= [arctan P ] ——f(x) | | == | dx
{/—oo (xgyﬁ)’Y nga 1)/q y/(gtf 1)/p
o—1rp
00 0 Yp fP(x)
/_oo [amt‘“‘( Xyp)" ] G Dp7g

r/q
X /oo[ tan —F ] L dx
arc _
o (xhyp)” ygf—l)q/f?

IN

o—1¢p
(1-o)-1]P~1 [® 0 Yp fP(x)
= |ws(o,y)yl / [arctan ] — dx
|: B ] oo (xgyﬁ)'Y xg{ﬁ 1)p/q
M\ o1 gp
25 () _ 0 yg  fP(x)
_ 4 po+1 P B
— ( 12 ) Yg /_oo larctan (xﬁylg)V] G dx. (24)

By Fubini’s theorem, (24) and (19), we derive that

RACPRE
J] < (1_“2 ) / / [arctan (x,xyﬁ)W] = 1p/qudy1

l
= K@) | [ 40 }

For Ki’Y‘B)(O') < M, we have (21) (for o1 = 0).
Therefore, Statements (i), (ii) and (iii) are equivalent.
This completes the proof of the theorem. O

For 04 = 0, we deduce the theorem below:
Theorem 2. If M is a constant, then the following statements (i), (ii) and (iii) are equivalent:
(i) For any f(x) > 0, satisfying

0< / xﬁz(l_&g)_lf”(x)dx < o,
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we have the following inequality:

p
l/ yPa 1 (/oo [arctan (xggﬁ)y}f(x)dx> dy]

1

< M[/_D;x”" P (x)d } 25)

1
P

(ii) for any f(x) > 0, satisfying
0< / p1=00)= fP(x)dx < oo,
and g(y) > 0, satisfying
0< /m vl )y < oo,
we have the following inequality:

.. [am“ (Xﬁgﬁ)v] f(x)g(y)dxdy

1o 1
< m| [ A e [T ) 26)

(iif) Kfjﬁ)(a) < M.
Moreover, if the statement (iii) holds true, then the constant factor M = Kyﬁ) (0) in

(25) and (26) is the best possible.
In particular:
(1) for 6 = 1, we have the following equivalent inequalities with the nonhomoge-

neous kernel:

P
/ yPa 1 (/Oo [arctan (x“;)ﬁ)ﬂf(X)dx> d]/]

< Ki}s)((f)[/m P (x)d ] 27)

o0 o) p
Lw /700 [arctan (xayﬁ)vlf(x)g(y)dxdy

1 1
® p1—0)-1 P g(1-0)-1 {
< KGO [ pma] | [T ema], e
where KY) (0) is the best possible constant factor;
(2) for 6 = —1, we have the following equivalent inequalities with the homogeneous
kernel of degree 0:

1
P

p
/ yW 1(/00 arctanp(;;)ﬂf(x)dx) dy]

< Ki,y/s)(‘f)[/_i AT g8 () ] (29)

=
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[ e s

< KR ﬂ/z T (0 }]Uiyfg(”“gq(y)dy : (30)

()

where K ‘g (0) is the best possible constant factor.

Proof. For 05 = o and the assumption of statement (i), if (24) assumes the form of equality
for some y € (—o0,0) U (0, 00), then (see [40]) there exist constants A and B, such that they
are not both zero, and

o—1
yﬂ x&rfl

Wfp(x) - BW a.e. in R
« Yp

We suppose that A # 0 (otherwise B = A = 0). Then it follows that

B
1 60)= f”( ) = 91 U)Axa ae. in R.

® 1
/ X, dx = oo,
—00

0< /oo xg(lfég)flfp(x)dx < o0.

Since

it contradicts the fact that

Hence, (24) takes the form of strict inequality, and so does (21). Hence, (25) and (26)
are true.
In view of Theorem 1, we can establish the equivalency between the statements (i), (ii)

and (iii) in Theorem 2.

In case the statement (iii) is valid, namely K’yﬁ) (o) < M, if there exists a constant

M < Kyﬁ) (), such that (26) is satisfied, then we can derive that the constant factor
M= Kyﬁ) (0) in (26) is optimal.
The constant factor M = Kyﬁ) (0) in (25) remains the best possible. Otherwise, by (23)

(for o1 = 0), we would reach a contradiction that the constant factor M = Kfyﬁ) () in (26) is
not optimal.
This completes the proof of the theorem. O

4. Operator Expressions

We set the following functions: ¢(x) := xfz(l b0)-1 (x € R) and y(y) := yg(l o)1 ,

wherefrom ¢! (y) = yZ‘Fl (y € R). Define the following real normed linear spaces:

Lpg(R) = {f e = </ p(x)[f(x )|pdx>p <0°},

{g: Isllor = ([ vtlsliay ) < oo},
Lyr(R) = {h il s = ( /- wl—”<y>|h<y>|wy)” < oo}.

