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Abstract: Plant species recognition from visual data has always been a challenging task for Artificial
Intelligence (AI) researchers, due to a number of complications in the task, such as the enormous data
to be processed due to vast number of floral species. There are many sources from a plant that can be
used as feature aspects for an AI-based model, but features related to parts like leaves are considered
as more significant for the task, primarily due to easy accessibility, than other parts like flowers,
stems, etc. With this notion, we propose a plant species recognition model based on morphological
features extracted from corresponding leaves’ images using the support vector machine (SVM) with
adaptive boosting technique. This proposed framework includes the pre-processing, extraction of
features and classification into one of the species. Various morphological features like centroid, major
axis length, minor axis length, solidity, perimeter, and orientation are extracted from the digital
images of various categories of leaves. In addition to this, transfer learning, as suggested by some
previous studies, has also been used in the feature extraction process. Various classifiers like the
kNN, decision trees, and multilayer perceptron (with and without AdaBoost) are employed on the
opensource dataset, FLAVIA, to certify our study in its robustness, in contrast to other classifier
frameworks. With this, our study also signifies the additional advantage of 10-fold cross validation
over other dataset partitioning strategies, thereby achieving a precision rate of 95.85%.

Keywords: plant species recognition; SVM; AdaBoost; non-separable data; feature extraction; feature
selection; transfer learning

1. Introduction

There are potentially hundreds of thousands of species of plants that exist on earth
presently, out of which a large number contribute to medicinal use to human beings, while
others are poisonous. There are many other uses in this regard as well. This corresponds
to the necessity of recognizing such species using the resources available. This task of
identification and classification can be solved in most promising way using various tools
in the domain of artificial intelligence (AI).

There are a number of methods in ML and deep learning that can be implemented
to address this task, such as regression-based models as supervised machine learning
models, or computer vision models using convolution neural networks. For instance, Sun
et al. [1] proposed a binary generator network to solve the problem of how a generative
adversarial network (GAN) generates a lesion image with a specific shape, and used the
edge-smoothing and image pyramid algorithm to solve the problem that occurs when
synthesizing a complete lesion leaf image where the synthetic edge pixels are different and
the network output size is fixed, but the real lesion size is random. With this, the authors
clearly accomplished proving the necessity as well as effective implementation of AI-based
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techniques at tasks like plant leaf recognition or disease recognition. The same can also be
verified from studies like that of Yang et al. [2].

For some of these computational models, there exist certain challenges. One of
them is the extraction and selection of features from leaf images for accurate recognition.
As mentioned in next section, some studies used artificially developed features, while
others made use of texture-based, morphological features-based, or color-based features.
Therefore, the architectural structure of these models is preprocessing, feature extraction
and selection, and finally classification. Some works have also been done which propose
the use of convolution-based neural networks like the residual network. Because more
smart and better processing-based cameras are available these days, the dataset has become
more informative about the above-said features, thereby leading these models to perform to
a greater extent, empowering human perception and intelligence to classify and recognize
plant species.

With this, our study aims to propose a novel classification model to identify plant
species using morphological features, as well as from transfer learning and adaptive
boosting, with high and competitive accuracy. The main contributions of our study are

• Proposing a robust, precise, and fast plant-species recognition model;
• Making use of morphology-based features from leaf images with low dimensionality;
• Using features by transfer learning from low-dimensional ConvNet architecture;
• Evaluation of different classifiers using controlled comparison;
• Enhancing the classification results via adaptive boosting.

This paper has been sub-divided into seven sections. Existing models and studies done
addressing this task are presented in Section 1.1. The methodology discussed in detail, includ-
ing pre- processing techniques used, features extracted, and model implemented, is discussed
in Section 2. Section 3 presents the dataset used, split into training and testing sets, and models
the hyper-parameter selection and the flow of the methodology. In Section 4, the analysis of
results obtained, and their comparison with other existing models is done. Finally, in Section 5,
we exploit the credibility of the proposed methodology with regards to the detailed discussion
of the implementation in this paper, and we make some concluding remarks in Section 6.

1.1. Literature Review

Fortunately, there has been intensive work done in past decade for this task, thereby
giving more and better insights to present studies like this one. In one of such proposals,
by Zhang Y et al. [3], a bag of features (BOF) was implemented, and the authors achieved
an overall maximum accuracy of 94.22%. Azlah et al. [4] provided a controlled and well-
analyzed comparative study on various studies and models on various bases, including
CNN-based, mathematical learning-based, etc. They reviewed different techniques for
plant leaf classification, including CNNs, support vector machines (SVMs), and kNNs,
and provided important insights for development of methodologies at this task. They
summarized characteristics of these classifiers and stated that CNNs are disadvantageous
for intensive computation and incapable of generalization.

