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Abstract: The algebraic as well as geometric topological constructions of manifold embeddings
and homotopy offer interesting insights about spaces and symmetry. This paper proposes the
construction of 2-quasinormed variants of locally dense p-normed 2-spheres within a non-uniformly
scalable quasinormed topological (C, R) space. The fibered space is dense and the 2-spheres are
equivalent to the category of 3-dimensional manifolds or three-manifolds with simply connected
boundary surfaces. However, the disjoint and proper embeddings of covering three-manifolds
within the convex subspaces generates separations of p-normed 2-spheres. The 2-quasinormed
variants of p-normed 2-spheres are compact and path-connected varieties within the dense space.
The path-connection is further extended by introducing the concept of bi-connectedness, preserving
Urysohn separation of closed subspaces. The local fundamental groups are constructed from the
discrete variety of path-homotopies, which are interior to the respective 2-spheres. The simple
connected boundaries of p-normed 2-spheres generate finite and countable sets of homotopy contacts
of the fundamental groups. Interestingly, a compact fibre can prepare a homotopy loop in the
fundamental group within the fibered topological (C, R) space. It is shown that the holomorphic
condition is a requirement in the topological (C, R) space to preserve a convex path-component.
However, the topological projections of p-normed 2-spheres on the disjoint holomorphic complex
subspaces retain the path-connection property irrespective of the projective points on real subspace.
The local fundamental groups of discrete-loop variety support the formation of a homotopically
Hausdorff (C, R) space.
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1. Introduction

In general, a path-connected topological space is considered to be locally path-connected
within a path-component maintaining the equivalence relation. A topological space X
is termed as homotopically Hausdorff if there is an open neighbourhood at a base point
x0 ∈ X such that any element of a non-trivial homotopy class of the fundamental group
π(X, x0) does not belong to the corresponding open neighbourhood [1]. A first countable
path-connected topological space admits countable fundamental groups if the space is a
homotopically Hausdorff variety [1]. Interestingly, a homotopically Hausdorff topolog-
ical space containing countable fundamental groups has universal cover. However, the
nature of a fundamental group is different in the lower dimensional topological spaces as
compared to the higher dimensional spaces. For example, in a one-dimensional topolog-
ical space X the fundamental group π(X) becomes a free group if the space is a simply
connected type [1]. In this case the topological space successfully admits a suitable metric
structure. A regular and separable topological space can be uniquely generated from a
given regular as well as separable topological space [2]. For example, suppose X is a
regular and separable topological space. If we consider that A ⊂ X and U is a neighbour-
hood of A then a unique topological space can be generated from X if A is closed and
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U\A is a countable or finite sum of disjoint open sets. Note that the uniquely generated
topological space is also a regular and separable topological space. This paper proposes the
topological construction and analysis of 2-quasinormed variants of p-normed 2-spheres,
path-connected fundamental groups and associated homotopy contacts in a fibered as well
as quasinormed topological (C, R) space [3]. In this paper the 2-quasinormed variants of
p-normed 2-spheres in X are generically denoted as CRS(X). The space is non-uniformly
scalable and the fundamental groups are interior to dense subspaces of 2-quasinormed
variant of p-normed 2-spheres generating a set of homotopy contacts. First, the brief
descriptions about various contact structures, fundamental group varieties and associated
homotopies are presented to establish introductory concepts (Sections 1.1 and 1.2). Next,
the motivation for this work is illustrated in Section 1.3. In this paper, the symbols R, C, N
and Z represent sets of extended real numbers, complex numbers, natural numbers and
integers, respectively. Moreover, for clarity, in this paper a 3D manifold is called a three-
manifold category in the proposed constructions and topological analysis. Furthermore,
the surfaces of three-manifolds and 2-spheres are often alternatively named as respective
boundaries for the simplicity of presentation.

1.1. Contact Structures and Fundamental Groups

The constructions of geometric contact structures and the analysis of their topological
properties on manifolds are required to understand the characteristics of associated group
algebraic varieties. The contact structure on a manifold M is a hyperplane field in the
corresponding tangent subbundle. A 2n + 1 dimensional contact manifold structure is
essentially a Hausdorff topological space, which is in the C∞ class [4]. In general, the
topological analysis considers that a contact manifold is in the compact category and the
contact form ω is regular. As a consequence, the integral curves on such contact manifolds
are homeomorphic to S1. It is shown that if a contact structure A is constructed on a three-
manifold T3 then the fundamental group π1(T3, A) includes an infinite cyclic group [5].
However, a similar variety of results can also be extended on T2-bundles generated over S1.

The topological contact structures on three-manifolds can be further generalized
towards higher dimensions. However, in case of n-manifolds (n > 3) the theory of contact
homology plays an important role. Note that if we consider θ as a contact structure and Mn
as a n-manifold then the contact homology HC ∗ (Mn, θ) is invariant of the corresponding
contact structure [6]. In this case the contact homology is defined as a chain complex.
Interestingly, the higher dimensional manifolds and contact homology can be useful to
prove some topological results in the lower dimensional contact structures. For example, the
formulations of fundamental group π1(Mn, θ) for the n-manifold (n > 3) and the associated
higher order homotopy groups πk(Mn, θ) are successfully realized by employing the higher
dimensional contact homology [7]. The analytic and geometric properties of the higher
dimensional contact structures in n-manifold show some very interesting observations.
A 2-torus can be generated by attaching a projection of J-holomorphic cylinder to a n-
manifold Mn along with homotopy pairs, which results in the preparation of a H2(Mn, Z)
homology class [7].

1.2. Homotopy and Twisting

The contact structures can be twisted and can also be classified. According to the
Eliashberg definition, a contact structure θ on a three-manifold M3 is called overtwisted
if it can successfully allow embedding of an overtwisted disc [8]. There is a relationship
between the homotopy theory of algebraic topology and the corresponding twisted contact
structures. It is shown by Eliashberg that all oriented 2-plane fields on a M3 structure are
essentially homotopic to a contact structure in the overtwisted category. The Haefliger
classifications of foliations in the contact manifolds are in a generalized form considering
the open manifold variety [9]. The Haefliger categories are further extended by constructing
homotopy classifications of foliations on the open contact manifolds [10]. However, in
this case the leaves are the open contact submanifolds in the topological space. The
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contact structures, twisting and manifolds are often viewed in geometric perspectives.
The construction and analysis of holomorphic curves on the symplectic manifolds are
proposed by Gromov [11]. Note that the contact geometry is an odd dimensional variety of
symplectic geometry.