Lyy(R)

YN
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In view of Theorem 2, for f € L, »(R), setting
h(y) = /oo arctan - (x)dx (y € R),
1y oo [ (xi]/ﬁ)’y f Y
by (25), we have

1

R _ [
llyygr = | [~ 0P @M@y < Ml < o0 G1)

Definition 1. Define a Hilbert-type integral operator with the nonhomogeneous kernel
T:Lpg(R) = L, y1-p(R) as follows: For any f € Ly,y(R), there exists a unique representation

Tf=h € Lmjl,p(R), satisfying Tf(y) = h1(y), forany y € R.

In view of (31), it follows that
Tl yir = Wl gaor < M1l
and thus the operator T is bounded satisfying

T _
= sp g
fr0eLo®) | fllpg

If we define the formal inner product of Tf and g as follows:
Tf, ::/oo /oo arctanL x)dx dy,
(Tf,8) w( . (xgyﬁ)v]f( ) )g(y) y

then we can rewrite Theorem 2 as follows:
Theorem 3. If M is a constant, then the following statements (i), (ii) and (iii) are equivalent:
(i) Forany f(x) >0, f € Lp¢(R), ||fl|p,p > O, the following inequality holds true:
Tl s < MlIflpps (32

(ii) for any f(x),g(y) 2 0,f € Lp,p(R),& € Lgyp(R),[|fllp,, 185, > 0, the following
inequality holds true:

(Tf,8) < Ml|fllpell8llgy; (33)
(iif) Ko(ﬁﬁ) (0) < M.
Moreover, if the statement (iii) holds true, then the constant factor M = K ™) (0) in

¥
(32) and (33) is optimal, i.e., | T|| = K} (¢).

Remark 1. (1) In particular, for « = B = 0 in (27) and (28) we have the following equivalent
inequalities:

1

{/Z |y|P1 </°:o(arctan |x§|7)f(x)dx> pdy] ’

1

[ e ] o9

T
o LA
COs 2 0
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/ / <arctan |,y>f( )¢ (y)dxdy

o[ o } e gw)dyf, @)

7 Ccos 2y

where £ 7 is the optimal constant factor. If f(—x) = f(x),g(—y) = g(y) (x,y € R,.), then

0 COS 5
we have the followzng equivalent inequalities:

ooy’wfl oo[arctan xp =1 f (x)dx de ’
Uo </0 (xy) )

P(T/“Yrc [/0 (P(1-0) fp() }11 (36)

20 cos 27

/000 /OoQ {arctan (xg)v]f(x)g(y)dxdy

o/y 0 1 0 1
pn p(1=0)=1¢p ()4 ]p{ 91-0) 140 (1) dy | ' 37
on fP(x)dx /Oy g1(y)dy| , (37)

20 cos 27

/v . .
where 72P T is the best possible constant factor.
0 COS H

(2) For « = B = 0in (29) and (30) we have the following equivalent inequalities:

UZ y|pe1 (/O:O(arctanp|;c|7)f(x)dx> de] y

1

Pa/wg [/oomp (1+0)— fp( )d }, (38)

0 Ccos 2y

[ [ (Y

o/ ) i 0 1
T e I D )

O'COSE

where £ 7 is the best possible constant factor. If f(—x) = f(x),g(—y) = g(y)
2y

g COs 5.

(x,y € Ry), then we have the following equivalent inequalities:

UO"" yro1 (/Ooo [arctanp(;)y]f(x)dx) de] L

o/ o0
u p(1+0)—1 gp !
[/0 X f (x)dx} , (40)

20 cos 27

=

/Ooo /Ooo {arctanp(;)V]f(x)g(y)dxdy

1 1
ﬂ /.oo p(14+0)—1 cp ’ /'oo g(1-0)-1 g q
20 cos Z 27 [ 0 X fP(x)dx 0 y s (ydy| (41)
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where

/y
ot s
2rcos 12 is the best possible constant factor.

5. Conclusions

In this paper, making use of ideas of Hong [23], and by employing techniques of real
analysis as well as weight functions, we obtain in Theorem 1 a few equivalent statements
of a Hilbert-type integral inequality in the whole plane associated with the kernel of the
arc tangent function. In Theorem 2, the constant factor associated with the cosine function
is proved to be optimal. Furthermore, in Theorem 3 and Remark 1 we also consider some
particular cases and operator expressions. The lemmas and theorems within this work
provide an extensive account of this type of inequalities.
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