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1. Introduction

Inversions of the Laplace transforms of exponential functions

fν,µ(t) = L− 1{F(s)} = 1
2πi

∫ c+ i∞

c− i∞
est F(s) ds ; c > 0,

F(s) =
e−sν

sµ ; 0 < ν < 1 ; µ ≥ 0,
(1)

were during the 1945–1970 period in a focus of attention of a number of well-known
mathematicians like Humbert [1], Pollard [2], Wlodarski [3], Mikusinski [4–7], Wintner [8],
Ragab [9] and Stankovič [10]. In the case µ = 0, Mikusinski was able to obtain the inverse
Laplace transform in terms of integral representations [7]

L{ fν,0(t)} =
∫ ∞

0
e− st fν,0(t) dt = e− sν

; 0 < ν < 1 ; t > 0,

fν,0(t) =
1
π

∫ ∞

0
e− ute− uν cos(πν) sin[uν sin(πν)] du,

fν,0(t) =
2
π

∫ ∞

0
e− uν cos( πν

2 ) cos[uν cos(πν
2 )] cos(ut) du,

(2)

and also as the finite trigonometric integral

fν,0(t) =
ν

π(1− ν)t

∫ π

0
ξe− ξ du ; 0 < ν < 1 ; t > 0

ξ =
1

tν/(1− ν)

(
sin(νu)

sin u

)ν/(1− ν) sin[(1− ν)u]
sin u

.
(3)
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It was established that the functions fν,0(t) can be expressed in terms of exponential
and parabolic cylinder functions when ν = 1/2 [9,11] and by help of the Airy functions
and their first derivatives for ν = 1/3 and ν = 2/3 [9,12]. For ν = 1/4, the solution
was deduced by Barkai [13] in 2001 using Mathematica as a sum of three generalized
hypergeometric functions, but the numerical result was uncertain, presumably for a bag in
the computing program. In 2010–2012 Gorska and Penson [14,15] were able to represent
fν,0(t) in terms of Mejer G functions. Earlier, in 1958 Ragab [9] expressed fν,0(t) in terms of
MacRobert E functions for ν = 1/n.

In 1952 Wlodarski [3] showed that when the generalized product Efros theorem [16] is
applied to the Laplace transform of fν,µ(t) which is given in (1), then it is possible to derive
the following formula

L{g(t)} = G(s) ; 0 < ν < 1 ; µ ≥ 0,

L−1
{

G(sν)
sµ

}
=
∫ ∞

0
g(u)L− 1{F(s)} du =∫ ∞

0
g(u)L− 1

{
e− usν

sµ

}
du =

∫ ∞

0
g(u) fν,µ(u) du.

(4)

It was established in our recent paper [17] that for µ = 0 and µ = 1− ν this func-
tional expression can be written in terms of specific Wright functions Wν,µ(−t), sometimes
referred to as the Mainardi functions

Fν(t) = W− ν,0(− t) ; 0 < ν < 1,

Mν(t) = W− ν,1− ν(− t),
(5)

in the following way

νL−1
{

G(sν)
s1− ν

}
=
∫ ∞

0
g(u) Fν

( u
tν

) du
u ; 0 < ν < 1,

tνL−1
{

G(sν)
s1− ν

}
=
∫ ∞

0
g(u) Mν

( u
tν

)
du.

(6)

This follows from the fact that the functions Fν(t) and Mν(t) satisfy

L
{

1
λν

Fν

(
λ

tν

)}
= L

{
1
tν

Mν

(
λ

tν

)}
=

e− λ sν

s1− ν
,

0 < ν < 1 ; λ > 0.

(7)

It was also illustrated by us in [17], that in many cases, by using standard tables of
the Laplace transforms [18–21], the left hand side Laplace transforms in (6) can be inverted
and numerous infinite integrals, finite integrals and integral identities for the functions
Fν(t) and Mν(t) can be derived.

Let us recall that the Wright functions [22,23], considered initially as a some kind
generalization of the Bessel functions, are defined as an entire functions of the argument
z ∈ C and parameters λ > −1 and µ ∈ C by

Wλ,µ(z) =
∞

∑
k=0

zk

k! Γ(λk + µ)
; λ > −1, µ ∈ C . (8)

It is usual to distinguish them in two kinds, the first kind with λ ≥ 0 and the second
kind with λ = −ν and ν ∈ (0, 1), see, e.g., [11].
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Restricting our attention to positive argument t > 0, the Mainardi functions turn out
to be particular Wright functions of the second kind expressed by the following series

Fν(t) =
∞

∑
k = 1

(− t)k

k! Γ(− ν k)
=

1
π

∞

∑
k = 1

(−1)k + 1tk

k!
Γ(ν k + 1) sin(π ν k) ,

Mν(t) =
∞

∑
k = 0

(− t)k

k! Γ (− ν( k + 1) + 1)
=

1
π

∞

∑
k = 1

(− t)k− 1

(k− 1)!
Γ(ν k) sin(π ν k) ,

Fν(t) = ν t Mν(t) .

