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Abstract: Shape classification and matching is an important branch of computer vision. It is widely
used in image retrieval and target tracking. Shape context method, curvature scale space (CSS)
operator and its improvement have been the main algorithms of shape matching and classification.
The shape classification network (SCN) algorithm is proposed inspired by LeNet5 basic network
structure. Then, the network structure of SCN is introduced and analyzed in detail, and the specific
parameters of the network structure are explained. In the experimental part, SCN is used to perform
classification tasks on three shape datasets, and the advantages and limitations of our algorithm are
analyzed in detail according to the experimental results. SCN performs better than many traditional
shape classification algorithms. Accordingly, a practical example is given to show that SCN can save
computing resources.

Keywords: shape classification; shape matching; contour; deep learning; convolutional neural
network

1. Introduction

Shape classification and matching are an important branch of computer vision. In re-
cent years, the research on shape classification is still very popular and has made significant
results. It has been widely used in image retrieval, object recognition, text recognition and
text retrieval. In the field of computer vision, shapes are generally represented by binary
graphs (0 and 1) (as shown in Figure 1). Although this kind of representation method has
no basic features such as color and texture, it does not affect people to distinguish their
species by relying on the eyes and brain. Studies [1–3] show that human eyes are more
sensitive to shape and contour features than color and texture features when distinguishing
and searching images. Therefore, the shape and contour feature is an advanced feature
of more importance than color and texture, which has higher robustness and stability
depending on shape recognition and classification.

To let the computer make shape matching and classification is to make a series of
matching classification criteria, and then let the computer check and measure whether two
or more shapes are similar and belong to the same class according to the established criteria.
Traditional shape matching algorithms express the matching degree of two shapes by a
numerical value, and the larger the numerical value is, the more similar the two shapes
are. Euclidean distance can also be used to express the similarity between shapes, and the
larger the distance is, the less similar the two shapes are. Therefore, the general process of
shape matching and classification mainly includes the following steps:

1. Performing the binary representation of object shapes in the image to obtain shape
features;

2. Calculating the similarity between two or more shapes according to certain measure-
ment criteria;

3. Matching and classifying shapes according to calculation results and premise tasks.
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Figure 1. A binary graph represents the shape of an object.

Through studying some methods of shape matching classification [4–8], it was found
that the convolutional neural network shows good results in object detection [9]. Therefore,
this paper used convolutional neural network for the shape classification task, and good
results were achieved. In addition, there are too many network parameters when RGB
images are calculated in the convolutional network, so a large amount of computing power
will be consumed. Therefore, first converting it to a binary image and then undertaking the
convolution operation can save computing power to complete the task of shape retrieval.

The rest of this paper is organized as follows. In Section 2, a review of some well-
known methods is presented. Section 3 describes the details of the proposed method. In
Section 4, the classification accuracy of shape classification network (SCN) on different
shape datasets is compared to other methods. Section 5 gives a practical example. At the
end, Section 6 concludes this paper.

2. Related Work

If shape matching and classification want to proceed smoothly, the representation
method of shape should be intuitive enough and contain as much information as possible
to distinguish them. The description of shape is usually divided into point set, contour and
skeleton. The representation methods of the contour and skeleton contain more information
than that of the point set. The datasets of this experiment are contour representation, so the
traditional contour description methods are mainly introduced.

2.1. Traditional Algorithm

In 2001, shape context proposed by Belongie [4] is a popular shape descriptor based
on shape contour features. It describes the distribution of contour sampling points in
a log-polar coordinate system with a histogram. Firstly, edge extraction and uniform
sampling are carried out to obtain the set of shape points of an object I = {p1, p2, . . . , pn}.
The shape information of each point is represented by the relative vector set formed by all
other points and represented by the histogram. The matching cost of point pi on the target
P and point qi on the target Q is calculated, which is represented by Ci,j:

Ci,j = C(pi, qj) =
1
2

K

∑
k=1

[hi(k)− hj(k)]
2

hi(k) + hj(k)
(1)

where hi(k) is the histogram of the shape of the point pi of the target P; and hj(k) is the
histogram of the shape of point qi of target Q. The smaller the result is, the more similar
they are. However, this descriptor has a poor matching result when there are too many
backgrounds and noise points. Daliri [5] combined the shape context description method
with strings of symbols to improve the result of shape matching. Ling [6,7] proposed an
inner-distance shape context (IDSC) method using the inner distance between contour
points, which achieved good results in shape retrieval, but the algorithm complexity was
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high. Thayananthan [8] combined shape context descriptors with chamfer matching and
showed a good performance in object matching in complex scenes.