Another important study has been done by Munish [5], in which they used different
classifier models like decision tree, kNN, and multilayer perceptron, and implemented the
AdaBoost technique for improving precision. They achieved a precision rate of 95.42%.
Jeon and Rhee [6] implemented convolution neural network-based classifier Google Net
and provided good insights on the use of CNNs at this task, achieving a recognition rate
of above 94% of their system. In another study by Pankaja and Suma [7], texture- and
shape-based features were extracted and PCA classifier was used. They claimed 96.66%
achievable accuracy. An accuracy of 94.0% was achieved by using the multilayer perceptron
(MLP) classifier [8] trained over morphological features. From the same morphological
features, Kadir [9] achieved an accuracy of 93.75%. From a combination of morphology-
based, vein structure-based, and geometrically-based features, Arun [10] implemented the
support vector machine classification model and got to an accuracy of 94.20%. Using edge
and color histograms and the area of leaves, Anami [11] proposed a leaf recognition model
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and achieved an accuracy of 93.6%. The elliptic Fourier analysis was used by Ekshinge and
Andore [12], which got them to an accuracy of 85% from shape-based features. Sun [13]
achieved a recognition rate of 91.78% using a deep-learning model consisting of 26 layers
with eight residual blocks on the BJFU100 dataset.

2. Proposed Methodology
2.1. Support Vector Machine (SVM)

SVM [14] is a supervised machine learning model for classification and regression
analysis. If Š is the number of features, Ĥ is a set of Š dimensional hyperplanes, and
ĥ∈Ĥ is where ĥ has maximum margin, i.e., the maximum distance between data points
of both classes. An SVM aims at finding an ĥ in Ĥ that can classify all of the examples
as points in space distinctly. This model is both memory-efficient and highly effective in
multi-dimensional feature space. Traditionally, this was a binary-class classifier. However,
later many new efficient approaches were introduced for multiclass classifications Out
of these, Duan and Keerthi [15] suggest using the PWC PSVM, among others, which is
pairwise coupling implementation [16] of one-versus-one classifiers, and refers to the PWC
implementations with PSVM.

There are certain tuning parameters in an SVM model that help it optimize the results with
respect to the specific data points available. One of them is Kernel, which is a mathematical
function and operates in such a way as to take data as input and transform it into a necessary
form. These functions return the inner product between two points in an acceptable space and
may be of various forms, e.g., linear, nonlinear, polynomial, radial base function (RBF), and
sigmoid. These kernels are based on fact that non-separable features become linearly separable
(often) upon their mapping to highly dimensional feature space. One of the commonly used
kernels is the RBF kernel, which on two samples, x and x, is represented as feature vectors in
some input space, as defined in Equation (1) below:

K(x, x) = e(
−||x−x||2

2σ2 ) (1)

where K(x, x) is also called Gaussian RBF if it is parametrized using γ = − 1
σ2 , where

γ > 0, σ is a free parameter, and ||x− x||2 is considered as the squared Euclidean distance
between two feature vectors.

Another parameter in SVM modelling is the regularization (denoted by C), which
generically represents the tolerance level of mis- classifications. A higher value of C means
that the model will not tolerate ideally any misclassifications, and will try to fit all of the
points to its potential. There is another parameter, namely gamma (γ), which describes the
effect of the training example. This implies that with a low gamma, focuses a long way
from dependable separation lines are considered for computation when fitting, while a
high gamma implies that focuses near conceivable lines are considered for calculation.

2.2. Adaptive Boosting (AdaBoost)

Boosting [17], in general, is a method of converting a family of weak learners into a
strong learner. We combine these weak classifiers (slightly better than deciding from a coin
toss) so that they have minimum correlation with each other, perform democratic voting
(figuratively), and the result turns out to be a strong classifier. A few types of boosting
method are gradient tree boosting, Adaptive Boosting (AdaBoost), and Extreme Gradient
Boosting (XGBoost).

AdaBoost was developed by Yoav and Robert, and they won Gödel Prize in 2003 for
this study. It was implemented in combination with various types of learning algorithms.
The output of these weak classifiers is summed using weights, which serve as the represen-
tation for output of the boosted classifier. A representation of algorithm of AdaBoost is
shown in Figure 1a. AdaBoost is adaptive in the sense that succeeding weak learners adjust
(adapt) in favor of those samples that were wrongly classified by earlier classifying-blocks.
It is sensitive to noisy data and outliers [18]. Traditionally, it has been based on binary-class



Symmetry 2021, 13, 356 4 of 16

problem. However, a few later studies have suggested its use for multi-class classification
problems as well [19,20]. The algorithm, one of these problems [19], is shown in Figure 1b.