(9)

The interest in the Wright functions of the second kind comes from the fact that they
play an important role in solution of the linear partial differential equations of fractional
order which describe a wide spectrum of phenomena including probability distributions,
anomalous diffusion and diffusive waves [24–33].

In Section 2, of this paper, by using the complex inversion formula in (1) and the
Bromwich contour, the integral representation of fν,µ(t) with 0 < ν < 1 and 0 ≤ µ < 1
is derived and some basic properties of this inverse transform are established. The cases
µ ≥ 1 can be dealt as well, see Appendix A for details.

The next two Sections 3 and 4 are devoted to evaluation of infinite, finite and con-
volution integrals by using the Efros theorem in the Wlodarski form. The integrands of
these integrals or integral identities include the elementary functions (power, exponential,
logarithmic, trigonometric and hyperbolic functions) and the special functions (the error
function, Mittag–Leffler functions and the Volterra functions). The last section provides
concluding remarks.

In derivations of these integrals direct and inverse Laplace transforms which are taken
from tables of transforms [18–21] are always presented in mathematical expressions. All
mathematical operations and manipulations with elementary and special functions, inte-
grals and transforms are formal and their validity is assured by considering the restrictions
usually imposed in the operational calculus.

2. Integral Representations of the Inverse Laplace Transform of s−µ exp(−sν)

Before infinite integrals in (6) will be evaluated, it is of interest to derive the function
fν,µ(t) by performing the complex integration from (1). In investigated case, the branch
point of the integrand exists and is located at the origin s = 0 and therefore the equivalent
Bromwich contour is plotted in Figure 1. The closed contour of integration ABCDEFA
includes the line AB, the arcs BC and FA of a circle of radius R→ ∞ with center at origin,
the arc DE of a circle of radius r → 0 with center at origin, and two parallel lines CD and EF.
The the cut along the negative axis ensures that F(s) is a single-valued function. However,
according to the Cauchy lemma the integrals along the arcs BC and FA vanish as R→ ∞.

Figure 1. The equivalent Bromwich contour.
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As a consequence there are only three contributions coming from integrals on the CD
and EF lines and from the small circle round origin, DE, so we have

F(s) =
e−sν

sµ ; 0 < ν < 1 ; µ ≥ 0,

fν,µ(t) =
1

2πi

∫ ∞

0
e−ut[F(ue−πi)− F(ueπi)

]
du +

1
2πi

lim
r→0

∫ π

−π
etreiθ

F(reiθ) reiθdr.
(10)

However, the last trigonometric integral vanishes for µ < 1 and therefore the final
result of the complex integration from (10) is

fν,µ(t) =
1
π

∫ ∞

0

e−ut− uν cos(πν)

uµ sin[uν sin(πν) + πµ] du,

t > 0 ; 0 < ν < 1 ; µ < 1.
(11)

The same integral representation has been derived in 1970 by Stankoviċ [10] for the
Wright function, but on the negative values of the argument t and which is presented here
in our notation

tµ− 1Wν,µ

(
− 1

tν

)
=

1
π

∫ ∞

0

e−ut−uν cos(πν)

uµ sin[uν sin(πν) + πµ] du,

t > 0 ; 0 < ν < 1 ; µ < 1,

(12)

and comparing (11) with (12) we have that the inverse exponential functions can be ex-
pressed in terms of the Wright functions, in agreement with the survey analysis by Mainardi
and Consiglio [33] where also plots are presented,

fν,µ(t) = tµ− 1Wν,µ

(
− 1

tν

)
; 0 < ν < 1 ; µ ≥ 0, . (13)

In particular, for µ = 1− ν the Wright functions are reduced to the Mainardi functions
Fν(t) and Mν(t) [11]

fν,1− ν(t) =
1
ν

Fν

(
1
tν

)
=

1
tν

Mν

(
1
tν

)
; 0 < ν < 1. (14)

For ν = 1/2, µ = 0 and ν = µ = 1/2, the integrals in (11) become the Laplace
transforms of trigonometric functions [18–21]

f1/2,0(t) =
1
π

∫ ∞

0
e−ut sin(u1/2) du =

e− 1/4t

2
√

π t3/2 ,

f1/2,1/2(t) =
1
π

∫ ∞

0

e−ut

u1/2 sin(u1/2 +
π

2
) du =

1
π

∫ ∞

0

e−ut

u1/2 cos(u1/2) du =
e− 1/4t
√

π
.