1.3. Motivation and Contributions

The anomalous behaviour in homotopy theory is observed when the uniform limit of a
map from a nullhomotopic loop is the essential homotopy loop, which is not nullhomotopic
in nature [12]. Moreover, the Baire categorizations of a topological subspace influence the
properties of structural embedding within the space. Suppose we consider a path-connected
subset A of S2, where the topological space Ac (complement of A) is a dense subspace. It
is shown that the fundamental group of A successfully embeds the fundamental group
of Sierpinski curve [1]. In this case, the nullhomotopic loop in the topological space X
given by f : S1 → X factors through a surjective map on the planar topological subspace.
Interestingly, in view of algebraic topology one can construct a fundamental group π1(M, x)
from a set of equivalence classes of paths on a manifold M [13]. As a result, the covering
map given by p : X → Y between the two topological spaces induces another map given
by p∗ : π1(X, x)→ π1(Y, p(x)) , which is injective. Interestingly, the fibre over a topological
space (Y, τY) is homeomorphic to the discrete π

top
1 (Y) fundamental group [13].

This paper proposes the topological construction and analysis of multiple path-
connected fundamental groups of discrete variety within the non-uniformly scaled as
well as quasinormed topological (C, R) space. The topological (C, R) space supports fibra-
tions in two varieties, such as compact fibres and non-compact fibres. It is considered that
the fundamental groups generating homotopy contacts are interior to the 2-quasinormed
variants of p-normed 2-spheres within the topological (C, R) space. This paper addresses
two broad questions in the relevant topological contexts such as, (1) what the topological
properties of the resulting structures are if the space is dense and, (2) how the homo-
topy contacts, covering manifold embeddings and path-connections interplay within the
topological (C, R) space. Moreover, the question is: how the concept of homotopically
Hausdorff fundamental groups influences the proposed structures. The presented con-
struction and analysis employ the combined standpoints of general topology as well
as algebraic topology as required. The elements of geometric topology are often used
whenever necessary.

The main contributions made in this paper can be summarized as follows. The
construction of multiple locally dense p-normed 2-spheres within the dense and fibered
non-uniformly scalable topological (C, R) space is proposed in this paper. The three-
manifold embeddings and the corresponding formation of covering separation of CRS(X)
are analysed. The generation of path-connected components in a holomorphic convex
subspace is formulated and the concept of bi-connectedness is introduced. This paper
illustrates that the local and discrete variety of fundamental groups interior to the CRS(X)
generate the finite and countable sets of homotopy contacts with the simply connected
boundaries of CRS(X). Interestingly, a compact fibre in the topological (C, R) space may
prepare a homotopy loop. It is shown that the holomorphic condition is required to be
maintained in the convex subspace topological (C, R) space to support the respective
convex path-component. However, it is observed that the path-connected homotopy loops
are not always guaranteed to be bi-connected as an implication.

The rest of the paper is organized as follows. The preliminary concepts are presented
Section 2 in brief. The definitions and descriptions of CRS(X), homotopy contacts and
fundamental groups are presented in Section 3. The analyses of topological properties are
presented in Section 4 in details. Finally, Section 5 concludes the paper.

2. Preliminary Concepts

In this section, the introduction to topological (C, R) space, manifolds and homotopy
theory are presented in brief. The topological (C, R) space is a quasinormed topological
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space constructed on the Cartesian product C × R resulting in the formation of a three-
dimensional topological space in continua. The topological (C, R) space is a non-uniformly
scalable space where the set of open cylinders forms the basis. The space successfully
admits cylindrically symmetric continuous functions as well as the topological group
structure. The identity element of the topological group in the (C, R) space is located on the
corresponding real planar subspace. The space can be fibered and the respective fibre space
generates an associative magma. The topological (C, R) space can be equipped with various
forms of linear operations TC, TR, T within the space and the composite algebraic operations
involving translations exhibit a set of interesting algebraic as well as topological properties.
The topological (C, R) space is suitable for the construction of manifold embeddings. A
Hausdorff topological space Mn is an n-dimensional smooth manifold if the space can be
covered by a set of charts given by Ψ = {(Uα, fα)}α∈Λ where Λ is an index set, Uα is an
open set and fα : Uα → Rn is a homeomorphism. In general, the topological space on
Mn represented by (Mn, τM) is considered to be equipped with a countable base. It is
interesting to note that every paracompact Hausdroff manifold is metrizable as well as
second countable and it preserves local topological properties, such as local compactness
and local metrizability [14]. Moreover, every paracompact manifold of connected variety
is Lindelof and separable. The smoothness of (Mn, τM) is maintained by the condition
that a function on it is in the Cr − class where r ∈ N ∪ {+∞}. Note that a diffeomorphism
between two smooth manifolds Mn and Nn is a bijection with a smooth inverse. According
to Whitney embedding theorem, a smooth as well as compact (Mn, τM) can be embedded
into m-dimensional Euclidean space if the dimension is sufficiently large as compared
to n (i.e., m > n for Rm). Moreover, if f : Mn → Vm is a map between two differentiable
manifolds then it forms another regular map F if m ≥ 2n [15]. A complex manifold is defined
in n-dimensional complex space Cn with a restriction that the coordinate chart maps are
required to be holomorphic in nature. A Riemann sphere with one-point compactification
given by C ∪ {∞} is essentially a complex manifold such that it is homeomorphic to S2. Let
(X, τX) and (Y, τY) be two topological spaces and the functions f , g : (X, τX)→ (Y, τY) be
continuous. The functions f , g are homotopic if there exists a continuous function given
by F : X× [0, 1]→ Y such that it maintains two conditions: (I) F(x, 0) = f (x) and (II)
F(x, 1) = g(x). Suppose {pi|pi : [0, 1]→ X} is a set of continuous functions with two base
points pi(0) ∈ X, pi(1) ∈ X in the space for some i ∈ Z+. If we consider two continuous
functions, p1(.) and p2(.) then the continuous function Fp : [0, 1]2 → X is a path-homotopy
if it satisfies four conditions given as:

(I) Fp(s ∈ [0, 1], 0) = p1(s), (II) Fp(s ∈ [0, 1], 1) = p2(s), (III) Fp(0, t ∈ [0, 1]) = p1(0) =
p2(0) and (IV) Fp(1, t ∈ [0, 1]) = p1(1) = p2(1).

