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Abstract: Compared with ordinary images, each of the remote sensing images contains many kinds
of objects with large scale changes, providing more details. As a typical object of remote sensing
image, ship detection has been playing an essential role in the field of remote sensing. With the
rapid development of deep learning, remote sensing image detection method based on convolutional
neural network (CNN) has occupied a key position. In remote sensing images, the objects of which
small scale objects account for a large proportion are closely arranged. In addition, the convolution
layer in CNN lacks ample context information, leading to low detection accuracy for remote sensing
image detection. To improve detection accuracy and keep the speed of real-time detection, this paper
proposed an efficient object detection algorithm for ship detection of remote sensing image based on
improved SSD. Firstly, we add a feature fusion module to shallow feature layers to refine feature
extraction ability of small object. Then, we add Squeeze-and-Excitation Network (SE) module to
each feature layers, introducing attention mechanism to network. The experimental results based
on Synthetic Aperture Radar ship detection dataset (SSDD) show that the mAP reaches 94.41%, and
the average detection speed is 31FPS. Compared with SSD and other representative object detection
algorithms, this improved algorithm has a better performance in detection accuracy and can realize
real-time detection.

Keywords: deep learning; object detection; remote sensing images; ship detection; SSD

1. Introduction

Remote sensing image is the record of all kinds of objects on the ground by artificial
satellite. Over the past 50 years, space information technology which is represented by
satellite remote sensing technology, has provided an efficient means to obtain data from
a large boundary. As a crucial research direction in the field of remote communication,
remote sensing image object detection technology is an intelligent data analysis method
to achieve automatic identification and localization for remote sensing objects, which is
widely concerned in civil and military fields [1]. With the rapid development of high-
resolution technology, the quality of remote sensing images obtained by remote sensing
satellites is getting better and better, which is of great significance to resource exploration,
urban traffic management, military object recognition, environmental monitoring and so
on. As a typical object of remote sensing image, ship detection plays a significant role in
port traffic planning, marine safety management, maritime disaster relief and national
defense security.

Due to the prominent capability of feature representation, deep learning algorithms
begin to replace the traditional machine learning algorithms. At present, deep learning
has been applied to many fields, including object detection [2], driverless car [3], machine
translation [4], emotion recognition [5] and speech recognition [6]. Particularly, in the field
of object detection, a variety of deep learning-based object detection algorithms aiming
to resolve practical problems rush out, which are applied to fall detection [7], medical
image segmentation [8], defect detection [9], face recognition [10], remote sensing object
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detection [11] and so on. Remote sensing technology has developed rapidly in recent years,
tremendously increasing the quality and quantity of remote sensing images captured by
remote sensing devices. As an important application in the field of object detection, the
massive growth of data promotes the rapid deployment of remote sensing object detection
algorithm based on deep learning.

Object detection for ship in remote sensing image is an extraordinarily challenging
task. Firstly, remote sensing image has high resolution, containing many object categories,
of which the object scale changes greatly. The huge consumption of time and memory
will impose strict requirements for algorithm and hardware. Then, convolutional neural
network (CNN) is a multilayer structure, consisting of several convolutional layers. With
the gradual increase of network depth, the feature information of small object will become
less abundant. There are commonly a large number of small remote sensing objects, leaving
a poor detection performance for small objects. Lastly, extensive complex backgrounds
in remote sensing images will cause some false positives. As shown in Figure 1 [12], the
ships in remote sensing image are small and sometimes there are complex backgrounds
around them.

Figure 1. Examples of ship in remote sensing image. The samples are from the SAR ship detection dataset (SSDD) dataset.
Left side is the description of the sample under multiobject condition; right side is the description of the sample in complex
background.

Considering the above problems, how to improve the accuracy of ship detection has
become a big challenge. This paper proposes an efficient ship detection algorithm for SAR
remote sensing images based on improved SSD. The main innovation of this algorithm
includes the following two points:

(1) We add a feature pyramid network to SSD, introducing context information to
Conv4_3 and Conv7 which are large scale feature maps and are responsible for
detection of small objects. We use bilinear as upsampling method and element-wise
sum as fusion method, designing a future fusion model to improve detection accuracy.