(15)

Since [11,12]

F1/3

(
1

t1/3

)
=

1
3πt1/2 K1/3

(
2√
27t

)
, (16)

it follows from (11) and (14) that

f1/3,2/3(t) =
1

2π

∫ ∞

0

e−ut− u1/3/2

u2/3

[
√

3 cos

(√
3

2
u1/3

)
− sin

(√
3

2
u1/3

)]
du =

1
π

√
λ

t
K1/3

(
2√
27t

)
.

(17)
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Differentiation of the integral (11) with respect to the argument t gives

dn fν,µ(t)
dtn = fν,µ− n(t) =

(−1)n

π

∫ ∞

0

e−ut−uν cos(πν)

uµ− n sin[uν sin(πν) + πµ] du,

t > 0 ; 0 < ν < 1 ; µ < 1 ; n = 0, 1, 2, 3, . . .,
(18)

and using rules of the operational calculus we have the initial and final values of the
function from [33]

fν,µ(t → +0) = lim
s→∞

[sF(s)] = s1− µe− sν
= 0 ; 0 < ν < 1 ; µ < 1,

fν,µ(t → ∞) = lim
s→ 0

[sF(s)] = s1− µe−sν
= 0.

(19)

This is in an agreement with the finding of Pollard [2] that for µ = 0, the inverse
Laplace transform fν,0 is positive almost everywhere, but for µ < 0 Stankoviċ [10] postu-
lated that in a some interval this function is negative and has at least one zero. Expanding
the exponent in F(s) into series it is possible to obtain the behaviour of the function for
large values of the argument t

L− 1{F(s)} = L− 1

{
e− sν

sµ

}
= L− 1

{
1
sµ

[
1− sν

1!
+

s2ν

2!
− . . .

]}
.

fν,µ(t → ∞) ∼ 1
t1− µ

{
1

Γ(µ)
− 1

Γ(µ− ν)tν
+

1
2Γ(µ− 2ν)t2ν

− . . .
} (20)

The integral of the fν,µ can be derived directly from

∫ t

0
fν,µ(u) du = L− 1

{
e− sν

s1+ µ

}
= fν,µ+ 1(t). (21)

In order to obtain the recurrence relations the following operational rule can be applied

L
{

t fν,µ− 1(t)
}
= − d

ds
[F(s)] = − d

ds

{
e−sν

sµ− 1

}
= (µ− 1)

e−sν

sµ + ν
e− sν

sµ− ν , (22)

and the inverse transforms in (22) are

t fν,µ− 1(t) = (µ− 1) fν,µ(t) + ν fν,µ− ν(t). (23)

However, from (18) with n = 1, we have

d fν,µ(t)
dt

= fν,µ− 1(t), (24)

and therefore

t
d fν,µ(t)

dt
= (µ− 1) fν,µ(t) + ν fν,µ− ν(t). (25)

3. Integrals of the Inverse Laplace Transform of s−µ exp(sν) with Elementary Functions

In the first example the Wlodarski integral formula (4) is applied to the power function
g(t) = tλ,

g(t) = tλ ; λ > 0,

G(s) =
Γ(λ + 1)

sλ+ 1 ; G(sν) =
Γ(λ + 1)
s(λ+ 1)ν

,

L−1
{

1
sµ ·

Γ(λ + 1)
s(λ+ 1)ν

}
= L−1

{
Γ(λ + 1)

s(λ+ 1)ν+ µ

}
=

Γ(λ + 1) t(λ+ 1)ν+µ− 1

Γ[(λ + 1)ν + µ)]
,

(26)
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and therefore we have∫ ∞

0
uλ fν,µ(u) du =

Γ(λ + 1) t(λ+ 1)ν+µ− 1

Γ[(λ + 1)ν + µ)]
; 0 < ν < 1 ; µ < 1 ; λ > 0. (27)

The above results can be extended to functions g(t) which are defined at finite intervals
and to step functions jumping at integral values of variable t. Let start with

g(t) =
{

1 ; 0 < t < λ
0 ; t > λ

.

G(s) =
1− e− λs

s
; G(sν) =

1− e− λsν

sν
,

L−1

{
1
sµ ·

1− e− λsν

sν

}
= L−1

{
1

sν+ µ −
λ(µ/ν+ 1)e− (λ1/νs)ν

(λ1/νs)ν+ µ

}
=

tν+ µ− 1

Γ(ν + µ)
− λ[(µ − 1)/ν+ 1] fν,ν+ µ

(
t

λ1/ν

)
,

(28)

which leads to the finite integral

∫ λ

0
fν,µ(u) du =

tν+ µ− 1

Γ(ν + µ)
− λ[(µ − 1)/ν+ 1] fν,ν+ µ(

t
λ1/ν ),

0 < ν < 1 ; µ < 1 ; λ > 0.