A fundamental group π1(X, b) is generated in a topological space (X, τX) at the base
point b ∈ X if {pi|pi : [0, 1]→ X} represents a path-homotopy and additionally it supports
the condition that: ∀pi, pi(0) = pi(1) = b. It indicates that π1(X, b) is formed by a set of
homotopic loops based at the base point b ∈ X. A homotopy loop pi(.) in π1(X, b) is called
simple if it is an injective type and it is simple-closed if it is closed as well as injective except at
the points {0, 1}. If pi, pk are two homotopy loops in (X, τX) then a free homotopy between
them is a continuous map Fσ : [0, 1]× S1 → X such that the restriction to the boundary
components are the given loops. A topological space (X, τX) is π1 − shape injective if the
absolute retract Φ containing topologically closed subspace X maintains the property that
if pi is an essential (i.e., not nullhomotopic) closed curve in X then there always exists an
open neighbourhood Vi of X in Φ such that pi is also essential in Vi.

3. Fundamental Groups and Homotopy Contacts

In this section, the construction of 2-quasinormed variants of p-normed 2-spheres and
the associated definitions of connected fundamental groups as well as homotopy contacts
are presented. The constructions consider that the underlying space is a quasinormed as
well as non-uniformly scalable topological (C, R) space. In this paper a 2-quasinormed
variant of p-normed 2-sphere centred at point xc in the topological (C, R) space is alge-
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braically represented as S2
c and it is generically termed as CRS(X) without specifying any

prefixed centre as indicated earlier. Note that an arbitrary point xp in the quasinormed
topological (C, R) space (X, τX) is represented as xp = (zp, rp). The origin of a topological
space (X, τX) is denoted as x0 = (z0, 0), where z0 is the Gauss origin. In this paper Ao and
A represent interior and closure of an arbitrary set A such that A = Ao ∪ ∂A. Moreover, if A
is homeomorphic to B then it is denoted as hom(A, B) and A ∼= B if they are equivalent (i.e.,
identified by following the equivalence relation or quotient). Furthermore, the homotopic
path equivalence between A and B is denoted as A ∼=H B, whereas the homotopic path
joining them is algebraically denoted by A ∗ B maintaining the respective sequence. In the
remainder of this paper, the category of 3D manifold is termed as a three-manifold whereas
the surfaces of a three-manifold category M3 and a CRS(X) given by S2

c are denoted as
∂M3 and ∂S2

c respectively (and alternatively called as boundaries). If the interior of a three-
manifold category M3 in the topological (C, R) space (X, τX) is denoted as A ≡ (M3)

o then
A ⊂ Y is locally dense in convex Y ⊂ X (by following Baire category) as well as open such
that A ∪ ∂M3 = A in (X, τX).

Let (X, τX) be a quasinormed topological (C, R) space and the corresponding 2-
quasinorm of a point xi ∈ X within the space be denoted as ||xi||CR|2. This results in

the formation of a 2-quasinormed space represented by (X,
∣∣∣∣∣∣xi

∣∣∣∣∣∣CR|2) . However, it is

known that for every quasinormed space there exists a 0 < p ≤ 1 such that (X,
∣∣∣∣xi
∣∣∣∣p)

becomes a respective p-normed space generating a topology, where the corresponding
quasinorm function

∣∣∣∣∣∣xi

∣∣∣|1/p
p also admits a topology in X [16]. First we define a p-normed

2-sphere within the topological (C, R) space (X, τX) such that (X,
∣∣∣∣∣∣xi

∣∣∣∣∣∣CR|2) remains a
2-quasinormed topological space.

3.1. Topological CRS(X)

A unit p-normed 2-sphere CRS(X) of 2-quasinorm variant centred at xc = (zc, rc) ∈ X
is defined as:

S2
c =

{
xi ∈ X :

∣∣∣∣∣∣xi − xc

∣∣∣∣∣∣p ≤ 1;
∣∣∣∣∣∣xi

∣∣∣∣∣∣CR|2 ≡
∣∣∣∣∣∣xi

∣∣∣∣∣∣p}. (1)

Note that, in general a CRS(X) is a closed and locally dense subspace in the 3-
dimensional topological (C, R) space (X, τX). In an alternative view, a unit CRS(X) S2

c is
equivalent to a compact three-manifold M3 homeomorphically embedded in the topologi-
cal (C, R) space such that S2

c
∼= M3 in view of category. It indicates that the closed subspace

S2
c is locally dense in a convex subspace within the topological (C, R) space. We consider

that the surface ∂M3 of the topological three-manifold (M3, τM) is a simply connected
variety enabling the existence of a finite number of homotopy contacts on ∂S2

c .

3.2. Topologically Bi-Connected Subspaces

Let A ⊂ X and B ⊂ X be two locally dense (i.e., locally dense in respective convex
subspaces) as well as disjoint such that A ∩ B = φ and A ∪ B ⊂ X. If we consider two
continuous functions f : [0, 1]→ X and g : [0, 1]→ X then A, B are called bi-connected
topological subspaces if the following properties are maintained.

f (0) ∈ Ao, f (1) ∈ Bo,
g(0) ∈ ∂A, g(1) ∈ ∂B,
g([0, 1]) ∩ (A ∪ B) = {g(i) : i ∈ {0, 1}}.

(2)

Remark 1. If A and B are bi-connected then they are also path-connected subspaces in a dense
topological space. Moreover, it is possible to formulate an Urysohn separation of A and B under
continuous v : Y → [0, 1] such that (A ∪ B) ⊂ Y ⊂ X and ∀xa ∈ A, ∀xb ∈ B the function
maintains v(Xa) = 0 and v(xb) = 1. Note that the boundaries ∂S2

c and ∂S2
d of two respective

CRS(X) are homotopically simply connected Hausdorff and can preserve Urysohn separation of
every points on them.
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In general, a path-homotopy H : [0, 1]2 → X can be constructed in (X, τX) by con-
sidering continuous functions f : [0, 1]→ X and g : [0, 1]→ X signifying continuous de-
formation of f (.) into g(.) in the corresponding path-homotopy. However, in this paper
we define a discrete variety of path-homotopy Hd : [0, 1]2 → X such that it follows three
restrictions as mentioned below.

Hd([0, 1]2) ⊂ H([0, 1]2),
Hd((0, 0)) = H((0, 0)),
Hd((1, 1)) = H((1, 1)).

(3)

The main reason for such construction is to generate a set of homotopy contacts as
defined in Section 3.5. First we define the discrete variety of path-homotopy loops and
associated homotopy class within the topological (C, R) space.