Figure 1. Representations of two AdaBoost Methods as algorithms (a) Shown algorithm of AdaBoost, (b) Shows Multiclass
AdaBoost [19].

2.3. Feature Extraction and Selection

Features are the most crucial component of a Supervised Machine Learning Model.
They represent the structure and information content in the dataset. Since our model is
not based on convolution operators, i.e., there is no direct convolution-based learning in
our network, images will not be processed directly, as the pixel-intensity values of images
and hence numeric-type features need to be fed. As there is a large variety of features
that can be used for this purpose, one must be cautious and make sure they are highly
informative and distinct for efficient convergence of a network. It must be noted that for
the task of recognizing plant species from corresponding leaf images, the most important
characteristics observable in a leaf are shape- or structure-based, the others being botanical
characteristics like vein structure. There have been a number of studies in botanical sciences
that prove the fact that although vein structure is important in distinguishing plant species,
it cannot be entirely relied upon for the task, as some patterns in these structures in different
species of plants have also been noticed. Certainly, this does not play a major role in the
dataset used in this study, as can be applied in general to flora only; yet, we considered
this fact, and with the success of previous studies in similar tasks utilizing shape-based
features, we fed our model with morphological features, like minor and major axis length,
solidity, perimeter, centroid, and orientation, which are discussed in detail in this section.

Solidity is area fraction of the region, compared to its convex hull or the ratio of the
pixels that are present in both the object and the convex hull. The more bays and corners
the object has, the lower its solidity. Its mathematical formulation is

S =
Area

Convex Area
(2)

Solidity-filled images consist of single color. Generally, the leaf images are of two types.
The first is hollow, wherein pixels around the focus of mass are just halfway filled—for
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example, small pixels are left unfilled, and the one in which all pixels around center of
mass are loaded up with colors of high intensity.

c
s
=

10(
Dh
Dt

)(
Ns

1000

)1.5 (3)

where, c is centroid, s represents solidity, Dh is the diameter, and Ns is the pixel count in a
specific region.

While interfacing all centroid points, a line is drawn. The entire image’s focal point of
mass stands around this centroid point.

A centroid is interpreted as the center of mass of a region or area. The centroid of the
polygon formed can be found by segmenting the image into smaller regions, and each small
region can have its individual centroid point. Summing up these individual centroids, the
centroid of a polygon is calculated using

Cx =
∑ Cix Ai

Ai
(4a)

Cy =
∑ Ciy Ai

Ai
(4b)

here, Cx and Cy represent centroids where Ai is the contour area, given as

A =
1
2

N−1

∑
i=1

xiyi+1 + xi+1yi (5)

The major axis length is a line that connects one end, referred to as the base point, to tip of
leaf. The line is drawn to two points that are selected. This represents the main perpendicular
axis of image. This main axis length calculates length of image in width-wise as

Major Axis Length =
(x1 − xc)

2

rx2 +
(y1 − yc)

2

ry2 (6)

where x1 and y1 are points along the major axis, xc and yc are center points, and ry and rx
represent the radius along the x-axis and y-axis, respectively. The minor axis is a line drawn
perpendicular to the major axis.

The perimeter or circumference of region Ř represents the path length of any shape
externally. To determine the perimeter, the whole of separations between progressive limit
pixels are estimated in equation below. The basic measure of the perimeter is attained by
calculating the number of limit pixels that belong to an object. The perimeter is the total
diameter that surrounds the image of leaf. The total number of pixels across boundary
points will show the total number of pixels utilized to fill the boundary pixels.

P = 2L + 2W (7)

where P is the perimeter, L is the length of the major axis, and W is the length of the
minor axis.

Orientation is measurement of the angle between the x-axis and the main axis of
ellipse. It displays the orientation of the picture with the main axis and minor axis. The
direction of coordinate axis will immediately minimize the length of the major and minor
axis, as seen in the equation below.

O = cos mj + sin mj +
√

tan
(
mj ×mi

)
(8)

where O is the orientation, mi is the length of the minor axis, and mj is the length of the
major axis.
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Other than these morphological features, we used the power of transfer learning
and deep convolutional neural networks for our task. For this, first we implemented the
traditional transfer learning technique to feed the proposed classifier model, which can
be highlighted as first considering the convolutional network as a fixed feature extractor,
and using other classifiers like logistic regression or SVM for classification tasks. Later, we
fine-tuned the convolutional network by first training the last Q levels with N −Q fewer
levels frozen (the higher the level, the lower will be the overfitting to target data) [21].

