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Abstract: In this paper, we study two-dimensional divisor problems of the Fourier coefficients of
some automorphic product L-functions attached to the primitive holomorphic cusp form f (z) with
weight k for the full modular group SL2(Z). Additionally, we establish the upper bound and the
asymptotic formula for these divisor problems on average, respectively.
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1. Introduction

As usual, letHk denote the set of primitive holomorphic cusp forms with even integral
weight k ≥ 2 for the full modular group SL2(Z); then Hk is made up of the common
eigenfunctions of all Hecke operators Tn. Then the Fourier series expansion of Hecke
eigenfunction f at the cusp ∞ has the following form.

f (z) =
∞

∑
n=1

λ f (n)n(k−1)/2e2πinz (Im z > 0),

where the coefficient λ f (n) denotes the n-th normalized eigenvalue, which is the coeffi-

cient divided by n
k−1

2 of the Hecke operator Tn. Note that λ f (n) is real valued and also
multiplicative. Let n be an integer greater than one, Deligne [1] proved that

|λ f (n)| ≤ τ(n),

where τ(n) denotes the number of n’s positive divisors. For prime p, we have

λ f (p) = α f (p) + β f (p) and α f (p)β f (p) = |α f (p)| = |β f (p)| = 1. (1)

Studying the properties and average behaviors of various sums concerning λ f (n) and
λ f× f (n) is a meaningful and interesting problem. In number theory, classical problems are
investigate mean value estimates of these Fourier coefficients and related problems with
the corresponding automorphic L-functions (for examples, see [1–23], etc.). In particular,
we give a brief introduction for the general divisor problem.

Let ω ≥ 1 is an integer, and

λω, f (n) = ∑
n=n1n2···nω

λ f (n1)λ f (n2) · · · λ f (nω),

λω, f× f (n) = ∑
n=n1n2···nω

λ f× f (n1)λ f× f (n2) · · · λ f× f (nω).

when ω = 1, we actually have λ1, f (n) = λ f (n) and λ1, f× f (n) = λ f× f (n). Hecke [24]
proved

∑
n≤x

λ f (n)� x
1
2 .
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Later, the above upper bound was improved by many authors (see [1,6,15]). Additionally,
the best result up to now was due to Wu [18]:

∑
n≤x

λ f (n)� x
1
3 logρ x,

where

ρ =
102 + 7

√
21

210

(6−
√

21
5

) 1
2
+

102− 7
√

21
210

(6 +
√

21
5

) 1
2 − 33

35
= −0.118 · · · .

Rankin [14] and Selberg [16] showed that

∑
n≤x

λ f× f (n) = C f x + O(x
3
5 ),

where C f is a positive constant depending on f . Kanemitsu, Sankaranarayanan and
Tanigawa [25] considered a general divisor problem and established

∑
n≤x

λω, f (n) � x1− 3
2k+2+ε,

∑
n≤x

λω, f× f (n) = Mω(x) + O(x1− 1
2k +ε),

where ω ≥ 2 is an integer; Mω(x) derives from a residue and has the form xPω−1(log x);
Pω−1(t) represents a polynomial of t with degree ω − 1. Fomenko [26] also showed the
same result for the sum ∑n≤x λω, f (n). Later, Kanemitsu, Sankaranarayanan and Tanigawa’s
result was improved by Lü [27], and in this direction, many scholars have obtained a series
of results (see [28–30], etc.).

In this paper, we consider the two-dimensional divisor problems related to the Fourier
coefficients λ f (n), λ f× f (n). To state our results, we first introduce some notation. For any
fixed integers 1 < a < b, we write

λa,b
f (n) = ∑

n=na
1nb

2

λ f (n1)λ f (n2) (2)

and
λa,b

f× f (n) = ∑
n=na

1nb
2

λ f× f (n1)λ f× f (n2). (3)

The two-dimensional divisor problems can be considered as the average behaviors of
the coefficients λa,b

f (n) and λa,b
f× f (n). We set

S f (a, b; x) := ∑
n≤x

λa,b
f (n) (4)

and
S f× f (a, b; x) := ∑

n≤x
λa,b

f× f (n). (5)

For these sums (4) and (5), we establish the upper bound and the asymptotic formula
by considering the sizes of a and b, respectively. We refer to Section 3 for our detailed results.