There is another common method in shape representation: shape representation based
on multi-scale theory. This kind of method mainly uses the concave–convex characteristics
of plane curves. The concave–convex characteristics of the contour points are obtained
by the description method, and then the shape is judged. The curvature scale space (CSS)
descriptor proposed by Mokhtarian [9] uses this method. The CSS shape descriptor looks
for the curvature zero-crossing of shape contour and takes the combination of extreme
point location and scale information as the descriptor. The curvature of each point is
calculated as

k(u, σ) =

.
x(u, σ)

..
y(u, σ)− ..

x(u, σ)
.
y(u, σ)

[
.
x(u, σ)2 +

.
y(u, σ)2]

3
2

(2)

x(u, σ) = x(u) ∗ g(u, σ)
y(u, σ) = y(u) ∗ g(u, σ)

(3)

Among them,
.
x(u, σ),

..
x(u, σ),

.
y(u, σ),

..
y(u, σ) is the first and second derivative of x, y;

* is convolution operation; g(u, σ) is a one-dimensional Gaussian function. L(u) = (x(u),
y(u)) are the arc length parameters of curve L. The arc length parameter is convolved with
g(u,σ) one-dimensional Gaussian function. When the window width σ is increasing, the
contour becomes smooth and the zero curvature intersection decreases until the contour
becomes convex. CSS descriptors have good robustness to boundary noise. This method
is introduced in more detail in [10]. The MCC descriptor proposed by Adamek [11] is
similar to CSS. The difference is that MCC measures the concavity of shape by calculating
the Euclidean distance between two adjacent scales of a point on the contour, but the
computational complexity of this method is higher than CSS. The TAR descriptor proposed
by Alajlan [12] describes shapes with triangles composed of contour points. The multi-scale
information of shapes is represented by the side lengths of triangles. This descriptor can
effectively obtain local and global features. However, the process of feature extraction is
complex, the computational complexity is high, and it is sensitive to deformation points.
Its robustness is average.

In addition, inner-distance shape context and dynamic programming (IDSC + DP) [13],
shape context and dynamic programming (SC + DP) [14], Fourier descriptor (FD) [15] are
some classical descriptors. FD [15] is a kind of frequency domain descriptor with high prac-
tical value because of its excellent balance between speed and precision. Multiscale distance
matrix (MDM) [16] uses a multiscale description method to compute a feature matrix for a
shape. Distance interior ratio (DIR) [17] is a relatively new fast descriptor. Angular pattern
and binary angular pattern (AP&BAP) [18] is excellent at scale and rotation invariance.
More importantly, it is a global shape descriptor. Fourier descriptor based on multiscale
centroid contour distance (FMSCCD) [19] is a frequency domain descriptor based on the
centroid contour distance (CCD) method, multiscale description, and Fourier transform.

2.2. Development of Deep Learning

In recent years, deep learning has developed rapidly and has shown great ability in
object detection and recognition. Therefore, this paper focuses on using convolutional
neural network for shape matching and classification tasks. Talking about deep learning, it
is necessary to start from the neural network. The neural network is a kind of biomimetic
language that can be learned by computers through observation data. Deep learning is a
learning technology composed of a group of powerful neural networks. However, until
2006, it was not known how to train neural networks to make them better than traditional
methods, except for certain problems. It was not until 2006 when Hinton [20] proposed
deep neural network learning technology that deep learning was well developed.