(29)

In the next example, from

g(t) =
{

1− t ; 0 < t < 1
0 ; t > 1

,

G(s) =
e−s + s− 1

s2 ; G(sν) =
e−sν

+ sν − 1
s2ν

,

L−1

{
1
sµ ·

e−sν
+ sν − 1
s2ν

}
= L−1

{
1

s2ν+ µ
− 1

sν+ µ +
e− sν

s2ν+ µ

}
=

t2ν+ µ− 1

Γ(2ν + µ)
− tν+ µ− 1

Γ(ν + µ)
+ fν,2ν+ µ(t),

(30)

we have ∫ 1

0
(1− u) fν,µ(u) du =

t2ν+ µ− 1

Γ(2ν + µ)
− tν+ µ− 1

Γ(ν + µ)
+ fν,2ν+ µ(t). (31)

Using

g(t) =

 0 ; 0 < t < λ
(t− λ)µ

Γ(µ + 1)
; t > λ

,

G(s) =
e−λs

sµ+ 1 ; G(sν) =
e−λsν

s(µ+ 1)ν
,

L−1

{
1
sµ ·

e−λsν

s(µ+ 1)ν

}
= L−1

{
λ[(1/ν+ 1)µ+ 1]e− (λ1/νs)ν

(λ1/νs)(µ+ 1)ν+ µ

}
=

= λ[(1/ν+ 1)µ − 1/ν+ 1] fν,ν+ νµ+µ(
t

λ1/ν ),

(32)

it is possible to derive∫ ∞

λ
(t− λ)µ fν,µ(u) du = λ[(1/ν+ 1)µ − 1/ν+ 1] fν,ν+ νµ+µ

(
t

λ1/ν

)
. (33)
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In the next example the case of exponential function is considered:

g(t) = e− αt ; α > 0,

G(s) =
1

s + α
; G(sν) =

1
sν + α

,

L−1
{

1
sµ ·

1
sν + α

}
= L−1

{
1

sν+µ−1 ·
sν− 1

sν + α

}
=

tν+ µ−2

Γ(ν + µ − 1)
? Eν(− αtν).

(34)

From (4) and (34) the convolution integral with the Mittag–Leffler function

Eν(t) =
∞

∑
k = 0

tk

Γ(kν + 1)
,

L{Eν(−αtν)} = sν− 1

sν + α
,

(35)

is derived ∫ ∞

0
e− αu fν,µ(u)du =

tν+ µ−2

Γ(ν + µ − 1)
? Eν(− αtν),

0 < ν < 1 ; µ < 1 ; α > 0 .

(36)

By changing variable of integration x = t (cosθ)2, all convolution integrals can be
expressed as in terms of finite trigonometric integrals. The shifted increasing and decreasing
exponential functions are considered in the following two examples. From

g(t) =
{

0 ; 0 < t < λ ; 0 < ν < 1
1− e− (t− λ) ; t > λ

,

G(s) =
e−λs

s(s + 1)
; G(sν) =

e−λsν

sν(sν + 1)
,

L−1

{
1
sµ ·

e−λsν

sν(sν + 1)

}
= L−1

{
sν− 1

(sν + 1)
· λ(2ν+ µ− 1)/νe− (λ1/νs)ν

(λ1/νs)(2ν+ µ− 1)

}
=

λ(ν+ µ− 1)/νEν(− tν) ∗ fν,2ν+ µ− 1(
t

λ1/ν ),

(37)

we have the convolution of two functions.∫ ∞

λ

[
1− e− (u− λ)

]
fν,µ(u) du = λ(ν+ µ− 1)/νEν(− tν) ? fν,2ν+ µ− 1(

t
λ1/ν

). (38)

Similarly from

g(t) =
{

0 ; 0 < t < λ ; 0 < ν < 1
e− (t− λ) ; t > λ

;

G(s) =
e−λs

(s + 1)
; G(sν) =

e−λsν

(sν + 1)
;

L−1

{
1
sµ ·

e−λsν

(sν + 1)

}
= L−1

{
sν− 1

(sν + 1)
· λ(ν+ µ− 1)/νe− (λ1/νs)ν

(λ1/νs)(ν+ µ− 1)

}
=

λ(ν+ µ− 2)/νEν(− tν) ∗ fν,ν+ µ− 1(
t

λ1/ν ),

(39)

it is possible to obtain∫ ∞

λ
e− (u− λ) fν,µ(u) du = λ(ν+ µ− 2)/ν Eν(− tν) ? fν,ν+ µ− 1(

t
λ1/ν

). (40)
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The logarithmic functions are the next group of elementary functions to be considered.
In the simplest case from

g(t) = ln t ; C = eγ;