Primarily, there were two possibilities as options of the architecture that would already
be trained against the renowned ImageNet, and whose weights were available online
for use. These were VGGNet and the ResNet50. Also, it is an unavoidable fact that the
ImageNet dataset is not related or similar to the dataset used for this task, though ImageNet,
in its total collection of 21m841 synsets, includes 70 leaf-related synsets. Therefore, the
usage of transfer learning is not an ideal decision. However, Yosinski et al. stated and
proved experimentally that even features transferred from distinct tasks are improved
compared to random weights [22]. In addition, certain later layers of these architectures
are not used for transferring features, which further disregards the non-ideal condition
mentioned above, because earlier layers are more generic when it comes to features, while
the later layers are more dataset-specific [21]. ResNet50 was chosen for this task, as it
provides less overfitting and better results [23]. It is relatively deep and less complex [24].
With the pooling size of 3_7× 7, it generates feature vectors of lower dimensions. ResNet50
consists of 49 convolutional layers with one fully-connected layer. Forty-eight convolutional
layers compose 16 “residual” blocks in four stages. Like in [23], we also used the bottleneck
features or the CNN codes (in the terminology of transfer learning). Also, the layer after
the last convolutional or residual block has to be dropped off. These extracted feature
vectors are of the 2048 dimension. We acknowledge Yosinski et al. [22] for good insights
into transfer learning and its use for this task.

A code snippet as the MATLAB implementation algorithm for visually depicting
a leaf sample image in the dataset in different stages of processing can be observed in
Figure 2 below. Subsequent images printed on the output screen after running the code as
in Figure 2 are shown in Figure 3.

Figure 2. Shows code snippet implemented on MATLAB for the processing of images before feeding
into the model.
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2.4. Model Highlights

To sum up this study, we have used the multiclass support vector machine as a
classifier and introduced a non-linear kernel for unavoidable reasons in the separability
of the datapoints. To improve the network testing results, we have implemented the
multiclass AdaBoost. Though AdaBoost works efficiently with relatively weak classifiers
for improving the results, and SVMs are strong classifiers, we used AdaBoost because there
have been various studies that show SVM to be a weak learner (a little better than a coin
toss, in such cases), with some other modifications can act optimally with AdaBoost [25–27].

For the input data, we extracted morphological features from the leaf images in the
available open-source FLAVIA dataset, as well as the features from the transfer learning
technique. These features are described in Table 1 below.

Table 1. Features used for training the classifier.

Feature Explanation Formula

Solidity
Area fraction of the region compared to its convex
hull, or the extent of the pixels in the convex hull

that is additionally in the area.
S = Area

Convex Area

Centroid Center of mass of a region or area.
Cx = ∑ Cix Ai

Ai
; Cy =

∑ Ciy Ai
Ai

A = 1
2

N−1
∑

i=1
xiyi+1 + xi+1yi

Perimeter Path length of the shape externally. P = 2L + 2P

Major axis length Line connecting one end, called a base point, to the
tip of the leaf. Major Axis Length = (x1−xc)

2

rx2 + (y1−yc)
2

ry2

Minor axis length Line drawn perpendicular to the major axis.
(

ı
(

(x1−xc)
2

rx2 + (y1−yc)
2

ry2

))⊥
Orientation Angle between the x-axis and the major axis of

the ellipse. O = cos mj + sin mj +

√
tan
(

mj ×mi

)
ConvNet via transfer learning Features extracted from ResNet50 via

transfer learning N/A
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The parameters, decisive elements of the methodology, have been summarized in
Table 2 below.

Table 2. The hyperparameters and elements of the methodology selected.

Element Value/Detail

Fundamental algorithm Support vector machine (polynomial kernel)

Secondary algorithm Multiclass adaptive boosting

Dataset FLAVIA (32 classes distributed among 1907 instances)

Features Morphological and from transfer learning (ResNet50)

Partitioning strategy 80:20 split, five-fold CV and 10-fold CV (best: 10-fold CV)

Fundamental model Support vector machine and adaptive boosting

3. Data and Training

The open-source dataset [28] that we used contains 1907 leaf images of 32 different
species of plants. Samples from that dataset are shown in Figure 4 below. With the availabil-
ity of good quality photography, the images are of good quality with a white/transparent
background, with almost no signs of pixel deformity and little or no variations of lumi-
nance or color. The features extracted from these images, as discussed in Section 2.3, were
highly scattered and non-separable. Therefore, we had to use a non-linear kernel with the
multiclass SVM. Sangeetha and Kalpana [29] provided good insights about selection of
kernel functions for optimal performance in a multiclass SVM. Based on that study, and
the dataset structure used for this study, we used the polynomial kernel function.