Convolutional neural network adopts a hierarchical structure. The whole system
includes a multi-layer network composed of input layer, hidden layers and an output
layer (as shown in Figure 2). Only nodes of adjacent layers are connected, while nodes of
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the same layer and cross-layer are not connected. Each layer can be viewed as a logistic
regression model. LeNet5 proposed by Haffner [21] can be regarded as the beginning
of a convolutional network, one of the earliest deep convolutional neural networks, and
promotes the development of deep learning. Each convolution layer contains three parts:
convolution, pooling and nonlinear activation function. Convolution is used to extract
the spatial features, and the pooling layer is used to reduce sampling. Sparse connections
between layers reduce computational complexity.

Figure 2. (a) Network structure model; and (b) deep learning model with multiple hidden layers.

In 2012, Alex Krizhevsky [22] proposed the deep convolutional neural network model
AlexNet, which can be regarded as a deeper and wider version of LeNet5. AlexNet suc-
cessfully used ReLU as the activation function of CNN and solved the gradient dispersion
problem of Sigmoid function when the network was deep. Meanwhile, in order to prevent
overfitting, dropout technology is used to randomly ignore some neurons during training.
AlexNet has eight layers requiring training parameters (excluding the pooling layer and
LRN layer). The first five layers are convolution layers and the last three layers are full
connection layers. See [9] for a specific network structure. In the field of shape classification,
Alexnet + VGG 16 + KNN (K-Nearest Neighbor) [23] combined deep features and KNN
algorithm to classify leaf-based plant species and achieved a good effect.

3. Method

LeNet5 [21] was first used to recognize handwritten numbers and achieved good
results. Considering that the MNIST (Mixed National Institute of Standards and Technology
database) [21] dataset is similar to the datasets tested in this paper to a certain extent,
handwritten numbers are also equivalent to the shape of an image. So inspired by it, this
paper proposes a new algorithm shape classification network (SCN). In addition, many
traditional shape description methods are classified according to the characteristics of
the shape in a dataset, and this paper wants to propose a more comprehensive shape
classification algorithm. Rather than just an algorithm for a specific dataset, it can perform
good classification ability under different datasets.

3.1. Size of Convolution Kernel

In the case where the input size of the image is 32 × 32, the general convolution
kernel size is 5 × 5, 3 × 3, and 1 × 1 (odd). After the convolution usually requires the
padding operation, only if the size of the convolution kernel is odd, the padding can be
symmetric from both sides of the image. The datasets used in the experiment is more
complex in shape, class, and detail than the handwritten numbers dataset, so the size of
the convolution kernel should be determined first. Although the receptive field of 3 × 3
convolution kernel is smaller than that of a large convolution kernel, more local information
can be extracted. Other unnecessary and influential information is extracted at the same
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time, but this effect can be avoided by using a pooling layer. Therefore, it is more suitable
for complex shapes. Of course, the convolution kernel is not as small as possible, especially
for sparse data (Figure 3). When using a relatively small convolution kernel (such as a
1 × 1 convolution kernel), the receptive field is too small to extract many useful features. In
this paper, the convolution kernel size of the first two layers is 3× 3 to extract local features
better. The size of the convolution kernel of the last convolutional layer is 5 × 5, and it is
more inclined to extract global features, which can better adapt to complex datasets.

Figure 3. Sparse data.

The simple image information means that the boundary of the image does not contain
much meaningful information. However, some shapes extend to the edges of the image. In
order to ensure that the edge information of the image can be calculated multiple times,
padding is added to the image. If the padding is not added, the edge of the input image
information will only be computed once, and the pixels in the middle of the image will
be traversed many times. Thus, the reference level of the boundary information will be
reduced. However, after adding the padding, the new boundary is computed during actual
processing (as shown in Figure 4).

Figure 4. Perform convolution calculation on the 3 × 3 size image with padding = 1 and kernel size
= 3 × 3.