G(s) = − ln(Cs)
s

; G(sν) = − ln(Csν)

sν
;

L−1
{

1
sµ ·
− ln(Csν)

sν

}
= L−1

{
1

sν+ µ− 1 ·
−ν ln(Cs) + (ν− 1)γ

s

}
=

(ν− 1)γtν+ µ− 1

Γ(ν + µ )
+

νtν+ µ− 2

Γ(ν + µ − 1)
? ln t

(41)

where γ is the Euler constant, it follows that

∫ ∞

0
ln u fν,µ(u) du =

(ν− 1)γtν+ µ− 1

Γ(ν + µ )
+

νtν+ µ− 2

Γ(ν + µ − 1)
? ln t . (42)

In the more general case

g(t) = tλ− 1 ln t ; λ > 0 ; 0 < ν < 1;

G(s) =
Γ(λ)

sλ
[ψ(λ)− ln s ] ; G(sν) =

Γ(λ) [ψ(λ)− ν ln s]
sλν

;

Γ(λ)L−1
{

1
sµ ·

[ψ(λ)− ν ln s]
sλν

}
= Γ(λ)L−1

{
ψ(λ) + γν

s(λ ν+ µ)
− ν

s(λ ν+ µ− 1)
· ln(Cs)

s

}
=

Γ(λ)[ψ(λ) + γν] t(λ ν+ µ−1)

Γ(λ ν + µ)
+

Γ(λ) νt(λ ν+ µ−2)

Γ(λ ν + µ − 1)
? ln tν,

(43)

we have∫ ∞

0
uλ− 1 ln u fν,µ(u) du =

Γ(λ)[ψ(λ) + γν] t(λ ν+ µ−1)

Γ(λ ν + µ)
+

Γ(λ) νt(λ ν+ µ−2)

Γ(λ ν + µ − 1)
? ln tν. (44)

Trigonometric and hyperbolic functions is the last groups of elementary functions to
be considered. From:

g(t) = sin(λt) ; 0 < ν < 1;

G(s) =
λ

s2 + λ2 ; G(sν) =
λ

s2ν + λ2 ;

λL−1
{

1
sµ ·

1
s2ν + λ2

}
= λL−1

{
1

s2ν+ µ− 1 ·
s2ν− 1

s2ν + λ2

}
=

λt2ν+ µ− 2

Γ(2ν + µ − 1)
? E2ν(−λ2 t2ν),

(45)

the following integral identity is derived

∫ ∞

0
sin(λu) fν,µ(u) du =

λt2ν+ µ− 2

Γ(2ν + µ − 1)
? E2ν(−λ2t2ν). (46)

Similarly as in (45), for the hyperbolic sine function, the change is only in the sign

g(t) = sinh(λt) ; 0 < ν < 1;

G(s) =
λ

s2 − λ2 ; G(sν) =
λ

s2ν − λ2 ;

λL−1
{

1
sµ ·

1
s2ν − λ2

}
= λL−1

{
1

s2ν+ µ− 1 ·
s2ν− 1

s2ν − λ2

}
=

λt2ν+ µ− 2

Γ(2ν + µ − 1)
? E2ν(λ

2t2ν),

(47)

and therefore we have∫ ∞

0
sinh(λu) fν,µ(u) du =

λt2ν+ µ− 2

Γ(2ν + µ − 1)
? E2ν(λ

2t2ν). (48)
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In the case of cosine function, from;

g(t) = cos(λt) ; 0 < ν < 1;

G(s) =
s

s2 + λ2 ; G(sν) =
sν

s2ν + λ2 ;

L−1
{

1
sµ ·

sν

s2ν + λ2

}
= L−1

{
1

sν+ µ− 1 ·
s2ν− 1

s2ν + λ2

}
=

tν+ µ− 2

Γ(ν + µ − 1)
? E2ν(−λ2t2ν),

(49)

we have ∫ ∞

0
cos(λu) fν,µ(u) du =

tν+ µ− 2

Γ(ν + µ − 1)
? E2ν(−λ2t2ν). (50)

Similarly as in (47) and (48)

g(t) = cosh(λt) ; 0 < ν < 1;

G(s) =
s

s2 − λ2 ; G(sν) =
sν

s2ν − λ2 ;

L−1
{

1
sµ ·

sν

s2ν − λ2

}
= L−1

{
1

sν+ µ− 1 ·
s2ν− 1

s2ν − λ2

}
=

tν+ µ− 2

Γ(ν + µ − 1)
? E2ν(λ

2t2ν),

(51)

for the hyperbolic cosine function we have

∫ ∞

0
cosh(λu) fν,µ(u) du =

tν+ µ− 2

Γ(ν + µ − 1)
? E2ν(λ

2t2ν). (52)