(2) Then, in order to further improve the ability of feature extraction and raise the
significant channel-wise feature as well as reduce insignificant channel-wise feature,
a SE module is added, enabling model to perform dynamic channel-wise feature
recalibration.

The rest of this paper is organized as follows. Section 2 gives a brief review of some
typical object detection algorithms as well as research status for remote sensing ship
detection. Section 3 details our improved method for ship detection. Section 4 introduces
the experimental results and analyzes them in detail. Section 5 describes the conclusion of
this paper and shows the highlights of this paper.
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2. Related Work

The task of remote sensing object detection is to locate the researched object (e.g.,
aircrafts, vehicles, storage tanks, houses, ships, playgrounds, flyovers, etc.) in aerial or satel-
lite images. As an application of data analysis technology, remote sensing object detection
depends on all kinds of remote sensing data to a great extent. The remote sensing data is of
large amounts, which is extremely hard for efficient data processing and analysis relying on
previous machine learning models such as support vector machine (SVM), decision trees,
naive Bayesian classification, logistic regression, clustering algorithms and so on. The past
few years witnessed the development and decline of traditional object detection algorithms
based on classical machine learning model. Traditional object detection algorithms mainly
include Viola–Jones (V-J) object detection algorithm [13], Support Vector Machine (SVM)
using Histogram of Oriented Gradients (HOG) features algorithm [14], Deformable Parts
Model (DPM) algorithm [15] and so on. The traditional remote sensing object detection
algorithm is based on the sliding window strategy to perform region selection, which
requires manual feature extraction and selection including haar-like features and HOG fea-
tures. As the extracted features need to be designed manually, and the selection of regional
proposal has no pertinence, the time complexity and space complexity of traditional object
detection are very high. Through massive growth of remote sensing images in the quantity
and quality, huge computational costs leave traditional object detection algorithm unable
to meet the requirement of practical application.

With the development of computer technology, especially parallel computing technol-
ogy, deep learning-based object detection algorithms are playing a dominate role in the
field of remote sensing object detection. Deep learning model is an effective tool to solve
large-scale operations, which can accurately obtain the nonlinear relationship between the
data by means of multilayer learning and has gradually become the preferred method for
remote sensing image recognition and analysis. Deep learning-based object detection algo-
rithms have a strong ability of feature expression to process remote sensing images, which
can be divided into two categories of one-stage and two-stage according to whether region
proposals come into being. There are two kinds of typical one-stage algorithms: You Only
Look Once (YOLO) [16–19] and Single Shot Multibox Detector (SSD) [20–24]. Two-stage
object detection algorithms mainly include R-CNN [25], SPP Net [26], Fast-RCNN [27],
Faster R-CNN [28], HyperNet [29], R-FCN [30], MS-CNN [31] and Mask R-CNN [32]. As
a series of regional proposals will be generated, two-stage object detection algorithms
perform detection more precisely and have a slower detection speed in the meantime.

In order to improve the practical application effect while analyzing and processing
remote sensing image, many researchers focus on the shortcomings of current object
detection algorithms based on deep learning, making some structural refinement to algo-
rithms according to characteristics of remote sensing technology. X. Nie et al. improved
Mask R-CNN, proposing a ship detection method. This method added channel-wise and
spatial attention mechanisms as well as a bottom-up architecture to improve detection
accuracy [33]. Sun X et al. proposed a ship detection model based on YOLO using spin-
ning object detection technology. After the refinement of the rotation matrix, this method
restructures the loss function as well as the rotated IOU calculation formula. Then, through
lightweight processing, the model partly reduces the redundant parameters increased by
the augmented dimensions of output feature maps [34]. J. Qu et al. proposed DFSSD to
increase detection accuracy for small objects in remote sensing images [35]. Different from
the original SSD, in this algorithm, the random clipping procedures of data preprocessing
layers are discarded, and a feature pyramid network (FPN) is added to enhance informa-
tion of low-level feature map. Besides, the regular convolution in the third-level feature
map is replaced with dilated convolution to extend the receptive field. Yin R et al. pro-
posed AF-SSD [36]. This model utilizes MobileNet as the network backbone and designs
a light encoding–decoding module to enhance the information of low-level features. In
the meanwhile, a cascade architecture including spatial and channel attention modules is
added to increase detection accuracy for objects with low-contrast and few-texture.
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In the field of ship detection, many ship datasets come from Synthetic Aperture
Radar (SAR) imagery, which has been regarded as a significant data collection method
for monitoring maritime activities. Zhang T et al. proposes a ship detection model based
on grid convolutional neural network (G-CNN) [37]. This model divides the SAR image
into several grid cells and detects ship objects on three different scales feature maps. Wei S
et al. proposed a ship detection method based on a high-resolution ship detection network
(HR-SDNet) for high-resolution SAR imagery [38]. This method connects high-to-low
resolution subnetworks in parallel and can maintain high resolution and utilizes Soft-NMS
to improve the detection performance of the dense ships. Chen C et al. proposed a ship
detection network combined with an attention mechanism and introduced a loss function
that incorporates the generalized intersection over union (GIoU) loss to reduce the scale
sensitivity of the network [39].