3.2. Fine-Tuning

The main idea of fine-tuning is to use the weight information of the original model as
the initialization parameter of the new model to be trained. Because the current various
models that use deep learning to classify images have too little correlation between their
characteristics with shapes, and we expanded the dataset to tens of thousands, which is
enough for the network to retrain without pre-training and fine-tuning. At the same time,
we used MNIST [21] and CIFAR-10 [24] models to fine-tune and then experiment, though
the results were not good. In our opinion, the correlation between the MNIST [21] dataset
with the shape dataset we used is higher than the others. If this result is not good, the other
performance will be worse. Theoretically, it will actively and quickly enter a poor local
optimal point. The global optimal point will not be approached step by step, so that the
entire network performance cannot achieve good results. Therefore, fine-tuning is not used
in this experiment.
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3.3. Addition of BN Layer

The batch normalization (BN) [25] layer is just like the activation function layer,
convolution layer, full connection layer, pooling layer, etc. It also belongs to the network
layer. In addition to the output layer, the other layers are constantly updated with the
training as the low-level network is trained. As long as the first few layers of the network
change slightly, the next few layers are cumulatively enlarged. Once the distribution of
input data at a certain layer of the network changes, then this layer of network needs to
adapt to learn this new data distribution. Thus, if the distribution of training data has
been changing during the training process, it will affect the training speed of the network.
Therefore, when inputting each layer, adding a pre-processing operation before input is
very beneficial to the whole training process. The proposal of BN is to solve the situation
in which the distribution of data in the middle layer changes during the training process.

For the neural network input data preprocessing, the effective algorithm is whitening
preprocessing. However, the whitening calculation is too large, and the whitening is not
differentiable everywhere. Thus, in deep learning, the calculation cost of using whitening
is too large to be used rarely. After whitening pretreatment, the data meets the conditions:
(1) the correlation between features is reduced, which is equivalent to principal component
analysis (PCA); (2) data mean and standard deviation normalization, that is, the mean value
of each dimension is 0, the standard deviation is 1. If the dimension of the data feature is
relatively large, it is necessary to use the PCA algorithm to reduce the dimension, that is, to
achieve the first requirement of whitening. It is necessary to calculate the feature vector,
and the calculation amount is very large. Therefore, in order to simplify the calculation,
the BN algorithm ignores the first requirement. For pre-processing, the following formula
should be used, that is, to approximate the whitening pretreatment:

x̂(k) =
x(k) − E[x(k)]√

Var[x(k)]
(4)

Using this formula, the input data of a layer of network will be normalized. However,
in order to prevent the use of normalization processing to affect the distribution of features
learned in the previous layer, the BN algorithm is transformed and reconstructed, and
learnable parameters γ, β are introduced:

y(k) = γ(k) x̂(k) + β(k) (5)

Each neuron will have a pair of such parameters γ, β. Thus, when the parameters
are met:

γ(k) =
√

Var[x(k)]
β(k) = E[x(k)]

(6)

It is possible to recover the distribution of features learned in the previous layer and
eliminate the effects.

Therefore, the BN algorithm introduces the learning parameters γ, β, which allows
the network to learn to recover the distribution of the original network. It not only
preprocesses the data well, but also improves the generalization ability of the network.
The entire algorithm flow of the forward conduction of the Batch Normalization network
layer is:

1. Input data x1 . . . xm over a mini-batch B = {x1 . . . m} sequentially, which are the data
ready to enter the activation function;

2. Find the data average by µB = 1
m

m
∑

i=1
xi;

3. Using the formula σ2
B = 1

m

m
∑

i=1
(xi − µB)

2 to obtain the variance of the input data;

4. The data ire normalized by x̂i =
xi−µB√

σ2
B+θ

, or referred to as normalization;



Symmetry 2021, 13, 499 7 of 17

5. The parameters γ, β are trained by the formula yi = γx̂i + β ≡ BNγ,β(xi), and the
output y value is obtained by linear transformation of γ, β.

Therefore, it is concluded that in the case of forward propagation, by learning the
reconstruction parameters γ, β, learning to recover the feature distribution that the orig-
inal network has to learn, has a positive impact on the training process. In the case of
backpropagation, γ, β and associated weights are obtained by chain derivation.