In the following Section 2, we first introduce some specific automorphic L-functions
and quote some lemmas. We state our results in Section 3, and show their proofs in
Sections 4 and 5. In Sections 6 and 7, we state an application of our results and give a
conclusion, respectively.
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2. Some Lemmas

In this section, to prove Theorems 1 and 2 we first introduce some specific automorphic
L-functions, which is important for the proof of our results and also help us understand the
Fourier coefficients in another way. For Re s > 1, we define the Hecke L-function L(s, f )
attached to f as

L(s, f ) =
∞

∑
n=1

λ f (n)
ns = ∏

p

(
1−

α f (p)
ps

)−1(
1−

β f (p)
ps

)−1

.

Moreover, the Rankin–Selberg L-function attached to f could be defined as

L(s, f × f ) = ∏
p

(
1−

α2
f (p)

ps

)−1(
1− 1

ps

)−2
(

1−
β2

f (p)

ps

)−1

.

Then L(s, f × f ) can be rewritten in the following form:

L(s, f × f ) = ζ(2s)
∞

∑
n=1

λ2
f (n)

ns :=
∞

∑
n=1

λ f× f (n)
ns .

The j-th symmetric power L-function attached to f could be defined as follows.

L(s, symj f ) := ∏
p

j

∏
m=0

(
1−

α f (p)j−mβ f (p)m

ps

)
, Re s > 1. (6)

Additionally, the j-th symmetric power L-function attached to f could be expressed in
the following Dirichlet series:

L(s, symj f ) =
∞

∑
n=1

λsymj f (n)

ns

= ∏
p

(
1 +

λsymj f (p)

ps +
λsymj f (p2)

p2s +
λsymj f (p3)

p3s + · · ·
)

, Re s > 1. (7)

The j-th symmetric L-function L(s, symj f ), j = 1, 2, 3, 4 could be analytic continued
to an entire function over the whole complex plane C and has a confirmed functional
equation. We refer to papers of Hecke [31], Gelbert and Jacquet [32], Kim [33] and Kim
and Shahidi [34,35] for these properties of L(s, symj f ), j = 1, 2, 3, 4. Therefore, we can note
that L(s, symj f ), j = 1, 2, 3, 4 could be recognized as general L-functions in the sense of
Perelli [36].

With the help of these automorphic L-functions, we then quote the following lem-
mas, which include the individual and averaged subconvexity bounds for Riemann zeta-
function ζ(s), symmetric square L-function L(s, sym2 f ) and corresponding Rankin–Selberg
L-function L(s, f × f ). From the following Lemma 1 we know that the Rankin–Selberg
L-function L(s, f × f ) could be decomposed into the product of Riemann zeta-function
ζ(s) and corresponding symmetric square L-function L(s, sym2 f ).

Lemma 1. For Re s > 1, one has

L(s, f × f ) = ζ(s)L(s, sym2 f ). (8)

Proof. By the comparison of Euler products of two sides of (8) and applying Deligne’s
result (1), we could easily get this lemma. This lemma can also be found in [27,28].
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Lemma 2. For any ε > 0, one has the mean value estimate

∫ T

1

∣∣∣∣ζ(1
2
+ it

)∣∣∣∣12
dt� T2+ε (9)

uniformly for T ≥ 1 and the upper bounds

ζ(σ + it)�
{
(1 + |t|) 13

42 (1−σ)+ε, if 1
2 ≤ σ ≤ 1,

1, if σ > 1,
(10)

where |t| ≥ 1.

Proof. The mean value result (9) is due to Heath-Brown [37]. The upper bounds (10) are
due to Bourgain [38].