In the case of the product of trigonometric and hyperbolic sine functions the direct
and inverse Laplace transforms are

g(t) = sin(λt) sinh(λt) ; 0 < ν < 1;

G(s) =
2λ2s

s4 + 4λ4 ; G(sν) =
2λ2sν

s4ν + 4λ4 ;

2λ2L−1
{

1
sµ ·

sν

s4ν + 4λ4

}
= 2λ2L−1

{
1

s3ν+ µ− 1 ·
s4ν− 1

(s4ν + 4λ4)

}
=

2λ2

Γ(3ν+ µ−1) [t
(3ν+ µ−2) ? E4ν(− 4λ4t4ν)],

(53)

and therefore∫ ∞

0
sin(λu) sinh(λu) fν,µ(u) du =

2λ2

Γ(3ν + µ − 1)
[t(3ν+ µ−2) ? E4ν(− 4λ4t4ν)]. (54)

For the product of trigonometric and hyperbolic sine functions we have

g(t) = cos(λt) cosh(λt) ; 0 < ν < 1;

G(s) =
s3

s4 + 4λ4 ; G(sν) =
s3ν

s4ν + 4λ4 ;

L−1
{

1
sµ ·

s3ν

s4 + 4λ4

}
= L−1

{
1

sν+ µ− 1 ·
s4ν− 1

s4ν + 4λ4

}
=

tν+ µ− 2

Γ(ν + µ − 1)
? E4ν(− 4λ4t4ν),

(55)

and therefore∫ ∞

0
cos(λu)(cosh(λu) fν,µ(u) du =

tν+ µ− 2

Γ(ν + µ − 1)
? E4ν(− 4λ4t4ν). (56)
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4. Integrals of the Inverse Laplace Transform of s−µ exp(−sν) with the Mitag-Leffler,
Error and Volterra Functions

The Laplace transform of the two parameter Mittag–Leffler function is [11,34–36]

L
{

tβ− 1 Eα,β(±λtα)
}
=

sα− β

sα ∓ λ
,

Eα,β(z) =
∞

∑
k = 0

zk

Γ(kα + β)
,

(57)

and this permits to obtain

g(t) = tβ− 1Eα,β(±λtα) ; 0 < ν < 1;

G(s) =
sα− β

sα ∓ λ
; G(sν) =

s(α− β)ν

sαν ∓ λ
;{

1
sµ ·

s(α− β)ν

sαν ∓ λ

}
= L−1

{
sαν− (β ν+µ)

sαν ∓ λ

}
= t(β ν+µ− 1)Eαν,β ν+ µ(±λtα),

(58)

and ∫ ∞

0
uβ− 1Eα,β(±λuα) fν,µ(u) du = t(β ν+µ− 1)Eαν,β ν+ µ(±λtα). (59)

Thus, in both sides of expressions (59) appear the Mittag–Leffler functions. Evidently,
for β = 1 they are reduced to the classical Mittag–Leffler functions.∫ ∞

0
Eα,1(±λuα) fν,µ(u) du = t( ν+µ− 1) Eαν, ν+ µ(±λtα), (60)

and for β = α and β = α + 1 we have∫ ∞

0
uα− 1Eα,α(±λuα) fν,µ(u) du = t(α ν+µ− 1)Eαν,α ν+ µ(±λtα),∫ ∞

0
uαEα,α+ 1(±λuα) fν,µ(u) du = t[(α+ 1) ν+µ− 1]Eαν,(α+ 1) ν+ µ(±λtα).

(61)

If β = 1/2, in the integrands of (61) the Mittag–Leffler functions are expressed then
by the error functions [35,36]

E1/2(±z) = ez2
[1± erf(z)] ; z = λuα,

E1/2,1/2(±z) =
{

1√
z
± zez2

[1± erf(z)]
}

,

E1/2,3/2(z) =
ez
√

z
erf(z).

(62)

If β is positive integer, the Mittag–Leffler functions are expressed by elementary func-
tions [36]. In particular cases, with ν = 1/2, µ = 0. ν = µ = 1/2 and ν = 1/3, µ = 2/3 the
explicit form of the inverse transforms of exponential functions is known (see (15) and (17)).