The reason for placing the BN layer behind the convolutional layer is explained in the
BN paper [25]. Take the second layer of the network as an example: the input of the second
layer is calculated by the parameters of the first layer and input, while the parameters of the
first layer are always changing during the whole training process, so it will inevitably cause
changes in the distribution of input data of each subsequent layer. We call the change of
data distribution in the middle layer of the network during the training process as “Internal
Covariate Shift”. Thus, the Internal Covariate Shift problem can be solved by performing a
BN operation before the data goes to the next layer.

The output distribution of the nonlinear element will change during the training
process. Normalization cannot eliminate its variance offset. On the contrary, the output of
full connection and convolution layers is generally a symmetric, non-sparse distribution,
more like a Gaussian distribution, and normalization produces a more stable distribution.
Because we did not perform pre-training and fine-tuning with the existing model, the
entire network was retrained, and the test set and the training set have completely different
shapes, i.e., the test set and the training set have different distributions. The essence of the
neural network learning process is to learn the data distribution. Once the distribution of
the training data and the test data are different, the generalization ability of the network is
greatly reduced. On the other hand, once the distribution of each batch of training data is
different, the network must learn to adapt to different distributions in each iteration, which
will greatly reduce the training speed of the network. This is why we use the BN layer to
perform a normalized preprocessing on the data.

Therefore, after using the BN algorithm in the SCN network structure, it not only
allows the use of a larger learning rate, which greatly improves the speed of training, but
also normalizes the parameters to improve the network generalization ability. It has a
positive effect on shape classification tasks.

3.4. Application of the Transposed Convolution Layer

When transposed convolution was first proposed as deconvolution [26], the deconvo-
lution here is only conceptually opposite to the traditional convolution. The traditional
convolution is to generate a feature map from the image, and the deconvolution is to find
a set of kernel and feature maps with the unsupervised method and let them reconstruct
the image. The feature map obtained by the convolution in CNN was restored to the pixel
space by deconvolution to observe which pattern images were sensitive to the specific
feature map. The deconvolution is not the reversible operation of convolution, but the
transposed convolution, so it is always called transposed convolution in deep learning
field. The general transposed convolution operation is visualized as shown in Figure 5 [27].

In 2014, Jonathan Long [28] used up-sampling in the full convolutional network (FCN)
to achieve good results for semantic segmentation. There are some similarities between
object contour and image semantic segmentation (image semantic segmentation can also
be regarded as the extraction of shape contour), so this paper adds a layer of operation
similar to up-sampling in the network structure, that is, adding a transposed convolution
layer. The transposed convolution layer is used to up-sample the feature map of the last
convolutional layer to restore or enlarge its image size, so that a prediction can be generated
for each pixel while preserving the spatial information in the original input image. Finally,
the feature images with up-sampling are classified. That is, the classification from the
image level is further extended to the classification at the pixel level.
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The learning of the transposed convolution is an alternative optimization, which first
optimizes the feature map z and then optimizes the convolution kernel f. If there is a
multi-layer transposed convolution operation, it is also layer-by-layer training. The first
step is to learn the feature map. It is difficult to directly learn the loss function of the
transposed convolution layer. The reason is that the points at different positions in the
feature map are heavily coupled because of the convolution kernel. Therefore, selecting a
proxy variable x, making z approach x, then regularizing x, and alternately optimizing z
and x:

Ĉl(y) = λ
2

I
∑

i=1

Kl−1

∑
c=1
‖

Kl
∑

k=1
gl

k,c(z
i
k,l⊕ f l

k,c)− zi
c,l−1 ‖

2
2

+ β
2

I
∑

i=1

Kl
∑

k=1
‖ zi

k,l − xi
k,l ‖

2
2 +

I
∑

i=1

Kl
∑

k=1

∣∣∣xi
k,l

∣∣∣p (7)

The second step is to learn the convolution kernel f, which can be completed by a
normal gradient descent. The specific algorithm flow is shown in [29].