Lemma 3. For any ε > 0, one has the mean value estimate∫ T

1
|L(σ + it, sym2 f )|2dt� T3(1−σ)+ε (11)

uniformly for T ≥ 1 and the upper bounds

L(σ + it, sym2 f )�
{
(1 + |t|) 5

4 (1−σ)+ε, if 1
2 ≤ σ ≤ 1,

1, if σ > 1,
(12)

where |t| ≥ 1.

Proof. The mean value result (11) follows from analytic properties of L(s, sym2 f ) and
standard arguments in number theory. The upper bounds (12) are due to Nunes [13].

Lemma 4. For any ε > 0, one has the mean value estimate

∫ 2T

T

∣∣∣∣L(1
2
+ it, f

)∣∣∣∣2dt ∼ CT log T (13)

uniformly for T ≥ 1 and the upper bounds

L(σ + it, f )�
{
(1 + |t|) 2

3 (1−σ), if 1
2 ≤ σ ≤ 1,

1, if σ > 1,
(14)

where |t| ≥ 1.

Proof. The results in this lemma were established by Good [5].

3. Main Theorems

In this paper, we consider the two-dimensional divisor problems related to the Fourier
coefficients λ f (n), λ f× f (n) and establish the following two theorems. To establish these
two theorems, we apply some classical methods and instruments, such as Perron’s formula,
Cauchy’s residue theorem, decomposition of the Rankin–Selberg L-function, upper bounds
and mean values of specific functions.

Theorem 1. Suppose that a and b are any fixed integers with 1 < a < b. Then for any ε > 0,
one has

S f (a, b; x) = ∑
n≤x

λa,b
f (n)�

x1− 3(2a−1)
2(5a−b)+ε, if b ≤ 2a,

x
1
2a +ε, if b > 2a.
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Theorem 2. Suppose that a and b are any fixed integers with 1 < a < b. Then for any ε > 0,
one has

S f× f (a, b; x) = ∑
n≤x

λa,b
f× f (n)

=



L(1, sym2 f )L
(

b
a , f × f

)
x

1
a + O

(
x1− 84(2a−1)

486a−131b +ε
)

, if 318a2 − 131ab− 402a + 131b < 0, b ≤ 2a,

O
(

x1− 84(2a−1)
486a−131b +ε

)
, if 318a2 − 131ab− 402a + 131b > 0, b ≤ 2a,

L(1, sym2 f )L
(

b
2 , f × f

)
x

1
2 + O

(
x

7
16 +ε

)
, if a = 2, b > 2a,

O
(

x1− 3(2a−1)
8a +ε

)
, if a ≥ 3, b > 2a.

4. Proof of Theorem 1

In this section, we shall complete the proof of Theorem 1. Let s = σ + it and η = 1 + ε.
We have

L(as, f )L(bs, f ) =
∞

∑
n=1

λa,b
f (n)

ns . (15)

Then, by applying Perron’s formula (see the Proposition 5.54 in [39]), we can obtain

S f (a, b; x) =
1

2πi

∫ η+iT

η−iT
L(as, f )L(bs, f )

xs

s
ds + O

(
x1+ε

T

)
, (16)

where T is a parameter which will be decided later.
We shift the line of the integral of (16) to the line Re s = 1

2a . Then Cauchy’s residue
theorem shows that

S f (a, b; x) = G1 + G2 + G3 + O
(

x1+ε

T

)
, (17)

where

G1 =
1

2πi

∫ 1
2a +iT

1
2a−iT

L(as, f )L(bs, f )
xs

s
ds,

G2 =
1

2πi

∫ η+iT

1
2a +iT

L(as, f )L(bs, f )
xs

s
ds,

G3 =
1

2πi

∫ 1
2a−iT

η−iT
L(as, f )L(bs, f )

xs

s
ds.

The following work is to estimate these three terms, G1, G2 and G3. The estimates of
these integrals on the horizontal parts are analogous; thus, we always consider G2 and G3
firstly in the following parts. To get this goal, we consider two cases b ≤ 2a and b > 2a.