With the large proportion of small objects and the complex background in remote
sensing image including ships, it is necessary to improve detection accuracy of remote
sensing objects detection. The above research optimizes the algorithm from the perspective
of improving accuracy detecting small objects. Moreover, at the same time as improving
the accuracy, it should be guaranteed that the loss of speed and the increase of memory
cannot be too huge considering the application of embedded device. There still remains
plenty of scope for improvement in improving the accuracy of the remote sensing object
detection model. Based on SSD algorithm which has an excellent performance in accuracy
as well as speed, through the inspection of FPN [40], attention mechanism in computer
vision [41–44] and other related relevant literature along with the studies at home and
abroad, we proposed an efficient object detection algorithm for remote sensing image.

3. Methods
3.1. SSD

As a kind of one-stage algorithms, Single Shot MultiBox Detector (SSD) directly per-
forms prediction using convolutional neural network (CNN). CNN are composed of many
convolution layers. Related research has proved that with the increase of network layers
depth, the information extracted from convolution layers is more and more abstract. Utiliz-
ing the characteristic that different depth convolution layer extracts different information
features, SSD has achieved great results in object detection.

3.1.1. Multiscale Prediction

SSD is composed of VGG and extra feature layer. As shown in Figure 2, there are six
feature layers to perform a prediction, of which Conv4_3 is from Visual Geometry Group
Network (VGG), the remaining five feature layers are added on the base of VGG.

Figure 2. The architecture of SSD.
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During prediction, each feature map will produce default boxes with different scale.
Figure 3b,c show feature maps of different scales. Each feature map is divided into several
grids. (b) and (c) are divided into 64 and 16 grids, respectively. While predicting, the grid
will generate several default boxes with different scales. As the proportion of default boxes
accounted for in (b) is much smaller than that of (c), the default boxes in (b) can easily
cover small scale objects. With the increase of network layers depth, the scale of feature
maps will gradually become small. As a result, shallow feature maps can predict small
objects precisely, and deep feature maps can predict large objects precisely, which is called
multiscale prediction in SSD. The default boxes will further adjust the scale according to
the loss function to generate the outputting prediction box.
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The scale of priors increases linearly with the depth of network layers, which varies
from 0.2 to 0.9. The default box size of each feature map is calculated according to Equa-
tion (1); the parameters are shown in Table 1. The aspect ratio of the default boxes is set to
1, 2, 3, 1/2, 3/1. The height and width of each default box can be calculated according to
Equation (2).

sk = smin +
smax − smin

5
(k− 1), k ∈ [1, 6] (1)

wa
k = sk

√
ar ha

k = sk/
√

ar (2)

where sk means the default box scale of k-th feature map, ar means the respect ratio of
default boxes, wa

k means the default box width of k-th feature map when the aspect ratio is a,
ha

k means the default box height of k-th feature map when the aspect ratio is a. Particularly,
when ar = 1, an extra square default box will be added, the scale is s−k =

√
sksk+1.

Table 1. Parameter setting of default boxes [20].