3.3. Discrete-Loop Homotopy Class

Let S2
c ⊂ X be a dense CRS(X) centred at xc ∈ X. If a continuous function is given

by fa : [0, 1]→ X then a finite sequence of such functions a ∈ Z+, 〈 fa〉na=1 generates a dis-
crete variety of path-homotopy loops through Hd : [0, 1]2 → X in (X, τX) if the following
conditions are maintained.

m, n ∈ Z+, 1 < m < n,
∀a ∈ [1, n], fa : [0, 1]→ X,
∀a ∈ [1, n], fa(0) = fa(1) = xc,
Hd(t ∈ [0, 1], 0) = f1(t),
Hd(t ∈ [0, 1], 1) = fn(t),
∀y ∈ (0, 1), ∃m : Hd(t ∈ [0, 1], y) = fm(t).

(4)

Note that effectively the path-homotopy loops as defined above give rise to the
formation of a discrete variety of fundamental group π1(X, xc) within the topological space
at the base point, which is the centre of corresponding CRS(X). In other words, a set of
discrete homotopy loops can be constructed from the path-homotopy loops at a base point
centred within CRS(X).

Remark 2. Interestingly, there is a relationship between a compact fibre and a homotopy loop in the
fibered topological (C, R) space (X, τX). If we consider a compact fibre µc×I at xc ∈ X such that
I = I = [ra, rb] then a continuous function w : µc×I → X would transform a compact fibre into a
homotopy loop at the base point xc ∈ X if and only if the function preserves following conditions.

w((zc, ra)) ∼= w((zc, rb)),
w((πr ◦ σ)(xc)) = (zc, r = rc),
hom(w(µc×I), S1).

(5)

It is relatively straightforward to observe that in this case the fibration maintains
I = Io ∪ ∂I and the function w : µc×I → X also preserves ∀a ∈ [1, n], hom(w(µc×I), fa([0, 1]))
property under the above-mentioned conditions. Note that the function sequence 〈 fa〉na=1
prepares the discrete loops of a homotopy class at the base point xc ∈ X, which is denoted
as [ha]c. Moreover, the homotopic loops in a homotopy class [ha]c are finitely countable. The
corresponding locality of admitted fundamental group in (X, τX) is defined below.

3.4. Local Fundamental Group

A fundamental group π1(X, xc) generated by 〈 fa〉na=1 through the path-homotopy loops
Hd : [0, 1]2 → X is called local if and only if ∀a ∈ [1, n], { fa(t ∈ [0, 1])} ⊂ S2

c and fa ∈ [ha]c.
Note that the discrete variety of a local fundamental group preserves the concept

of homotopically Hausdroff property. This is because ∀xc ∈ S2
c ⊂ X, ∃Nc ⊂ X such that
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xc ∈ Nc (i.e., Nc is an open neighbourhood of xc) and ∀a ∈ [1, n], { fa(t ∈ [0, 1])} ∩ Nc ⊂{
xp : xp ∈ fa([0, 1])

}
.

Once a local fundamental group is prepared within the dense subspace of a topological
space (X, τX), the set of homotopy contacts generated by the local fundamental group can
be formulated. Recall that a topological space X is defined as simply connected if every
continuous function f : S1 → X is homotopic to a constant function. It is important to note
that the homotopically simple connectedness of ∂S2

c
∼= ∂M3 ⊂ X facilitates the existence of

finite as well as countable homotopy contacts.

3.5. Homotopy Contacts

Let π1(X, xc) be a local fundamental group in the corresponding subspace S2
c
∼= M3 in

(X, τX). If we consider a homotopy loop fb ∈ [ha]c in π1(X, xc) then xb ∈ X is a homotopy
contact of fb(.) if the following condition is satisfied.

∀xk ∈ fb ∈ [ha]c, xk 6= xb,
{xk} ⊂ (S2

c )
o,

xb ∈ fb([0, 1]) ∩ ∂S2
c .

(6)

Remark 3. A set of contacts of a homotopy class [ha]c of π1(X, xc) in the topological (C, R) space
(X, τX) is given by ∆(π1(X, xc)) = ∪

1≤b≤n
{xb}.

4. Main Results

This section presents the analysis and a set of topological properties related to the
constructed homotopy contacts and the associated fundamental groups of connected vari-
ety. The holomorphic condition on the topological space is not imposed as a precondition
to maintain generality and it is later established that holomorphic condition should be
maintained within a convex path-connected component. It is shown that the bi-connected
functions between subspaces and their extensions preserve holomorphic condition. More-
over, the homotopy contacts maintain simple connectedness of the boundary of a CRS(X),
which are essentially dense three-manifolds. First we show that a continuous bi-connection
between two CRS(X) is two-points compact in the respective sets of homotopy contacts.

Theorem 1. If S2
c ⊂ X and S2

d ⊂ X are two bi-connected CRS(X) then ∃xa ∈ ∆(π1(X, xc)) and
∃xb ∈ ∆(π1(X, xd)) such that g(0) = xa, g(1) = xb preserves two-points compactness.

Proof. Let S2
c ⊂ X and S2

d ⊂ X be two bi-connected CRS(X) in a topological (C, R)
space (X, τX) with the corresponding local fundamental groups π1(X, xc) and π1(X, xd),
respectively. Let the function g : [0, 1]→ (A ⊂ X) be continuous such that S2

c ⊂ X and
S2

d ⊂ X are bi-connected by g(.) along with f : [0, 1]→ (A ⊂ X) . This indicates that
g([0, 1]) ∩ ∆(π1(X, xc)) 6= g([0, 1]) ∩ ∆(π1(X, xd)) 6= φ within the topological space if
and only if (S2

c ∪ S2
d) ⊂ A. According to the definition of topologically bi-connected

subspaces, ∃xa ∈ ∂S2
c and ∃xb ∈ ∂S2

d such that g([0, 1]) ∩ ∆(π1(X, xc)) = {xa} and
g([0, 1])∩∆(π1(X, xd)) = {xb}. Note that the two CRS(X) are disjoint in (X, τX) indicating
xc 6= xd. Moreover, as g : [0, 1]→ (A ⊂ X) is continuous so the function maintains the con-
dition that g([0, 1])\{xa, xb} ⊂ A, where g(.) is holomorphic (and bounded) in A. Hence,
we can conclude that if g(0) = xa, g(1) = xb, where g(t ∈ (0, 1)) = g([0, 1])\{xa, xb} then
it is a two-points compactification of g(.) on ∂S2

c ∪ ∂S2
d. �

Note that the continuous function g : [0, 1]→ X between any two CRS(X) in the
topological (C, R) space is essentially a two-point compactification of a path-connection
involving the sets of respective homotopy contacts. Interestingly, the two-point compactifi-
cation can be performed by employing axiom of choice if the fundamental group is not a
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trivial variety. In any case, a two-point compact bi-connection between two CRS(X) and
its extension are holomorphic in (X, τX). The following theorem presents this observation.