The Laplace transform of the error function is

g(t) = erf
(

λ

2t1/2

)
; 0 < ν < 1,

G(s) =
1− e− λs1/2

s
; G(sν) =

1− e− λsν/2

sν
,

L−1

{
1
sµ ·

1− e− λsν/2

sν

}
= L−1

{
1
sµ −

λ2µ/νe− (λ2/νs)ν/2

(λ2/νs)µ

}
=

tµ− 1

Γ(µ)
− λ2(µ− 1)/ν fν/2,µ

(
tν/2

λ2/ν

)
,

(63)
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which yields

∫ ∞

0
erf
(

λ

2u1/2

)
fν,µ(u) du =

tµ− 1

Γ(µ)
− λ2(µ− 1)/ν fν/2,µ

(
tν/2

λ2/ν

)
. (64)

The Volterra functions are defined by the following integrals [37]:

ν(t) =
∫ ∞

0

tu

Γ(u + 1)
du,

ν(t, α) =
∫ ∞

0

tu+ α

Γ(u + α + 1)
du,

µ(t, β, α) =
∫ ∞

0

uβtu+ α

Γ(β + 1)Γ(u + α + 1)
du,

(65)

and their Laplace transforms are

L{ν(λt)} = 1

s ln
( s

λ

) ; λ > 0,

L{ν(λt, α)} = λα

sα+ 1 ln
( s

λ

) ,

L{µ((λt, β, α)} = λα

sα+ 1 ln
( s

λ

)β+ 1 .

(66)

The logarithmic functions in the Laplace transforms permit to express the integrals of
the Volterra functions with inverse Laplace transform of exponential function in terms of
convolution integrals. From

g(t) = ν(λt) ; λ > 0,

G(s) =
1

s ln
( s

λ

) ; G(sν) =
1

sν ln
(

sν

λ

) ; 0 < ν < 1,

L−1
{

1
sµ ·

1
sν ln[(s/λ1/ν)ν]

}
= L−1

{
1

sν+ µ− 1 ·
1

νs ln(s/λ1/ν)

}
=

tν+ µ− 2

νΓ(ν + µ − 1)
∗ ν(λ1/νt),

(67)

it follows that ∫ ∞

0
ν(λu) fν,µ(u) du =

tν+ µ− 2

νΓ(ν + µ − 1)
? ν(λ1/νt). (68)

Similarly from

g(t) = ν(λt, ρ) ; λ, ρ > 0

G(s) =
λρ

sρ+ 1 ln
( s

λ

) ; G(sν) =
λρ

s(ρ+ 1)ν ln
(

sν

λ

) ; 0 < ν < 1,

λρL−1

{
1
sµ ·

1
s(ρ+ 1)ν ln[(s/λ1/ν)ν]

}
= λρL−1

{
1

sµ− 1 ·
1

νs(ρ+ 1)ν+ 1 ln(s/λ1/ν)

}
=

tµ− 2

Γ(µ − 1)νλ
?, ν[λ1/νt, (ρ + 1)ν],

(69)

we have ∫ ∞

0
ν(λu, ρ) fν,µ du =

tµ− 2

Γ(µ − 1)νλ
? ν[λ1/νt, (ρ + 1)ν]. (70)
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Finally, the Laplace transform of the generalized Volterra function is

g(t) = µ(λt, ξ, ρ) ; λ, ρ, ξ > 0

G(s) =
λρ

sρ+ 1[ln
( s

λ

)
]ξ + 1

; G(sν) =
λρ

s(ρ+ 1)ν[ln
(

sν

λ

)
]ξ + 1

; 0 < ν < 1,

λρL−1
{

1
sµ ·

1
s(ρ+ 1)ν{ln[(s/λ1/ν)ν]}ξ + 1

}
=

λρ

νξ + 1L
−1
{

1
sµ− 1 ·

1
s(ρ+ 1)ν+ 1[ln(s/λ1/ν)]ξ + 1

}
=

tµ− 2

Γ(µ − 1)λνξ + 1 ? µ[λ1/νt, ξ, (ρ + 1)ν],

(71)

and (65) yields

∫ ∞

0
µ(λu, ξ, ρ) fν,µ du =

tµ− 2

Γ(µ − 1)λνξ + 1 ? µ[λ1/νt, ξ, (ρ + 1)ν]. (72)

The number of similar convolution integrals can be significantly enlarged if the
Volterra functions are multiplied by tn with n = 1, 2, 3, . . . , then their Laplace transforms
should be differentiated n times. The result of such differentiations are linear combinations
of these functions [34–36]. For example, with n = 1 and λ = 1 we have

tν(t, ρ) = L− 1
{
− d

ds

[
1

sρ+ 1 ln s

]}
= L− 1

{
ρ + 1

sρ+ 2 ln s
+

1
sρ+ 2(ln s)2

}
=

(ρ + 1) ν[t, (ρ + 1)ν] + µ[t, 1, (ρ + 1)ν].
(73)