We first consider the case b ≤ 2a. To estimate G2 and G3, we divide the integral
interval into the following four short intervals I1, · · · , I4 and apply Lemma 4.

Interval 1. I1 :=
{

s = σ + iT : 1
2 ≤ aσ ≤ 1, a

2b ≤ bσ ≤ 1
}
=
{

s = σ + iT : 1
2a ≤ σ ≤ 1

b

}
.

In this interval, we have

T−1 ×
∫

I1

xσ|L(aσ + iat, f )L(bσ + ibt, f )|dσ

� max
1
2a≤σ≤ 1

b

xσT
2
3 (1−aσ)+ 2

3 (1−bσ)+εT−1

� max
1
2a≤σ≤ 1

b

T
1
3+ε

(
x

T
2
3 (b+a)

)σ

� x
1
2a T−

b
3a +ε + x

1
b T−

1
3−

2a
3b +ε. (18)
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Interval 2. I2 :=
{

s = σ + iT : 1
2 ≤ aσ ≤ 1, 1 < bσ ≤ bη

}
=
{

s = σ + iT : 1
b < σ ≤ 1

a

}
.

In this interval, we have

T−1 ×
∫

I2

xσ|L(aσ + iat, f )L(bσ + ibt, f )|dσ

� max
1
b <σ≤ 1

a

xσT
2
3 (1−aσ)+εT−1

� max
1
b <σ≤ 1

a

T−
1
3+ε

(
x

T
2a
3

)σ

� x
1
b T−

1
3−

2a
3b +ε + x

1
a T−1+ε. (19)

Interval 3. I3 :=
{

s = σ + iT : 1 < aσ ≤ aη, b
2a ≤ bσ ≤ 1

}
.

This interval is an empty set noting that 1
b < 1

a .

Interval 4. I4 := {s = σ + iT : 1 < aσ ≤ aη, 1 < bσ ≤ bη} =
{

s = σ + iT : 1
a < σ ≤ η

}
.

In this interval, we have

T−1 ×
∫

I4

xσ|L(aσ + iat, f )L(bσ + ibt, f )|dσ

� max
1
a <σ≤η

xσT−1

� x
1
a T−1+ε + x1+εT−1+ε. (20)

Therefore, from (18)–(20) we have

G2 + G3 � T−1
∫ η

1
2a

xσ|L(aσ + iat, f )L(bσ + ibt, f )|dσ

= T−1
∫

I1∪···∪I4

xσ|L(aσ + iat, f )L(bσ + ibt, f )|dσ

� x
1
2a T−

b
3a +ε + x

1
b T−

1
3−

2a
3b +ε + x1+εT−1+ε. (21)

Now we turn to estimate G1. We have

G1 � x
1
2a

∫ T

1

∣∣∣∣L(1
2
+ iat, f

)
L
(

b
2a

+ ibt, f
)∣∣∣∣t−1dt + x

1
2a

� x
1
2a log T max

T1≤T
T−1

1

∫ T1

T1
2

∣∣∣∣L(1
2
+ iat, f

)
L
(

b
2a

+ ibt, f
)∣∣∣∣dt + x

1
2a .

Then, by Lemma 4 and applying Cauchy’s inequality, we can deduce

G1 � x
1
2a log T max

T1≤T
T−1

1 T
2
3×(1−

b
2a )

1

(∫ T1

T1
2

∣∣∣∣L( 1
2
+ iat, f

)∣∣∣∣2dt

) 1
2(∫ T1

T1
2

1dt
) 1

2

+ x
1
2a

� x
1
2a log T max

T1≤T
T

2
3−

b
3a +ε

1

� x
1
2a T

2
3−

b
3a +ε. (22)

From (17), (21) and (22), we have

S f (a, b; x)� x
1
b T−

1
3−

2a
3b +ε + x

1
2a T

2
3−

b
3a +ε + x1+εT−1+ε. (23)

Taking T = x
3(2a−1)
2(5a−b) in (23), we can get

S f (a, b; x)� x1− 3(2a−1)
2(5a−b)+ε,
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which proves the first result of Theorem 1.
For the case b > 2a, to estimate G2 + G3 we also divide the integral interval into four

short intervals I∗1 , · · · I∗4 , which are different from ones for the case b ≤ 2a. In fact, the
corresponding short intervals I∗1 and I∗3 become empty sets at the current case. However,
we still can estimate G2 + G3 by following a similar argument to the corresponding parts
of the case b ≤ 2a and get

G2 + G3 � x
1
2a T−

2
3+ε + x1+εT−1+ε.