Figure 4. Shows samples from the FLAVIA leaf image dataset (a) Image of species, label Podocarpus
macrophyllus (Thunb.) Sweet. (b) Image of species, label Prunus serrulata Lindl. var. lannesiana auct.
(c) Image of species, label Cinnamomum japonicum Sieb. (d) Image species, label Kalopanax s. Koidz.

The implemented architecture has been represented using the flow chart in Figure 5 below.
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Figure 5. Shows the flow diagram of the implemented algorithm

4. Evaluation and Results

We performed experiments with same dataset and its partitioning strategy with three
other previously proposed models using kNN, MLP + AdaBoost, and decision tree, to
provide sufficient data that can quantitively validate the credibility of this study. To show
the validity of the proposed system, as well as the decisions like AdaBoost and transfer
learning, we did experiments in the absence and presence of these models. Firstly, an
80/20 approach was used, in which 80% of the images are considered randomly as a
training dataset, and remaining 20% are considered as a testing dataset. Another approach
is 5-fold and 10-fold cross-validation. In five-fold cross-validation, the whole dataset is
randomly partitioned into five groups. Training and testing are done as 3:2 on these groups
iteratively. A similar approach is used for the 10-fold cross-validation. Firstly, we compared
the proposed model with three other models, as their precision rates vs dataset partitioning
strategy is as depicted in Figure 6 below. These results indicate that our framework
outperforms the other three while utilizing 10-fold validation. This is also evidence of the
fact that the MLP + AdaBoost performs slightly better with the five-fold cross-validation
strategy, and is nearly consistent with varying dataset partitioning strategies. Secondly, the
confusion matrix of proposed model is shown below in Figure 7.
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Figure 6. Precision rates vs dataset partitioning strategy for four different models.

Figure 7. The model’s performance as a confusion matrix obtained from the proposed model.
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It can be computed from this confusion matrix that the overall accuracy of the frame-
work on all 32 classes is

Acc % =

(
323

323 + 18

)
× 100 = 94.72141% (9)

If compared with the CNN-based study [6], in which the recognition rate (RR) achieved
was almost above 94%, our framework still outperforms. The authors in this study used
convolution neural network-based classifier Google Net, which is considered to be a fairly
well-performing classifier. Also, considering the fact that these classifiers are developed
and used specifically for visual data, and hence should be more dedicated to the problem
at hand, this is a clear indication of the robustness of the proposed architecture in this
article. Next, Sun et al. [13] achieved 91.78% RR with their 26-layered CNN network, which
further evidence of the credibility of our framework. An accuracy of 94.22% was achieved
by Zhang et al. [3] using BOF and DPCNN, and is a close competitor, but our methodology
validates its effectiveness by its outperformance. An overall analysis of these studies in
contrast to ours has been tabulated below in Table 3.

Table 3. Accuracy values of various research studies.

Serial Research Study Accuracy (%)

1 CNN-based [6] 94.00

2 CNN-based [13] 91.78

3 Bag of features-based [3] 94.22

4 Our study (hybrid) 94.72

The precision rates of each of the 32 classes in the FLAVIA dataset are shown in the
Table 4 below.

Table 4. Shows values of each individual class in the dataset.

Serial Class Precision Class Precision

1 Phyllostachys edulis (Carr.) Houz. 1.0000 Cedrus deodara (Roxb.) G. Don 0.93750

2 Aesculus chinensis 0.9000 Ginkgo biloba L. 0.92860

3 Berberis anhweiensis Ahrendt 1.0000 Lagerstroemia indica (L.) Pers. 0.91660

4 Cercis chinensis 0.9090 Nerium oleander L. 0.92860

5 Indigofera tinctoria L. 0.9000 Podocarpus macrophyllus (Thunb.) Sweet 0.92300

6 Acer palmatum 1.0000 Prunus s. Lindl var. l. auct. 0.92857

7 Phoebe nanmu (Oliv.) Gamble 1.0000 Ligustrum lucidum Ait. f. 1.00000

8 Kalopanax s. Koidz. 1.0000 Tonna sinensis M. Roem. 1.00000

9 Cinnamomum japonicum Sieb. 1.0000 Prunus persica (L.) Batsch 1.000000

10 Koelreuteria paniculata Laxm. 0.9166 Manglietia fordiana Oliv. 0.90000

11 Ilex macrocarpa Oliv. 0.9166 Acer buergerianum Miq. 1.00000

12 Pittosporum tobira Ait. f. 1.0000 Mahonia bealei (Fortune) Carr. 0.90900

13 Chimonanthus praecox L. 0.9090 Magnolia grandiflora L. 1.00000

14 Cinnamomum camphora (L.) J. Presl 0.9231 Populus× canadensis Moench 0.92307

15 Viburnum awabuki K. Koch 1.0000 Liriodendron chinense Sarg. 1.00000

16 Osmanthus fragrans Lour. 1.0000 Citrus reticulata Blanco 1.00000

The same leaf samples shown in Figure 4, resulting from model, are shown in Figure 8
below.
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12 Pittosporum tobira Ait. f. 1.0000 Mahonia bealei (Fortune) Carr. 0.90900 