5. Conclusions

By applying the Efros theorem in the form established by Wlodarski it was possible
to derive a number of infinite integrals, finite integrals and integral identities with the
function which represent the Laplace inverse transform of s−µ exp(−sν) with 0 < ν < 1 and
0 ≤ µ < 1. The extension to the cases µ ≥ 1 is dealt in Appendix A Derived by us integrals
include in integrands elementary functions (power, exponential, logarithmic, trigonometric
and hyperbolic functions) and the error functions, the Mittag–Leffler functions and the
Volterra functions. Many results appear in form of the convolution integrals. Performing
the inversion by the complex integration, it was possible to show that the inverse Laplace
inverse transform, which means the original function, can be also expressed in terms of
the Wright functions and for particular values of parameters by the Mainardi functions.
Using rules of operational calculus some properties of the inverse Laplace transform
were derived.
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Appendix A. Additional Properties of the Inverse of the Laplace Transform of
s−µ exp(−sν)

The restriction posed on the second parameter of the function fν,µ(t), i.e., µ < 1
(in the inverse of the Laplace transform s−µ exp(−sν)) can be removed by using rules
of operational calculus. In the general case, for a non-negative parameter ρ ≥ 0, this
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inverse transform can always be expressed as the convolution integral which includes the
corresponding power function:

fν,ρ(t) = L− 1

{
e− sν

sρ

}
= L− 1

{
1
sλ
· e−sν

sµ

}
=

tλ− 1

Γ(λ)
? fν,µ(t),

ρ = λ + µ.
(A1)

In the particular case µ = 1, it reduces to the simple integral, because 1/s expresses
the integration operation:

fν,1(t) = L− 1
{

1
s

e− sν
}

=
∫ t

0
fν,0(u) du. (A2)

The product of two identical or different Laplace inverse transforms can be derived in
the form of convolution integrals from

L− 1

{
e− sν

sµ · e− sν

sµ

}
= L− 1

{
e− 2sν

s2µ

}
= 22µ/νL− 1

{
e− (21/νs)ν

(21/νs)2µ

}
,

L− 1

{
e− sν

sµ · e− sν

sρ

}
= L− 1

{
e− 2sν

sµ+ ρ

}
= 2(µ + ρ)/νL− 1

{
e− (21/νs)ν

(21/νs)(µ+ ρ)

}
,

(A3)

which gives

fν,µ(t) ? fν,µ(t) =
∫ t

0
fν,µ(t− ξ) fν,µ(ξ)dξ = 2(2µ− 1)/ν fν,2µ

(
t

21/ν

)
,

fν,µ(t) ? fν,ρ(t) =
∫ t

0
fν,µ(t− ξ) fν,ρ(ξ)dξ = 2(µ+ ρ− 1)/ν fν,µ+ ρ

(
t

21/ν

)
.

(A4)

These results can be generalized to n-fold integrals when exists the factor 1/sn, with
n = 1, 2, 3, . . ..

In the case of the product of identical Laplace inverse transforms it is reduced to the
following convolution integral

L− 1
{

1
sn F(s)

}
=
∫ t

0

(t− u)n− 1

(n− 1)!
f (u) du. (A5)

In similar way, if the inverse transform is in a more general form with 0 < ν < 1,

L
{

fν,µ(t); α
}
= L

{
e− αsν

sµ

}
; L

{
fν,ρ(t); β

}
= L

{
e− βsν

sµ

}
; α, β > 0,

L− 1

{
e− αsν

sµ · e− βsν

sρ

}
= L− 1

{
e− (α+ β)sν

sµ+ ρ

}
=

(α + β)(µ+ρ)/ν L− 1

{
e−[ (α+ β)1/νs]ν

[(α + β)1/νs]µ+ ρ

}
,

(A6)

we have

fν,µ(t; α) ? fν,ρ(t; β) =
∫ t

0
fν,µ(t− ξ; α) fν,ρ(ξ; β)dξ =

(α + β)(µ+ ρ− 1)/ν fν,µ+ ρ

(
t

(α+β)1/ν ; (α + β)
)

.
(A7)
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The differentiation of Laplace inverse transforms with respect to the parameters ν and
µ gives

L
{

∂ fν,µ(t)
∂ν

}
= − sνe− sν

ln s
sµ = − e− sν

sµ− ν− 1 ·
ln(sC)

s
+ ln Ce− sν

sµ− ν ; C = eγ,

L
{

∂ fν,µ(t)
∂µ

}
= −µe− sν

sµ+ 1 ,
(A8)

which yields the following inverses of (A8)

∂ fν,µ(t)
∂ν

= ln t ? fν,µ− ν− 1(t) + γ fν,µ− ν(t),

L
{

∂ fν,µ(t)
∂µ

}
= −µ fν,µ+ 1(t) = −µ

∫ t

0
fν,µ(ξ) dξ,

(A9)

where γ denotes the Euler constant.
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