Theorem 2. If a function m : [0, 1]→ (A ⊂ X) is an extended bi-connection of S2
c ⊂ A and S2

d ⊂ A
in (X, τX) such that the restriction preserves m

∣∣g = g then m(.) is holomorphic in convex A.

Proof. Let S2
c ⊂ A and S2

d ⊂ A be two CRS(X) in (X, τX) and g : [0, 1]→ (A ⊂ X) be
a bi-connection. Suppose m : [0, 1]→ A is a function extending g(.) such that m

∣∣g = g .
Let us consider two intervals E1 ⊂ [0, 1] and E2 ⊂ [0, 1] such that E1 ∩ E2 = φ and
the extended function maintains the following two conditions: ∆(π1(X, xc)) ⊂ m(E1)
and ∆(π1(X, xd)) ⊂ m(E2) in (X, τX). If A ⊂ X is a convex topological subspace then
A ⊂ X is a path-connected subspace. Thus the function m : [0, 1]→ A is a topological
path-connection in A ⊂ X. This indicates further that ∀t ∈ [0, 1], m(t) = xt ∈ A where
πC(xt) ∈ V ⊂ C (V is compactible) and πR(xt) ∈ R\{−∞,+∞} in (X, τX). Hence, the
extended bi-connection m : [0, 1]→ (A ⊂ X) is holomorphic in A ⊂ X. �

Corollary 1. The above theorem indicates that the CRS(X) bi-connections are holomorphic in topolog-
ical (C, R) space and as a result the restriction m

∣∣g = g is also holomorphic in convex A ⊂ X.

The location of existence of centre of a CRS(X) within the topological space often
facilitates the generation of connected components and the determination of separation of
multiple CRS(X) within the topological space. It is illustrated in the following theorem
that the placement of centres of multiple CRS(X) in one-dimensional projective subspaces
prepares path-connected CRS(X) components within the space and it can be transformed
into a bi-connected form by a bounded continuous function.

Theorem 3. If g : [0, 1]→ (V ⊃ (∂S2
α ∪ ∂S2

β)) is a bounded continuous function in (X, τX) such
that

{
xα, xβ

}
⊂ πR(X) ∪ Re(πC(X)) ∪ Im(πC(X)) then S2

α, S2
β are bi-connected CRS(X).

Proof. Let (X, τX) be a topological (C, R) space and the topological projections in one-
dimension are given as E1 = πR(X), E2 = Re(πC(X)) and E3 = Im(πC(X)) where Re(.) and
Im(.) represent the real and imaginary components of a complex projective subspace. Suppose
the entire 1D topological projective spaces are given by W = ∪

k∈[1,3]
Ek in (X, τX). Let S2

α and S2
β

be two CRS(X) such that
{

xα, xβ} ⊂W within the topological space. Thus there exist a set of
continuous functions k ∈ [1, m], fk : [0, 1]→W such that {xα, xβ} ⊂ ∪

k∈[1,m]
fk([0, 1]) where

m ∈ Z+, m < +∞. If we consider that S2
α ∩ S2

β = φ indicating two distinctly embedded M3 in

(X, τX) then we can conclude xα 6= xβ and S2
α, S2

β are at least path-connected in W. However,

if we consider that g : [0, 1]→ (V ⊃ (∂S2
α ∪ ∂S2

β)) is a holomorphic continuous function then

∃ta, tb ∈ [0, 1], g(ta) 6= g(tb) such that g(ta) ∈ ∂S2
α, g(tb) ∈ ∂S2

β. Moreover the function g(.) is
two-point compact and bounded in (X, τX). Suppose we choose ta, tb ∈ {0, 1}where ta 6= tb
representing distinct points. Hence, this results into the conclusion that S2

α, S2
β are bi-connected

CRS(X) by functions fk(.) and g(.) within the topological space (X, τX).�

Interestingly, the bi-connectedness of two homotopy loops cannot always be guaran-
teed by the path-connected fundamental groups within multiple CRS(X). The locality of
existence of CRS(X) within the topological space is an important parameter in determining
the bi-connectedness implication derived from the path-connectedness. This observation is
presented in the next lemma.

Lemma 1. If hi ∈ [ha]α and hk ∈ [hb]β are two homotopy loops in the respective CRS(X) given
by S2

α and S2
β then hi, hk are path-connected but not necessarily bi-connected if

{
xα, xβ

}
⊂W.
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Proof. Let S2
α and S2

β be two CRS(X) such that xα 6= xβ and S2
α ∩ S2

β = φ. If [ha]α and [hb]β
are two discrete homotopy classes in the respective fundamental groups π1(X, xα) and
π1(X, xβ) in CRS(X) then there is a path fk : [0, 1]→ (W ⊂ X) such that fk(0) = xα ∈
(S2

α)
o and fk(1) = xβ ∈ (S2

β)
o in (X, τX). This preserves the condition that

{
xα, xβ

}
⊂ W

within the topological space. Recall that a CRS(X) is a dense subspace which sup-
ports continuity of fk : [0, 1]→W because (S2

α)
o 6= φ and (S2

β)
o 6= φ. Thus the fun-

damental groups π1(X, xα) and π1(X, xβ) are path-connected by continuous function
fk : [0, 1]→W within the topological space. Suppose we consider the compact (i.e.,

bounded and finite) and continuous (i.e., holomorphic) function in the topological (C, R)
space given as g : [0, 1]→ X in a generalized form (i.e., without any specific restrictions im-
posed on codomain) such that ∪

i∈{0,1}
{g(i)} ⊂ (∂S2

α\∆(π1(X, xα))) ∪ (∂S2
β\∆(π1(X, xβ))).