Feature Map Size Default Box Scale Mapping Value (Scale × Input Size)

Conv4_3 38 × 38 0.2 60 × 60
Conv7 19 × 19 0.34 102 × 102

Conv8_2 10 × 10 0.48 144 × 144
Conv9_2 5 × 5 0.62 186 × 186

Conv10_2 3 × 3 0.76 228 × 228
Conv11_2 1 × 1 0.9 270 × 270

The output value consists of category confidence and bounding box position (height,
width and center point coordinates). When the number of classes is 20, there will eventually
be 8732 bounding boxes generating.
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3.1.2. Loss Function

The loss function of the SSD algorithm is composed of confidence loss and localization
loss. The loss function is defined as follows:

L(x, c,l,g) =
1
N

(
Lcon f (x, c) + αLloc(x, l, g)

)
(3)

where N refers to the number of positive samples among all default boxes, xp
ij ∈ {0, 1},

xp
i,j = 1 means that i-th default box matches with j-ground truth and the ground truth is

positive, c refers to prediction of category confidence, l refers to prediction of bounding
box position, g means the location parameter of ground truth, d means the coordinate of
the default box.

The position error function is defined as follows:

Lloc(x, l, g) =
N

∑
i∈Pos

∑
m∈{cx,cy,w,h}

xk
ijsmoothL1

(
lm
i − ĝm

j

)
(4)

ĝcx
j =

(
ĝcx

j − dcx
i

)
/dw

i ĝcy
j =

(
ĝcy

j − dcy
i

)
/dh

i (5)

ĝcx
j = log

(
gw

j /dw
i

)
ĝcx

j = log
(

gh
j /dh

i

)
(6)

smoothL1(x) =
{

0.5x2, i f |x| < 0
|x| − 5 otherwise

(7)

The confidence error function is denoted as follows:

Lcon f (x, c) = −
N

∑
i∈Pos

xp
ij log

(
ĉp

i

)
− ∑

i∈Neg
log
(

ĉ0
i

)
(8)

ĉp
i =

exp
(

cp
i

)
∑p exp

(
cp

i

) (9)

3.2. Improved SSD

Based on SSD, we add some improvements including introducing attention mecha-
nism and feature fusion module. The overall structure we improved is shown in Figure 4.
Firstly, we add a feature pyramid network to SSD, introducing context information to
Conv4_3 and Conv7 which are large scale feature maps and are responsible for detection
of small objects. Then, in order to improve the ability of feature extraction and raise the
significant channel-wise feature as well as reduce insignificant channel-wise feature, a SE
module is added.

3.2.1. Feature Fusion Module

In SSD, there are six different feature maps to generate default boxes and perform
prediction, during which the feature maps in low-level layer are superior to locate small
targets, and the feature maps in high-level layer are superior to locate large targets. As the
network becomes deep, the feature maps will be abundant in semantic characteristic as
well as deficient in spatial characteristic.

Based on the characteristics of the multiscale training for SSD, it is crucial to connect
the information of different level feature maps. The low-level feature map lacks semantic
information, for which the feature information of high-level feature map can be introduced
to low-level feature map by means of upsampling. Thus, to enhance the semantic feature
extraction capability, there should be some context information to be introduced into the
high-level feature maps.
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Figure 4. Our improved model.

Feature pyramid network (FPN) can fully connect the information of different scale
feature maps, balancing special information and semantic information of each feature map.
As is shown in Figure 5, FPN is composed of three parts: down-top part, top-down part
and connection part. Down-top part is the forward propagation of CNN, during which
semantic information will be gradually enhanced. The top-down part is the upsampling
process; the size of upper feature map will be doubled by the method of bilinear. In order
to solve the problem that the channels of connected feature maps are different, there will be
a 1 × 1 conv operation to ensure that the channels of different feature maps are consistent
before the connection with upper feature map. Then, two feature maps with the same size
and channel will be connected; the connected method is element-wise sum.

Figure 5. The architecture of feature pyramid network (FPN).

Based on the research of FPN and FSSD, we design a feature fusion model to enhance
the ability of small object feature extraction. In this module, the feature map will be
connected together with the upper feature map. The size of the upper feature map will be
doubled by the method of upsampling, which mainly includes bilinear and deconvolution.
There are two common connected methods, including concatenation and element-wise
sum. According to the experimental results in FSSD [24], we choose bilinear as upsampling
method and element-wise sum as fusion method.