13 Chimonanthus praecox L. 0.9090 Magnolia grandiflora L. 1.00000 

14 Cinnamomum camphora (L.) J. Presl 0.9231 Populus× canadensis Moench 0.92307 

15 Viburnum awabuki K. Koch 1.0000 Liriodendron chinense Sarg. 1.00000 

16 Osmanthus fragrans Lour. 1.0000 Citrus reticulata Blanco 1.00000 

The same leaf samples shown in Figure 4, resulting from model, are shown in Figure 

8 below. 
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Figure 8. Model’s output samples of four different species of leaves. (a) Output of Podocarpus
macrophyllus (Thunb.) Sweet class, (b) Output of Prunus s. Lindl var. l. auct., (c) Cinnamomum
japonicum Sieb. (d) Kalopanax s. Koidz.

Next, we compared the root mean squared error (RMSE) of all models at different
partitioning strategies, and as depicted in Figure 9 below, the RMSE falls most gradually
for the kNN, while the rate of fall is almost consistent with the other three models, with the
lowest being for our framework at 10-fold CV.

Figure 9. All four models’ performance as root mean squared error (RMSE) vs partitioning strategy of the proposed systems.

In another experiment, aiming to prove the validity of transfer learning for extracting
features, as mentioned in previous sections, we found that the proposed architecture per-
forms better with the introduction of these additional transfer learning-based features. This
can be proven from the plot in Figure 10 below, in which the flow of model’s performance
has been depicted. It is certain from this plot that the decision for including CNNs is
vital in the consolidated performance of the methodology. Also, the precision rate of the
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methodology without transfer learning or CNNs is also considerably good. This also
clarifies the fact that the high superiority in performance of the methodology is primarily
dependent upon transfer learning or CNNs.

Figure 10. Models’ performance in presence and absence of transfer learning features.

Finally, we did similar experiments in the absence of AdaBoost, using the strong SVM
classifier itself, and the results are depicted in the Figure 11 below. These results clearly
indicate that although by marginal amounts, the adaptive boosting strategy plays a role in
enhancing the framework.

Figure 11. Models’ performance in the presence and absence of AdaBoost.
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5. Credibility of the Methodology

It is an undeniable fact that the SVM was first introduced way before some of the
high-performing modern classifier models. Even if some modifications to the SVM are
considered, it still might not outperform some of the CNN-based networks for most
tasks. This study is primarily aimed at improving SVM implementation for plant species
recognition. For example, the architecture proposed includes the use of AdaBoost, which
is not conventionally preferred with SVM (as discussed in this paper already), yet we
observed some improvements while using it. There already have been numerous options
proposed at this task clearly, but the architecture in our study suggests that even traditional
networks like SVM can compete with some of the well-performing models of the time,
particularly for this task. This will enable researchers to go not only for CNN-based models
while working on such problems, because as the results indicate, there is a high future scope
of such models, though only with potentially useful modifications. Also, we utilized one
of the potentials that CNNs exhibit, i.e., extracting features from images, with the decision
to use transfer learning. In effect, we enhanced a traditional classifier like SVM, utilizing
CNNs and some other modifications as well. Lastly, in the manuscript, as the conclusion
and Priya et al. [10] also state, SVMs are disadvantageous with speed and size constraints,
as well as with complex algorithmic structures, whereas CNNs are disadvantageous with
intensive computations and are incapable of better generalization. Clearly, for the task at
hand—plant species recognition—there arises no issue of urgency to detect the class of
a plant, i.e., the primary disadvantages of SVM are not much of a loss for the task, and
moreover, after the modifications proposed, this quantification of disadvantages gets even
lower. However, this is not the case with CNNs.

6. Conclusions

In this study, we presented an efficient and robust plant species classification model
using features extracted from leaves, transfer learning, and adaptive boosting. We also
experimented with the model for realizing the effects to final results with the presence
and absence of some architectural highlights, such as AdaBoost and transfer learning, to
provide supplementary evidence of the right choices for these decisions, thereby making
this proposal a novel study. In this work, an average precision rate of 95.85% was achieved
for 32 plant species. This gives this model better performance than most existing models
for the task. This study has the full potential to be extended, and be used in medicinal or
agricultural research.