Hence, it can be concluded that in this case S2
α and S2

β maintain bi-connectedness if

g(0) ∈ (∂S2
α\∆(π1(X, xα))), g(1) ∈ (∂S2

β\∆(π1(X, xβ))) but in this case hi ∈ [ha]α and
hk ∈ [hb]β preserve only path-connectedness (not bi-connectedness). �

The topological separation within a space is an important phenomenon to analyse the
connectedness of a space as well as the properties of embedded algebraic and geometric
structures. It is important to note that two compact CRS(X) denoted by S2

α and S2
β are

not necessarily separable even if we simply consider that xα 6= xβ within the (C, R) space.
Thus a relatively stronger condition is required involving Riemannian covering manifolds
and the corresponding embeddings as presented in the following theorem.

Theorem 4. If RS is a smooth and compact Riemann complex-sphere with hom(RS, S2) then
there exist two three-manifold embeddings in (X, τX) given by M3 ⊂ X and N3 ⊂ X forming
the separations of S2

α and S2
β if and only if S2

α ⊂ (M3)
o and S2

β ⊂ (N3)
o respectively, where

(M3)
o ∩ (N3)

o = φ.

Proof. Let (X, τX) be a topological (C, R) space of path-connected variety. Suppose RS = C ∪ {∞}
is a Riemannian complex-sphere such that it maintains hom(RS, S2) condition. Let us con-
sider two three-manifold category chart-maps M3 = {((Ua ⊂ RS), ( fa(Ua) ⊂ X))}a∈Λ and
N3 = {((Ub ⊂ RS), ( fb(Ub) ⊂ X))}b∈Λ in (X, τX) where Λ is an index set. Note that the open
sets Ua, Ub are Hausdorff topological subspaces and fa : Ua → X, fb : Ub → X are homeomor-
phisms. First we show that such homeomorphisms exist in (X,τX) generating three-manifold em-
beddings by considering two open sets. If we consider an open disk Ua=1 = D(zm, ε > 0) ⊂ RS
centred at zm ∈ C then fa=1(Ua=1) ⊂ (A ⊂ X) where fa=1(zk ∈ Ua=1) = ( fa=1(zk) =
zn, rn ∈ R) and A ⊂ X is an open set. Moreover, the inverse preserves the condition given
as ∀xn ∈ X, f−1

a=1((zn, rn)) = f−1
a=1(zn) = zk. It directly follows that ∀Nxn ⊂ X, xn ∈ Nxn open

neighbourhood ∃D(zm, ε > 0) ⊂ RS such that f−1
a=1(xu ∈ Nxn) ∈ D(zm, ε > 0). Furthermore,

there is a coordinate identification map given as:

B = Ua=1 ∩Ua=2,
θ : fa=1(B)→ fa=2(B),
θ(xp = fa=1(zu ∈ B)) ∼= (xq = fa=2(zu ∈ B)).

(7)

Note that it maintains the condition that πR( fa=1(zu)) = πR( fa=2(zu)) because the
projections on real subspace do not directly predetermine the locality of embeddings.
Let us consider two such embedded subspaces given as E1 ⊂ X, E2 ⊂ X, E1 ∩ E2 = φ
such that ∪

a∈Λ
fa(Ua) ⊆ E1 and ∪

b∈Λ
fb(Ub) ⊆ E2 in (X, τX). As a result we can conclude

that the embedded three-manifolds maintain (∂M3 6= φ) ∩ (∂N3 6= φ) = φ condition
within the topological space if M3 and N3 are compact preserving the condition that
(M3)

o ∩ (N3)
o = φ. Recall that the topological space (X, τX) is dense everywhere. Hence,
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it can be concluded that (M3)
o 6= (N3)

o 6= φ and as a result the compact M3, N3 form the
separations of S2

α and S2
β if S2

α ⊂ (M3)
o and S2

β ⊂ (N3)
o in the topological space. �

Note that the above-mentioned separation property enforces a stronger condition
in the multidimensional topological (C, R) space; however it is in line with the Urysohn
separation concept. The embeddings of separable three-manifolds within a topological
(C, R) space invite the possibility of generation of multiple components. The main reasons
are that the topological space (X, τX) is dense and the multiple CRS(X) are also separable
compact subspaces if they can be covered by disjoint compact three-manifolds. This
observation is presented in the next corollary.

Corollary 2. If Ω =
{

S2
k ⊂ X : 1 ≤ k ≤ n; k, n ∈ Z+

}
is a finite set of separable CRS(X) in the

dense (X, τX) then Ω generates k + 1 components.

The separable embeddings of Schoenflies variety in a connected as well as dense
topological space invite a set of interesting topological properties in view of the Jordan
Curve Theorem (JCT). For example, the interrelationship between connected fundamental
groups within the multiple compact CRS(X) and the corresponding homotopy contacts are
affected by the connectedness of the topological space. The topological properties related to
the interplay between connected fundamental groups, homotopy contacts and manifold em-
beddings within a dense topological (C, R) space are presented in the following subsection.

Homotopy Contacts and Manifold Embeddings

The embeddings of three-manifolds within the dense topological space ensure that
multiple CRS(X) are separable, which affects the bi-connectedness property involving
respective homotopy contacts. The following theorem illustrates that if the embedded three-
manifolds are dense then the different projections of multiple CRS(X) into the complex
subspaces retain path-connectedness.

Theorem 5. If M3 and N3 are two disjoint covering three-manifolds in path-connected dense
(X, τX) with respective interior embeddings S2

a , S2
b then πC(S2

a) ⊂ πC(C× {ra}) and πC(S2
b) ⊂

πC(C× {rb}) are path-connected where ra 6= rb in a holomorphic subspace B ⊂ C.

Proof. Let M3 and N3 be two three-manifolds in path-connected dense (X, τX) such that
M3 ⊂ X\N3. Recall that we are considering compact three-manifolds such that X\M3 and
X\N3 are open (i.e., M3 ∩ (X\M3) = ∂M3, N3 ∩ (X\N3) = ∂N3). Suppose the correspond-
ing two CRS(X) interior embeddings are prepared by homeomorphisms fa : Ya → M3 and
fb : Yb → N3 where Ya ⊂ C× R, Yb ⊂ C× R are two respective (C, R) spaces maintaining

hom(S2
a , fa(Ya)) and hom(S2

b , fb(Yb)). Note that in this case M3 and N3 are the two disjoint
covering three-manifolds of S2

a and S2
b , respectively. If C× {ra} ⊂ X and C× {rb} ⊂ X

are two projective spaces with ra 6= rb then Aa ⊂ C× {ra} and Ab ⊂ C× {rb} are the two
respective projective subspaces such that πC(S2

a) ⊂ πC(Aa) and πC(S2
b) ⊂ πC(Ab). More-

over, the projections maintain the condition that πC(S2
a)∩ πC(S2

b) = φ and there is a B ⊂ C
such that πC(S2

a) ∪ πC(S2
b) ⊂ B. However, if (X, τX) is path-connected and dense then

there exists a continuous function p : [0, 1]→ B× R such that p(0) ∈ Aa and p(1) ∈ Ab
within the topological space and the complex subspace πC(Aa ∪ Ab) ⊂ C is also dense. This
indicates that the corresponding projection under composition (πC ◦ p) : [0, 1]→ B is con-
tinuous (i.e., the composition (πC ◦ p) is holomorphic). Note that the topologically decom-
posed subspace B ⊂ C is dense. Thus there is a continuous function (πC ◦ u) : [0, 1]→ B
extending (πC ◦ p) such that the restriction preserves (πC ◦ u)