X f = Φ f {Ti(Xi)} i ∈ C (10)
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X′p = Φp

(
X f

)
p ∈ P (11)

where Xi means different feature maps. Ti means the transformation function of each
source feature map before being added together. Φ f is the feature fusion function. Φp is
the function to generate pyramid features.

We add this feature fusion module to Conv4_3 and Conv7. As Conv7 will be intro-
duced the information of Conv8_2, Conv8_2 will also be pretreated. In the preprocess of
pretreatment, the channel of each source layer will be changed by conv 1× 1. Then, bilinear
interpolation is used to resize two different feature maps to the same size. Particularly, in
order to reduce the amount of calculation, we set the channel of Conv7 from 1024 to 512.
In the process of feature fusion, different feature maps have different characteristics. As
a result, the element-wise sum of feature maps will result in the aliasing effect, reducing
detection accuracy. As shown in Figure 6, we proposed an aliasing effect reduction module,
removing extra information.

Figure 6. Aliasing effect reduction module.

3.2.2. SE Module

In the field of computer vision, attention mechanism is weight allocation mecha-
nism. The weights that are originally evenly allocated will be redistributed according to
the importance of each weight. The important weights are given more values, and the
unimportant weights are given less values. As a kind of attention mechanism, Squeeze-
and-Excitation Networks (SENet) judges the importance of channel by considering the
relationship between channels. The architecture of SE module is as shown in Figure 7. Ftr is
a transfer function mapping the input X to the feature maps U (U ∈ RH×W×C). SE module
is added to recalibrate the feature. The features U are firstly performed by a squeeze
operation, a channel descriptor will be generated suppress the spatial dimensions (H ×
W) to 1 × 1. The descriptor can reweight distribution of channel-wise feature. Then an
excitation operation will be performed, engendering a weight matrix with dimension is
1 × 1 × C. These weights in the weight matrix will be applied to the feature maps U to
recalibrate the feature.

Figure 7. Squeeze-and-excitation module.

Specifically, as shown in Figure 7, SE module is composed of three parts: squeeze part,
excitation part and reweight part.

The squeeze part is an average pooling, squeezing the size of feature map to 1 × 1.
The squeeze part can be described as follows:
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zc = Fsq(uc) =
1

H ×W

H

∑
i=1

W

∑
j=1

uc(i, j) (12)

where (i, j)means abscissa and ordinate of the feature map (H×W), zc is a one-dimensional array.
The excitation part can regenerate the weight of each channel according to the param-

eter of W. The squeeze part can be described as follows:

s = Fex(zc, W) = σ(g(zc, W)) = Sigmoid(W2δ(W1zc)) (13)

where W1 and W2 is the weight matrix of two fully connected layers, respectively. δ refers
to Relu function. s is the weight coefficient of different channels, whose dimension is
C × 1 × 1.

In the reweight operation, s is regarded as the importance of each feature maps channel,
and the weight of the original channel will change according to following equation.

U′ = Fscale(uc, s) = s× uc (14)

where Fscale(uc, s) refers to channel-wise multiplication between the scalar s and the feature
map uc.

We added SE modules to all six feature maps, enhancing the weight of contributing
channels and suppressing the invalid features to improve the detection accuracy.

4. Experiment

We carry out some comparative experiments to test the effectiveness of our model
based on SSDD dataset.

4.1. Dataset

We use SAR ship detection dataset (SSDD) as our experimental dataset. SSDD is the
first dataset for ship detection in SAR image. This dataset is obtained by downloading
the public SAR image on the Internet, clipping the object area to about 500 × 500 pixels.
The data with resolution of 1 m–15 m is shot by RadarSat-2, TerraSAR-X and Sentinel-1
sensors. The background environment includes sea area and coastal area. Table 2 shows
the statistics of the ships number per image in the SSDD: NoS means the number of ships,
NoI means the number of images; there are 1160 images and 2456 ships, with 2.12 ships
per image.

Table 2. The number of ships (NoS) and number of images (NoI) in SSDD [12].

NoS 1 2 3 4 5 6 7 8 9 10 11 12 13 14

NoI 725 183 89 47 45 16 15 8 4 11 5 3 3 0

4.2. Evaluation Index

There are some evaluation indexes while experimenting. The intersection over union
(IoU) measures the overlap degree of two regions and is calculated by Equation (15).