3.4.1. Transposed Convolution

In [29], it was mentioned that in the past learning method, the original pixel of the
image is lost when learning layer by layer, and the target of learning is only the feature
map of the upper layer. Thus, the connection relationship between the high-level filter and
the input image is not so strong, leading to a learning effect which is not good. Therefore,
this paper uses transposed convolution.

Inspired by DCGAN (Deep Convolution Generative Adversarial Networks) [30], the
GAN (Generative Adversarial Networks) network required generative models and gener-
ated images from the input data of specific distribution through transposed convolution. As
shown in Figure 6, a 4 × 4 shape binary image shown Figure 6a is convolved with a 3 × 3
convolution kernel shown in Figure 6b to obtain a 2 × 2 feature image seen in Figure 6c.
Then, transposed convolution is performed on the obtained feature image Figure 6c. First,
0 is added to the feature image to obtain a size that can be convolved to obtain the image
Figure 6d, and then convolution calculation is performed with a 3 × 3 convolution kernel
shown in Figure 6e,f, which is the feature image obtained after transposed convolution.
From Figure 6f and Formula (8), it can be inferred that the transposed convolution increases
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the horizontal and vertical gradients between pixels. Therefore, when the transposed
convolution layer is added, the experimental accuracy rate will be improved:

dx(i, j) = I(i+1,j)−I(i−1,j)
2

dy(i, j) = I(i,j+1)−I(i,j−1)
2

(8)

Figure 6. (a–c) is convolution operation; (c–f) is transposed convolution operation.

3.4.2. Checkerboard Effect

The transposed convolution operation is a method of up-sampling operation that
allows the model to draw a block on a high-resolution image through each point. This is
related to the stride and kernel size of the transposed convolution. If the stride and kernel
size are not properly selected, the checkerboard effect is easy to occur, which has an adverse
effect on the experimental results. For example, in Figure 7, the upper black grid represents
a certain pixel in the original image, and the white represents the stride in the transposed
convolution, which is generally filled with 0. The next layer is the image generated by
transposed convolution. When stride cannot divide the kernel size, the checkerboard effect
will appear. Although it can be weakened to a certain extent when it is divisible, it cannot
be completely eliminated. Therefore, in this experiment, the choice of divisibility not only
reduces the influence of the checkerboard effect, but also improves the learning ability of
the entire network.

Figure 7. Perform transposed convolution calculation with (a) stride = 2, kernel size = 5; (b) stride = 2,
kernel size = 4.
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3.5. Architecture

The size of the convolution kernel of the first two convolutional layers is 3 × 3, with
stride 1 and padding 1. The convolutional kernel of the third convolutional layer is 5 × 5.
The number of transposed convolution output channels is 512, the kernel size is 3 × 3,
and the stride is 1. The final convolutional kernel is 3 × 3 and outputs 512 channels.
Max-pooling is performed over a 2× 2 pixel window, with stride 2. The last full connection
layer is based on the number of classifications. Some detailed parameters and the schematic
diagram of the entire network architecture is shown in Figure 8.

Figure 8. Shape classification network (SCN) network architecture.

4. Experiment

This experiment uses a GTX 1050Ti GPU for training and testing under Linux. Three
datasets were used in this experiment: Animals [31], MPEG(Moving Picture Experts
Group)-7 CE-1 Part B [32] and Swedish Plant Leaf [33]. The total amount of data in each
dataset is still not enough. When the dataset is too small and the data sample is insufficient,
deep learning has no obvious advantage over other traditional algorithms. Therefore, we
take a data augmentation on the original dataset to ensure the effective training of the
model. Each image is rotated 10◦ counterclockwise in turn, 36 times in total (as shown in
Figure 9), and the dataset is expanded to 36 times of the original. It cannot only improve
the robustness of the model, but also improves the generalization ability of the model.
The algorithm SCN proposed in this paper is compared with several traditional shape
algorithms on three different datasets, with the classification accuracy as the discriminant
standard.