∣∣∣(πC◦p) = (πC ◦ p) in B ⊂ C.

Hence, if we consider that (πC ◦ u)(0) ∈ πC(S2
a) ⊂ B and (πC ◦ u)(1) ∈ πC(S2

b) ⊂ B
then πC(S2

a) ⊂ πC(C × {ra}) and πC(S2
b) ⊂ πC(C × {rb}) are path-connected in dense

(X, τX). �
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It is important to note that the holomorphic condition is a requirement to maintain
the path-connectedness under respective complex projections fixed at different points on
the real subspace. Interestingly, if the homotopy contacts are present then the complex
projections retain bi-connectedness of disjoint complex holomorphic subspaces. This
observation is presented in the following lemma.

Lemma 2. If there exist the contacts of homotopy classes ∆(π1(X, xa)) and ∆(π1(X, xb)) of
respective S2

a and S2
b then πC(S2

a) ⊂ πC(C × {ra}) and πC(S2
b) ⊂ πC(C × {rb}) preserve

bi-connectedness in the holomorphic B ⊂ C under projections.

Remark 4. Interestingly, if we relax the condition of interior embedding further such that
∂M3 ∩ fa(Ya) ⊂ ∆(π1(X, xa)) and ∂N3 ∩ fb(Yb) ⊂ ∆(π1(X, xb)) then the continuous func-
tion p : [0, 1]→ B× R is a path-connection between S2

a ⊂ B × R and S2
b ⊂ B × R where

p(0) = {ca} ⊂ ∆(π1(X, xa)) and p(1) = {cb} ⊂ ∆(π1(X, xb)). Note that in this case we are
considering that the sets of contacts of homotopy classes are not empty.

The compactness of the manifold embeddings in a subspace of (X, τX) exhibits an
interesting topological property. It can be observed that a path-component can generally
be found such that the fundamental groups within the embedded subspace always remain
path-connected. This appears to be a relatively stronger property as compared to the
connectedness in the topological (C, R) space.

Theorem 6. If there exist two three-manifold embeddings in dense (X, τX) given by M3 ⊂ X
and N3 ⊂ X such that S2

a ⊂ (M3)
o, S2

b ⊂ (N3)
o and (M3)

o ∩ (N3)
o = φ then π1(X, xa) and

π1(X, xb) are path-connected if (M3 ∪ N3) ⊂ XBp, where XBp is a compact path-component.

Proof. Let the topological (C, R) space (X, τX) be dense and M3 ⊂ X, N3 ⊂ X be two
three-manifolds embedded in the space such that (M3)

o ∩ (N3)
o = φ. Suppose we consider

two CRS(X) in the topological space given by S2
a ⊂ (M3)

o and S2
b ⊂ (N3)

o contain-
ing the two fundamental groups at respective base points xa ∈ (S2

a)
o and xb ∈ (S2

b)
o

represented by π1(X, xa) and π1(X, xb). The subspace Y ⊂ X is dense in (X, τX) and
consider that Y = (D ⊂ C)× (I ⊂ R) is a compact subspace such that (∂M3 ∪ ∂N3) ⊂ Y
(i.e., we are considering Y = Y). Thus there exists a continuous function p : [0, 1]→ Y
such that p(0) ∈ ∂M3 and p(1) ∈ ∂N3. As the subspace Y ⊂ X is dense as well as
holomorphic so a continuous extension of p : [0, 1]→ Y can be found, which is given
by g : [0, 1]→ Y such that g(0) ∈ S2

a and g(1) ∈ S2
b while maintaining the restriction

that g
∣∣p = p . If we fix g(0) = xa and g(1) = xb then a set of continuous functions given

by F =
{

ge : [0, 1]→ Y, e ∈ Z+, ge
∣∣g = g

}
can be constructed in the topological subspace.

Hence, we conclude that if XBF is a path-component under F then Y ≡ XBF and as a result
π1(X, xa) and π1(X, xb) are path-connected in compact Y ⊂ X. �

Remark 5. The above theorem reveals a property in view of geometric topology. If the base
point of a fundamental group π1(X, xc) is at (zc = z0, rc ∈ R) and the base point of another
fundamental group π1(X, xd) is at (zd, rd = 0) then π1(X, xc) and π1(X, xd) are path-connected
by a continuous function p : [0, 1]→ X such that x0 ∈ p([0, 1]).

Lemma 3. If π1(X, xc) and π1(X, xd) are two local fundamental groups in a XBq then there is
q
∣∣p = p such that [p] ∗ [ha]c ∗ [p] ∼=H [hb]d.

Proof. The proof is relatively straightforward. First consider two local fundamental groups
π1(X, xc) and π1(X, xd) in XBq. Thus there is a continuous function q : [0, 1]→ XBq and
its restriction p : [0, 1]→ XBq such that q

∣∣p = p , p(0) = xc and p(1) = xd. Suppose [ec]
and [ed] are the left and right identities of the path q

∣∣p = p at the respective base points
of two corresponding fundamental groups. If we consider that ∀t ∈ [0, 1], q(t)

∣∣p ≡ p and
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q(1− t)
∣∣p ≡ p then [p] ∗ [ha]c

∼=H [ec] and [ha]c ∗ [p] ∼=H [ed]. Hence, it results in the
conclusion that [p] ∗ ([ha]c ∗ [p]) ∼=H [hb]d ∗ [ed] ∼=H [hb]d in X�q. �

The homeomorphisms between two discrete varieties of local fundamental groups
can be established once the homotopy equivalences are established. Note that it is consid-
ered that the local fundamental groups are path-connected in nature. The condition for
formation of a homeomorphism between the two path-connected discrete fundamental
groups is presented in the following corollary.