With regard to the limitations of this study, as already discussed above, SVMs might
be disadvantageous in terms of their speed and size constraints. Although this does not
play a primary role in improvements to this framework, it can be considered. Secondly, as
also discussed in the manuscript, the enhanced AdaBoost technique was utilized, although
boosting in general is not preferred with SVMs. Therefore, a future scope of our framework
would be to develop a better boosting strategy for the SVM that also lightens the process-
ing/computations to be done by it. Also, the data is not processed much before feeding
into the classification modules in the framework. Although most of the existing methods
for this task will not make much of a difference, a customized and dedicated block for
processing data before classification can be added to the overall flow of the framework. Our
model also does not specifically account for the fact that the sheet can be angled to the scan
plane. We did not experiment with the possibility of geometric distortions or deformations
of images due to non-ideal camera angles. In addition, surely “affinity” might solve the
problem in that case. Certainly, this is an interesting aspect of the study to be worked upon.

Author Contributions: Conceptualization, A.R., S.M. and A.K.P.; methodology, S.M.; software, S.M.
and A.K.P.; validation, S.M., A.R., X.-Z.G. and A.K.P.; formal analysis, S.M. and A.K.P.; investigation,
S.M. and A.K.P.; resources, S.M. and A.K.P.; data curation, S.M. and A.K.P.; writing—original draft
preparation, S.M. and A.K.P.; writing—review and editing, S.M. and A.K.P. and X.-Z.G.; visualization,
S.M.; supervision, A.K.P.; project administration, A.K.P.; funding acquisition, X.-Z.G. All authors
have read and agreed to the published version of the manuscript.



Symmetry 2021, 13, 356 15 of 16

Funding: The authors received no specific funding for this study.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: I would like to acknowledge almighty GOD, my parents, friends, my supervisor,
and all the co-authors for valuable suggestions and support.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.

References
1. Sun, R.; Zhang, M.; Yang, K.; Liu, J. Data enhancement for plant disease classification using generated lesions. Appl. Sci. 2020,

10, 466.
2. Yang, K.; Zhong, W.; Li, F. Leaf segmentation and classification with a complicated background using deep learning. Agronomy

2020, 10, 1721. [CrossRef]
3. Zhang, Y.; Cui, J.; Wang, Z.; Kang, J.; Min, Y. Leaf Image Recognition Based on Bag of Features. Appl. Sci. 2020, 10, 5177. [CrossRef]
4. Azlah, M.A.; Chua, L.S.; Rahmad, F.R.; Abdullah, F.I.; Wan Alwi, S.R. Review on techniques for plant leaf classification and

recognition. Computers 2019, 8, 77. [CrossRef]
5. Kumar, M.; Gupta, S.; Gao, X.Z.; Singh, A. Plant Species Recognition Using Morphological Features and Adaptive Boosting

Methodology. IEEE Access 2019, 7, 163912–163918. [CrossRef]
6. Jeon, W.S.; Rhee, S.Y. Plant leaf recognition using a convolution neural network. Int. J. Fuzzy Log. Intell. Syst. 2017, 17, 26–34.
7. Pankaja, K.; Suma, V. Leaf Recognition and Classification Using GLCM and Hierarchical Centroid Based Technique. In Pro-

ceedings of the 2018 International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India,
11–12 July 2018; IEEE: Piscataway, NJ, USA; pp. 1190–1194.

8. Kumar, S. Leaf Color, Area and Edge features-based approach for Identification of Indian Medicinal Plants. Int. J. Comput.
Sci. Eng. 2012, 3, 436–442.

9. Kadir, A.; Nugroho, L.E.; Susanto, A.; Santosa, P.I. Performance improvement of leaf identification system using principal
component analysis. Int. J. Adv. Sci. Technol. 2012, 44, 113–124.

10. Priya, C.A.; Balasaravanan, T.; Thanamani, A.S. An efficient leaf recognition algorithm for plant classification using support
vector machine. In Proceedings of the InInternational conference on pattern recognition, informatics and medical engineering
(PRIME-2012), Salem, India, 21–23 March 2012; IEEE: Piscataway, NJ, USA; pp. 428–432.

11. Anami, B.S.; Nandyal, S.S.; Govardhan, A. A combined color, texture and edge features-based approach for identification and
classification of indian medicinal plants. Int. J. Comput. Appl. 2010, 6, 45–51. [CrossRef]

12. Sambhaji, E.S.; Andore, D.B. Leaf recognition algorithm using neural network-based image processing. Asian J. Eng. Technol. Innov.
2014, 2, 10–16.