Figure 9. Rotate 10◦ counterclockwise. (a–c) are images in three different datasets.
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4.1. Performance on Animals Dataset

The Animals [31] dataset has 20 classes (as shown in Figure 10), and each class has
100 similar shapes (part of the shape is shown in Figure 11). After a data augmentation,
the new dataset has 72,000 images. There are 3600 images in each class, 2520 of which are
selected as the training set and the remaining 1080 as the test set, so that the number of
training set and test set is roughly divided into 7:3.

Figure 10. Twenty kinds of shapes of the Animals dataset.

Figure 11. Different kinds of shapes in the same class.

Compared with many traditional algorithms, the classification accuracy of our algo-
rithm SCN is higher. The main idea of the traditional shape classification algorithm is to
classify based on the proposed descriptor, but the various shapes included in the Animals
dataset range from simple to complex, with varying degrees of complexity. Therefore,
traditional algorithms have limitations on such a complex dataset, and SCN has good
performance (as shown in Table 1).

Table 1. Performance of the different algorithms on Animals dataset.

Method Classification Accuracy

FMSCCD [19] 37.33%
IDSC-WFW (a weighted Fourier and wavelet-like descriptor

based on inner distance shape context) [34] 49.36%

DIR [17] 46.45%
AP & BAP [18] 52.79%

MDM [16] 35.81%
FPD (farthest point distance) [35] 26.63%

FD [15] 27.97%
FASD & FMSCCD (fast angle scale descriptor and FMSCCD) [19] 37.85%

FD-ASD (Fourier descriptor-angle scale descriptor) [36] 27.44%
ASD & CCD (angle scale descriptor and centroid contour

distance) [36] 39.30%

SC + DP [14] 67.27%
IDSC + DP [13] 70.99%

HSC (Hierarchical string cuts) [37] 56.80%
SCN (ours) 75.39%
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4.2. Performance on Swedish Plant Leaf Dataset

The Swedish Plant Leaf [33] dataset has 15 classes (as shown in Figure 12), and each
class has 75 similar shapes (part of the shape is shown in Figure 13), performing the same
operations and requirements as the previous two datasets. The new dataset consists of
40,500 images, with 2700 for each class, 1908 for the training set and 792 for the test set.

Figure 12. Fifteen shapes of the Swedish Plant Leaf dataset.

Figure 13. Different shapes in the same class.

Swedish Plant Leaf dataset has a few classes and the samples are not very complex
and have obvious features. After data augmentation, the number of samples for each class
of data is sufficient for training and testing. Both the traditional algorithm and the SCN
have good performance, while the SCN can extract the details better, so the classification
accuracy of the SCN is higher than the traditional algorithm (as shown in Table 2).

Table 2. Performance of different algorithms on Swedish Plant Leaf dataset.

Method Classification Accuracy

FMSCCD [19] 87.98%
IDSC-WFW [34] 93.66%

DIR [17] 88.20%
MDM [16] 87.32%
FPD [35] 77.16%
FD [15] 82.40%

FASD & FMSCCD [19] 91.04%
FDASD [36] 87.32%

ASD & CCD [36] 85.14%
MLBP (modified LBP) [38] 96.83%

SCN (ours) 94.46%
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4.3. Performance on MPEG-7 CE-1 Part B DATASET

The MPEG-7 CE-1 Part B [32] dataset has 70 classes (we only show 20 of them in
Figure 14), and each class has 20 similar shapes (part of the shapes is shown in Figure 15).
After data augmentation, the MPEG-7 dataset has 50,400 images. Similarly, the training set
and test set were divided into 7:3. There were 720 images in each class, 504 of which were
selected as the training set and the remaining 216 as the test set.

Figure 14. Twenty of 70 shapes of MPEG-7 dataset.

Figure 15. Different shapes in the same class.

Although the classes of the MPEG-7 dataset are diverse, the similarity between differ-
ent classes is relatively small, and each shape has obvious features, which makes it easy to
distinguish. Therefore, the classification accuracy of the traditional algorithms is generally
higher. Although the performance of SCN is better than them, the training samples of each
class are less than the other two datasets, so the accuracy is improved less (as shown in
Table 3).