The estimate of G1 becomes the following at the current case by noting b
2a > 1.

G1 � x
1
2a

∫ T

1

∣∣∣∣L(1
2
+ iat, f

)
L
(

b
2a

+ ibt, f
)∣∣∣∣t−1dt + x

1
2a

� x
1
2a log T max

T1≤T
T−1

1

∫ T1

T1
2

∣∣∣∣L(1
2
+ iat, f

)
L
(

b
2a

+ ibt, f
)∣∣∣∣dt + x

1
2a

� x
1
2a log T max

T1≤T
T−1

1

(∫ T1

T1
2

∣∣∣∣L(1
2
+ iat, f

)∣∣∣∣2dt

) 1
2(∫ T1

T1
2

1dt
) 1

2

+ x
1
2a

� x
1
2a log T max

T1≤T
T−1+ 1

2+
1
2+ε

1 + x
1
2a

� x
1
2a Tε.

Thus, we have, recalling (17),

S f (a, b; x)� x
1
2a Tε + x1+εT−1+ε. (24)

Taking T = x1− 1
2a in (24), we can obtain

S f (a, b; x)� x
1
2a +ε,

which proves the second result of Theorem 1.

5. Proof of Theorem 2

We shall prove Theorem 2, the process of which is more complicated than Theorem 1,
in this section. Let also s = σ + it and η = 1 + ε. Note that

L(as, f × f )L(bs, f × f ) =
∞

∑
n=1

λa,b
f× f (n)

ns . (25)

Then, by applying Perron’s formula ( see the Proposition 5.54 in [11] ), we have

S f× f (a, b; x) =
1

2πi

∫ η+iT

η−iT
L(as, f × f )L(bs, f × f )

xs

s
ds + O

(
x1+ε

T

)
, (26)

where T is a parameter which will be decided later. Then we shift the line of the integral
of (26) to the line Re s = 1

2a . In view of (8), we know that at the point s = 1, L(s, sym2 f )
is holomorphic, which was proved by Gelbart–Jacquet [32]. Thus, the points s = 1

a
and s = 1

b are the only two possible simple poles of the integrand of (26) in the range
RT := {s = σ + it : 1

2a ≤ σ ≤ 1 + ε, | t |≤ T} depending on the size difference between b
and 2a. Thus, we consider two cases, b ≤ 2a and b > 2a.
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We first consider the case b ≤ 2a. In this situation, the points s = 1
a and s = 1

b are all
simple poles of the integrand of (26) in the range RT . Then, Cauchy’s residue theorem gives

S f× f (a, b; x) =
{

Ress= 1
a
+ Ress= 1

b

}
L(as, f × f )L(bs, f × f )

xs

s

+J1 + J2 + J3 + O
(

x1+ε

T

)
= L(1, sym2 f )L

( b
a

, f × f
)

x
1
a + L

( a
b

, f × f
)