Corollary 3. If π1(X, xc) and π1(X, xd) are two local fundamental groups generated by function
sequences 〈 fa〉na=1 in S2

c and 〈 fb〉mb=1 in S2
d respectively then g : π1(X, xc)→ π1(X, xd) is a

homeomorphism if and only if n = m in the corresponding discrete homotopy classes [ha]c and [hb]d.

Proof. Let π1(X, xc) and π1(X, xd) be two local fundamental groups in the two closed
S2

c and S2
d generated by function sequences 〈 fa〉na=1 and 〈 fb〉mb=1 respectively within the

topological space. As a result the two corresponding discrete homotopy classes are formed
denoted by [ha]c and [hb]d. Suppose we consider a function g : π1(X, xc)→ π1(X, xd)
such that ∀i ∈ [1, n], ∃k ∈ [1, m] if ∀ fi ∈ [ha]c then the function maintains the condition
given by, g ∗ fi = fb ∈ [hb]d. If we restrict that g : π1(X, xc)→ π1(X, xd) is a bijection then
n = m maintaining g ∗ [ fa] = [ fb]. Hence, it can be concluded that the bijective function
g : π1(X, xc)→ π1(X, xd) is a homeomorphism. �

Interestingly there is an interrelationship between the path-connection between the
base points of two fundamental groups within the respective two dense CRS(X) and the
simple connectedness of the boundaries of corresponding CRS(X) within the topological
space. The simple connectedness of boundaries of CRS(X) enables the formation of a
path-homotopy involving the sets of homotopy contacts as illustrated in the following
theorem.

Theorem 7. If π1(X, xc) and π1(X, xd) are two fundamental groups path-connected by p : [0, 1]→ X
at the base points in dense (X, τX) then there is a path-homotopy equivalence g([0, 1]) ∼=H p([0, 1]) if ∂S2

c
and ∂S2

d are simply connected such that g([0, 1]) ∩ ∆(π1(X, xc)) 6= g([0, 1]) ∩ ∆(π1(X, xd)) 6= φ.

Proof. Let π1(X, xc) and π1(X, xd) be two path-connected fundamental groups by a con-
tinuous function p : [0, 1]→ X such that p(0) = xc and p(1) = xd within the dense topo-
logical space (X, τX). Let us consider that p([0, 1]) ∩ (∆(π1(X, xc)) ∪ ∆(π1(X, xd))) = φ
preserving the generality of p : [0, 1]→ X . Suppose we consider that ∂S2

c and ∂S2
d are

simply connected surfaces indicating that ∀xa ∈ ∂S2
c , ∀xb ∈ ∂S2

d there exist respective
nullhomotopies Ha : [0, 1]2 → {xa} and Hb : [0, 1]2 → {xb} . Let us further consider that
{xac} ⊂ ∆(π1(X, xc)) and {xbd} ⊂ ∆(π1(X, xd)) within the topological space. Thus one
can construct a compact continuous function g : [0, 1]→ X such that g(0) = xc, g(1) = xd
and ∃ta ∈ (0, 1), ∃tb ∈ (0, 1) maintaining g(ta) = xac and g(tb) = xbd. Note that in
this case ta 6= tb and ∆(π1(X, xc)) ∩ ∆(π1(X, xd)) = φ within (X, τX). Moreover, as
S2

c and S2
d are bi-connected so there is a continuous function u : [0, 1]→ X such that

u(0) = xac, u(1) = xbd and g|u = u . Hence, we conclude that g : [0, 1]→ X is a path-
connection between π1(X, xc) and π1(X, xd) at base points preserving path-homotopy
equivalence g([0, 1]) ∼=H p([0, 1]). �

Remark 6. The above theorem leads to the observation further that the following algebraic properties
are maintained by the respective path-homotopies.

[ fa ∈ [ha]c] ∗ [p] ∗ [g] = [ec],
[ fb ∈ [hb]d] ∗ [g] ∗ [p] = [ed],
[ec] ∗ [p] = [ed],
[ed] ∗ [g] = [ec].

(8)
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Moreover, the simple connectedness property allows inward retraction of boundary of CRS(X)
in the dense topological (C, R) space under projection. It means that ∀A ⊂ ∂S2

c it is possible to
find an inward continuous retraction function ηE : πC(A)→ (B ⊂ πC(A)) , where πC(A) ⊂
πC(C× {r ∈ R}). Interestingly, the retraction is independent of the influence of real subspace and
it can be fixed at any arbitrary point in the real subspace.

5. Conclusions

A q-quasinormed topological space can equally admit a corresponding topology gener-
ated by the respective p-norm function. The resulting structures provide a set of interesting
topological properties in view of homotopy theory and fundamental groups. The pro-
posed constructions of 2-quasinormed variety of locally dense p-normed 2-spheres within
a non-uniformly scalable quasinormed topological (C, R) space enable the formulation of
path-connected fundamental groups interior to it. The space is fibered and, in view of Baire
category the topological space is dense, which supports path-connection as well as the
concept of bi-connection between multiple p-normed 2-spheres as long as the continuous
functions in the respective convex subspace are holomorphic in nature. The 2-quasinormed
varieties of p-normed 2-spheres are equivalent to the category of connected three-manifolds
with simply connected boundaries in terms of nullhomotopy. The p-normed 2-spheres
admit Urysohn separation of the closed subspaces. Moreover, the separations can also
be formed by proper embeddings of respective covering three-manifolds within the topo-
logical (C, R) space. The homotopically simple connected boundaries of 2-quasinormed
varieties of p-normed 2-spheres support a finite and countable set of homotopy contacts
generated by a set of discrete-loop local fundamental groups. Interestingly, a compact
fibre in the space can prepare a homotopy loop in the local fundamental group within the
fibered topological (C, R) space. It is shown that the path-connected homotopy loops are
not guaranteed to be bi-connected as an implication. Moreover, the topological projections
of 2-quasinormed varieties of p-normed 2-spheres on the disjoint holomorphic complex
subspaces successfully retain path-connection irrespective of the projective points on real
subspace. The algebraic topological properties, the properties of compactness of holomor-
phic convex path-components and the homeomorphism between local fundamental groups
are analysed in detail. The concepts and topological constructions proposed in this paper
may have potential applications in the theory of topological manifolds and the structural
(geometric) aspects of cosmology.
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