Table 3. Performance of the different algorithms on the MPEG-7 dataset.

Method Classification Accuracy

FASD & FMSCCD [19] 88.57%
DIR [17] 87.62%

MDM [16] 88.33%
FPD [35] 77.86%
FD [15] 77.86%

FMSCCD [19] 77.62%
FDASD [36] 85.24%

ASD & CCD [36] 89.76%
SCN (ours) 90.99%

Precision, Recall and F1-score are respectively shown in Table 4. In these three datasets
(Animals [31], MPEG-7 CE-1 Part B [32] and Swedish Plant Leaf [33]), the number of similar
shapes in each class of Animals was the largest, each class having 100 similar shapes, and
the least was MPEG-7 CE-1 Part B, where each class only had 20 similar shapes. When
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the similar shapes were sufficient, it has a positive effect on the learning ability of the
network, and the SCN’s accuracy is also better than traditional algorithms. However, on
the other two datasets, as the number of similar shapes decreases, the learning ability
and performance of SCN will gradually reach the limit. Compared with the traditional
algorithm, although it has improved, it is not significant. Therefore, the ability of SCN
is related to the number of similar shapes in the same class. The greater the number of
similar shapes, the better the performance of SCN. To facilitate further research, the trained
model and model code are made publicly available on https://github.com/Zzz-zcy/SCN
(accessed on 10 March 2021).

Table 4. Precision, recall and F1-score on different datasets.

Dataset Precision Recall F1-Score

Animals [31] 77.21% 74.39% 76.77%
Swedish Plant Leaf [33] 93.38% 92.47% 93.16%

MPEG-7 CE-1 Part B [32] 83.23% 86.41% 85.79%

5. Application

The SCN algorithm can be used in the shape retrieval field of cultural heritage [39,40].
We included a description of the possible application scenarios in order to make it easier
to understand. A practical example was given below so that it can be useful better to
understand the operation of the entire proposed system, from beginning to end. Taking the
shape of a vase as an example, we randomly selected 50 pictures. Most of them were vases,
with a few pictures of tables, chairs and other objects.

Firstly, all images are preprocessed to get adaptive binarization after saliency detection,
and each binary image has a special label corresponding to the original image (as shown
in Figure 16). Then, input the shape of a vase into the algorithm, and some binary shape
images similar to the shape of the input image can be obtained. Due to the special label
correspondence, the images that are all vases are finally retrieved. The entire flow chart is
shown in Figure 17. Because there are too many network parameters when RGB images
are calculated in the convolutional network, a large amount of computing power will be
consumed. Therefore, converting it to a binary image first and then convolution operation
can save computing power to complete the task of shape retrieval.

Figure 16. RGB images are preprocessed to get adaptive binarization after saliency detection.

https://github.com/Zzz-zcy/SCN
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Figure 17. After getting adaptive binarization with saliency detection, it is input into the SCN
network. Then, the binary image of the same class is obtained. Finally, the original image is obtained
due to the corresponding labels, and the shape retrieval is completed.

6. Conclusions

In this paper, a new shape classification algorithm SCN is proposed. Compared with
the traditional shape classification method using descriptors, our algorithm can classify
different shape datasets more comprehensively. For example, the MDM [17] algorithm is a
classification algorithm proposed for the shape of plant leaves. The classification accuracy
of plant leaves shapes is good, but when MDM [17] is applied to other datasets, such as
Animals [31], which have both simple shape structure and complex shape structure, the
results will not be so ideal.

Moreover, this algorithm can also be used in the field of remote sensing images in
the future, because objects in remote sensing images are more blurred than ordinary scene
images, so it is difficult to classify them with texture and point features. Without texture
features and feature points, people can only use shape features to classify objects. The
algorithm SCN in this paper performs good classification accuracy in three shape datasets
(Animals [31], MPEG-7 CE-1 Part B [32] and Swedish Plant Leaf [33]) with different complex
conditions, indicating that the algorithm SCN is more comprehensive than other traditional
algorithms and will be helpful for future practical applications.
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