L(1, sym2 f )x
1
b

+J1 + J2 + J3 + O
(

x1+ε

T

)
, (27)

where

J1 =
1

2πi

∫ 1
2a +iT

1
2a−iT

L(as, f × f )L(bs, f × f )
xs

s
ds,

J2 =
1

2πi

∫ η+iT

1
2a +iT

L(as, f × f )L(bs, f × f )
xs

s
ds,

J3 =
1

2πi

∫ 1
2a−iT

η−iT
L(as, f × f )L(bs, f × f )

xs

s
ds,

and the main terms L(1, sym2 f )L
(

b
a , f × f

)
x

1
a and L

( a
b , f × f

)
L(1, sym2 f )x

1
b derive from

the residues of L(as, f × f )L(bs, f × f ) xs

s at the simple poles s = 1
a and s = 1

b , respectively.
Now the remaining work is to handle these three terms: J1, J2 and J3. Additionally,

the estimates of these integrals on the horizontal parts are analogous, and thus we deal
with J2 and J3 firstly. To estimate J2 and J3, similarly to the method of estimating G2 and
G3, we also divide the integral interval into the following four short intervals I′1, · · · , I′4
and apply Lemmas 2 and 3.

Interval 1. I′1 :=
{

s = σ + iT : 1
2 ≤ aσ ≤ 1, b

2a ≤ bσ ≤ 1
}
=
{

s = σ + iT : 1
2a ≤ σ ≤ 1

b

}
.

In this interval, we have

T−1 ×
∫

I′1
xσ | ζ(aσ + iat)L(aσ + iat, sym2 f )ζ(bσ + ibt)L(bσ + ibt, sym2 f ) | dσ

� max
1
2a≤σ≤ 1

b

xσT( 13
42+

5
4 )(1−aσ)+( 13

42+
5
4 )(1−bσ)T−1+ε

� max
1
2a≤σ≤ 1

b

T
89
42+ε

(
x

T
131
84 (a+b)

)σ

� x
1
2a T

225
168−

131b
168a +ε + x

1
b T

47
84−

131a
84b +ε. (28)

Interval 2. I′2 :=
{

s = σ + iT : 1
2 ≤ aσ ≤ 1, 1 < bσ ≤ bη

}
=
{

s = σ + iT : 1
b < σ ≤ 1

a

}
.

In this interval, we have

T−1 ×
∫

I′2
xσ | ζ(aσ + iat)L(aσ + iat, sym2 f )ζ(bσ + ibt)L(bσ + ibt, sym2 f ) | dσ

� max
1
b <σ≤ 1

a

xσT( 13
42+

5
4 )(1−aσ)T−1+ε

� max
1
b <σ≤ 1

a

T
47
84

(
x

T
131
84 a

)σ

� x
1
a T−1+ε + x

1
b T

47
84−

131a
84b +ε. (29)
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Interval 3. I′3 :=
{

s = σ + iT : 1 < aσ ≤ aη, b
2a ≤ bσ ≤ 1

}
.

This interval is an empty set noting that 1
b < 1

a .

Interval 4. I′4 := {s = σ + iT : 1 < aσ ≤ aη, 1 < bσ ≤ bη} =
{

s = σ + iT : 1
a < σ ≤ η

}
.

In this interval, we have

T−1 ×
∫

I′4
xσ | ζ(aσ + iat)L(aσ + iat, sym2 f )ζ(bσ + ibt)L(bσ + ibt, sym2 f ) | dσ

� max
1
a <σ≤η

xσT−1+ε

� x1+εT−1+ε. (30)

From (28)–(30) we can obtain

J2 + J3

� T−1
∫ η

1
2a

xσ | ζ(aσ + iat)L(aσ + iat, sym2 f )ζ(bσ + ibt)L(bσ + ibt, sym2 f ) | dσ

= T−1
∫

I′1∪···∪I′4
xσ | ζ(aσ + iat)L(aσ + iat, sym2 f )ζ(bσ + ibt)L(bσ + ibt, sym2 f ) | dσ

� x
1
2a T

225
168−

131b
168a +ε + x

1
b T

47
84−

131a
84b +ε + x1+εT−1+ε. (31)

For J1, we have

J1 � x
1
2a

∫ T

1

∣∣∣∣ζ( 1
2
+ iat

)
L
(

1
2
+ iat, sym2 f

)
ζ

(
b

2a
+ ibt

)
L
(

b
2a

+ ibt, sym2 f
)∣∣∣∣t−1dt

+x
1
2a +ε

� x
1
2a +ε + x

1
2a log T max

1≤T1≤T
T−1

1

×
∫ T1

T1
2

∣∣∣∣ζ( 1
2
+ iat

)
L
(

1
2
+ iat, sym2 f

)
ζ

(
b

2a
+ ibt

)
L
(

b
2a

+ ibt, sym2 f
)∣∣∣∣dt. (32)