13. Sun, Y.; Liu, Y.; Wang, G.; Zhang, H. Deep learning for plant identification in natural environment. Comput. Intell. Neurosci. 2017,
22, 2017. [CrossRef] [PubMed]

14. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
15. Duan, K.B.; Keerthi, S.S. Which is the best multiclass SVM method? An empirical study. In International Workshop on Multiple

Classifier Systems, Proceedings of the Multiple Classifier Systems; Springer: Berlin/Heidelberg, Germany, 2005; pp. 278–285.
16. Hastie, T.; Tibshirani, R. Classification by pairwise coupling. In Advances in Neural Information Processing Systems; MIT Press:

Cambridge, MA, USA, 1998; pp. 507–513.
17. Freund, Y.; Schapire, R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput.

Syst. Sci. 1997, 55, 119–139. [CrossRef]
18. Boosting Algorithms: AdaBoost, Gradient Boosting and XGBoost. 5 May 2018. Available online: hackernoon.com (accessed on

4 January 2020).
19. Hastie, T.; Rosset, S.; Zhu, J.; Zou, H. Multi-class adaboost. Stat. Its Interface 2009, 2, 349–360. [CrossRef]
20. Kim, T.H.; Park, D.C.; Woo, D.M.; Jeong, T.; Min, S.Y. Multi-class classifier-based adaboost algorithm. In International Conference

on Intelligent Science and Intelligent Data Engineering, Proceedings of the Intelligent Science and Intelligent Data Engineering; Springer:
Berlin/Heidelberg, Germany, 2011; pp. 122–127.

21. CS231n: Convolutional Neural Networks for Visual Recognition. Available online: http://cs231n.github.io/transfer-learning/
(accessed on 10 January 2021).

22. Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How transferable are features in deep neural networks? arXiv 2014, arXiv:1411.1792.

http://doi.org/10.3390/agronomy10111721
http://doi.org/10.3390/app10155177
http://doi.org/10.3390/computers8040077
http://doi.org/10.1109/ACCESS.2019.2952176
http://doi.org/10.5120/1122-1471
http://doi.org/10.1155/2017/7361042
http://www.ncbi.nlm.nih.gov/pubmed/28611840
http://doi.org/10.1007/BF00994018
http://doi.org/10.1006/jcss.1997.1504
hackernoon.com
http://doi.org/10.4310/SII.2009.v2.n3.a8
http://cs231n.github.io/transfer-learning/


Symmetry 2021, 13, 356 16 of 16

23. Plant Leaf Recognition. Available online: http://cs229.stanford.edu/proj2016/report/LiuHuang-PlantLeafRecognition-report.
pdf (accessed on 5 January 2021).

24. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015.

25. Li, X.; Wang, L.; Sung, E. AdaBoost with SVM-based component classifiers. Eng. Appl. Artif. Intell. 2008, 21, 785–795. [CrossRef]
26. Govindaraj, D. Can Boosting with SVM as Week Learners Help? arXiv 2016, preprint. arXiv:1604.05242.
27. García, E.; Lozano, F. Boosting Support Vector Machines. MLDM Posters. 2007, pp. 153–167. Available online: https://www.

sciencedirect.com/science/article/abs/pii/S0957417420301457 (accessed on 10 January 2020).
28. Flavia (at a Glance). Available online: http://flavia.sourceforge.net/ (accessed on 2 January 2021).
29. Sangeetha, R.; Kalpana, D.B. Identifying efficient kernel function in multiclass support vector machines. Int. J. Comput. Appl.

2011, 28, 18–23. [CrossRef]

http://cs229.stanford.edu/proj2016/report/LiuHuang-PlantLeafRecognition-report.pdf
http://cs229.stanford.edu/proj2016/report/LiuHuang-PlantLeafRecognition-report.pdf
http://doi.org/10.1016/j.engappai.2007.07.001
https://www.sciencedirect.com/science/article/abs/pii/S0957417420301457
https://www.sciencedirect.com/science/article/abs/pii/S0957417420301457
http://flavia.sourceforge.net/
http://doi.org/10.5120/3408-4754

	Introduction 
	Literature Review 

	Proposed Methodology 
	Support Vector Machine (SVM) 
	Adaptive Boosting (AdaBoost) 
	Feature Extraction and Selection 
	Model Highlights 

	Data and Training 
	Evaluation and Results 
	Credibility of the Methodology 
	Conclusions 
	References