IoU =
area of overlap
area of union

(15)

In object detection, there is a threshold to judge whether the prediction is correct.
Positive is defined as a bounding box whose prediction score is larger than the threshold
(α) and negative is defined as a bounding box whose prediction score is smaller than the
threshold. When IoU is greater than threshold, the detection box is a true positive (TP).
Furthermore, if less than threshold, it is called a false positive (FP). The false negative
(FN) means that the model predicts there is no object in the image, but the image actually
contains the object. In this way, a confusion matrix is constructed as Table 3.
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Table 3. Confusion matrix.

Positive Negative

IoU ≥ α TP TN
IoU < α FP FN

Then, precision and recall can be defined as follows:

precision =
TP

TP + FP
(16)

recall =
TP

TP + FN
(17)

It is impossible to reach the highest level for the value of precision and recall at the
same time. By changing the threshold, making recall as horizontal axis and precision as
vertical axis, the P-R (precision-recall) curve can be obtained. According to P-R curve, AP
(Average Precision) and mAP (mean Average Precision) can be calculated, which are more
convincing to evaluate the model. Their calculations are as follows:

AP =
∫ 0

0
p(r)dr (18)

mAP =
AP
N

(19)

where N means the number of all classes. In our experiment, as the category is just ship,
mAP is equal to AP.

4.3. Experimental Results

We set training batch size to 16, total train epoch to 200 and initial learning rate to
0.001. When reaching 100-th and 150-th epoch, learning rate will decay to 0.0001 and
0.00001. Our experimental environment is shown in Table 4.

Table 4. Experimental environment configuration and parameter settings.

Item Version

CPU Intel(R) Core (TM) i7-8700
GPU NVIDIA GeForce GTX 1070 8G

Operating system Windows10
Python 3.6.10
Pytorch 1.4.0

Torchvision 0.5.0
CUDA 10.1

Some detection results are shown in Figure 8. Figure 8a represents detection result
in complex background and Figure 8b represents detection results under multiobject
condition. Figure 9 is P-R curve of detection and shows the improved model’s mAP can
reach 94.41%.

In order to concretely display the results comparison of the improved model and the
original SSD, some comparisons of detection boxes are shown in Figure 10. In Figure 10,
the left side is our model’s result, and the right side is SSD’s result. As we can see, the
prediction box score of our model is higher than that of SSD. Our improved model has an
excellent performance under condition of multiobject and complex background.
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We also compare detection results between our model and other state-of-art object
detection algorithms. The parameters for comparison include mAP, memory and detection
speed. The comparison of experimental results is as shown in Table 5 and Figure 11. As
Faster R-CNN belongs to two-stage algorithms, it has the highest detection accuracy among
these models and lowest detection speed, which is hard to practically apply. Our model
has the second highest detection accuracy, which is 2.34% and 0.41% higher than SSD
and YOLOV4. As we add feature fusion module and SE module, the model size and
floating point operations per second (FLOPs) will be increased. As a result, our model’s
memory is 174 MB and detection speed is 31 FPS, which can also meet the requirements of
real-time detection.

Table 5. The comparison of experimental results.

Networks mAP Memory/MB Speed/FPS

Our model 94.41% 201 31
SSD 92.25% 174 45

YOLOV4 94.02% 246 42
Faster R-CNN 97.62% 238 3
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Figure 10. Comparison of experimental results between our model and SSD.
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Figure 11. The comparison of experimental results with histogram.

5. Conclusions

Aiming at the problem that the accuracy of ship detection still has space for further
improvement, we proposed an efficient ship detection algorithm for SAR remote sensing
images based on improved SSD. Firstly, we add a feature pyramid network to SSD, in-
troducing context information to Conv4_3 and Conv7 which are large scale feature maps
and are responsible for detection of small objects. Then, in order to further improve the
ability of feature extraction and raise the significant channel-wise feature as well as reduce
insignificant channel-wise feature, a SE module is added, enabling model to perform dy-
namic channel-wise feature recalibration. The experimental results based on SSDD dataset
show that our improved model has an excellent performance in accuracy compared to
other state-of-art object detection algorithms. Meanwhile, the detection speed of our model
is 31 FPS, higher than the speed for real-time detection.
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