Then from Lemmas 2 and 3, and using Hölder’s inequality, we can obtain

J1 � x
1
2a log T max

T1≤T
T−1

1 T( 13
42 +

5
4 )(1−

b
2a )

1

∫ T1

T1
2

∣∣∣∣ζ( 1
2
+ iat

)
L
(

1
2
+ iat, sym2 f

)∣∣∣∣dt + x
1
2a +ε

� x
1
2a +ε + x

1
2a log T max

T1≤T
T( 13

42 +
5
4 )(1−

b
2a )−1

1

×
(∫ T1

T1
2

∣∣∣∣ζ( 1
2
+ iat

)∣∣∣∣12
dt

) 1
12
(∫ T1

T1
2

∣∣∣∣L( 1
2
+ iat, sym2 f

)∣∣∣∣2dt

) 1
2(∫ T1

T1
2

1dt
) 5

12

� x
1
2a max

T1≤T
T

159
84 −

131b
168a +ε

1

� x
1
2a T

159
84 −

131b
168a +ε. (33)

Thus, by putting (27), (31) and (33) together, we have

S f× f (a, b; x) = L(1, sym2 f )L
( b

a
, f × f

)
x

1
a + L

( a
b

, f × f
)

L(1, sym2 f )x
1
b

+O
(

x
1
2a T

159
84 −

131b
168a +ε + x

1
b T

47
84−

131a
84b +ε + x1+εT−1+ε

)
. (34)

Taking T = x
84(2a−1)

486a−131b in (34), we can obtain

S f× f (a, b; x) = L(1, sym2 f )L
( b

a
, f × f

)
x

1
a + L

( a
b

, f × f
)

L(1, sym2 f )x
1
b

+O
(

x1− 84(2a−1)
486a−131b +ε

)
. (35)
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Note that 1− 84(2a−1)
486a−131b > 1

b always holds. Then, comparing the first term and the error
term in (35), we have, recalling b ≤ 2a,

S f× f (a, b; x) =


L(1, sym2 f )L

(
b
a , f × f

)
x

1
a + O

(
x1− 84(2a−1)

486a−131b +ε
)

, if 318a2 − 131ab− 402a + 131b < 0, b ≤ 2a,

O
(

x1− 84(2a−1)
486a−131b +ε

)
, if 318a2 − 131ab− 402a + 131b > 0, b ≤ 2a,

which implies the first and second results of Theorem 2.
For the case b > 2a, we use a similar argument to the corresponding case of

Theorem 1. In this situation, the point s = 1
a is the only simple pole of the integrand

of (26) in the range RT by noting 1
b < 1

2a . Then Cauchy’s residue theorem shows

S f× f (a, b; x) = Ress= 1
a

L(as, f × f )L(bs, f × f )
xs

s
+ O

(
x1+ε

T

)
+

1
2πi

{∫ 1
2a +iT

1
2a−iT

+
∫ η+iT

1
2a +iT

+
∫ 1

2a−iT

η−iT

}
L(as, f × f )L(bs, f × f )

xs

s
ds

:= L(1, sym2 f )L
( b

a
, f × f

)
x

1
a + J′1 + J′2 + J′3 + O

(
x1+ε

T

)
, (36)

where the main term L(1, sym2 f )L
(

b
a , f × f

)
x

1
a derives from the residue of L(as, f ×

f )L(bs, f × f ) xs

s at the simple pole s = 1
a .

To estimate J′2 + J′3 we also divide the integral interval into four short intervals
I
′∗
1 , · · · I ′∗4 , which are different from ones for the case b ≤ 2a. In fact, the correspond-

ing short intervals I
′∗
1 and I

′∗
3 become empty sets in this situation. However, we still can

estimate J′2 + J′3 by following a similar argument to the corresponding parts of the case
b ≤ 2a and get

J′2 + J′3 � x
1
2a T−

37
168+ε + x1+εT−1+ε.

The estimate of J′1 becomes the following at the current case by noting b
2a > 1.

J′1 � x
1
2a

∫ T

1

∣∣∣∣ζ( 1
2
+ iat

)
L
(

1
2
+ iat, sym2 f

)
ζ

(
b

2a
+ ibt

)
L
(

b
2a

+ ibt, sym2 f
)∣∣∣∣t−1dt + x

1
2a +ε

� x
1
2a log T max

1≤T1≤T
T−1

1

∫ T1

T1
2

∣∣∣∣ζ( 1
2
+ iat

)
L
(

1
2
+ iat, sym2 f

)∣∣∣∣dt + x
1
2a +ε

� x
1
2a log T max

T1≤T
T−1

1

(∫ T1

T1
2

∣∣∣∣ζ( 1
2
+ iat

)∣∣∣∣12
dt

) 1
12
(∫ T1

T1
2

∣∣∣∣L( 1
2
+ iat, sym2 f

)∣∣∣∣2dt

) 1
2(∫ T1

T1
2

1dt
) 5

12

+x
1
2a +ε

� x
1
2a T

1
3 +ε.

Thus, recalling (36) we have

S f× f (a, b; x) = L(1, sym2 f )L
( b

a
, f × f

)
x

1
a + O

(
x

1
2a T

1
3+ε + x1+εT−1+ε

)
. (37)

Taking T = x
3(2a−1)

8a in (37), we can obtain

S f× f (a, b; x) = L(1, sym2 f )L
( b

a
, f × f

)
x

1
a + O

(
x1− 3(2a−1)

8a +ε

)
. (38)

Note that when a ≥ 3, we have 1− 3(2a−1)
8a > 1

a . Therefore, we have, recalling b > 2a,

S f× f (a, b; x) =

L(1, sym2 f )L
(

b
2 , f × f

)
x

1
2 + O

(
x

7
16+ε

)
, if a = 2, b > 2a,

O
(

x1− 3(2a−1)
8a +ε

)
, if a ≥ 3, b > 2a,

(39)
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which implies the third and fourth results of Theorem 2.

6. Application

As an application of Theorems 1 and 2, we may consider detecting the sign changes of
λa,b

f (n) and λa,b
f× f (n), i.e., estimating the following two quantities:

N f (x) = ∑
n≤x

λa,b
f (n)≥0

1 and N f× f (x) = ∑
n≤x

λa,b
f× f (n)≥0

1.

To estimate these quantities N f (x) and N f× f (x), we need to establish the lower and
upper bounds to the sums

∑
n≤x
|λa,b

f (n)| and ∑
n≤x
|λa,b

f× f (n)|,

respectively. Then, comparing these bounds with Theorems 1 and 2, we can get the
estimates of these quantities N f (x) and N f× f (x).

7. Conclusions

In this paper, we studied the mean value estimates of two-dimensional divisor prob-
lems related to some automorphic L-functions. We focused on the average behaviors of
λa,b

f (n) and λa,b
f× f (n), respectively. In this research, we established the upper bounds for the

sum ∑n≤x λa,b
f (n) and the asymptotic formulas for the sum ∑n≤x λa,b

f× f (n). The conditions
of the integers a, b satisfy 1 < a < b, because of the complexities and difficulties. To over-
come these complexities and difficulties, we need to estimate the integrals of the horizontal
parts more carefully. Some classical methods and instruments, such as Perron’s formula
and Cauchy’s residue theorem; the decomposition of the Rankin–Selberg L-function; upper
bounds and mean values of the Riemann zeta-function; the Hecke L-function and the
symmetric square L-function, are also indispensable. With the results of this paper, we can
further understand the properties of the Fourier coefficients λa,b

f (n) and λa,b
f× f (n).
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