
symmetryS S

Article

Solution of Some Impulsive Differential Equations via Coupled
Fixed Point

Ahmed Boudaoui 1 , Khadidja Mebarki 1 , Wasfi Shatanawi 2,3,4,* and Kamaleldin Abodayeh 2,*

����������
�������

Citation: Boudaoui, A.; Mebarki, K.;

Shatanawi, W.; Abodayeh, K.

Solution of Some Impulsive

Differential Equations via Coupled

Fixed Point. Symmetry 2021, 13, 501.

https://doi.org/10.3390/sym13030501

Academic Editor: Lorentz JäNtschi

Received: 6 February 2021

Accepted: 9 March 2021

Published: 19 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Laboratory of Mathematics Modeling and Applications, Department of Mathematics and Computer Science,
University of Adrar, National Road No. 06, Adrar 01000, Algeria; ahmedboudaoui@univ-adrar.dz (A.B.);
Kha.mebarki@univ-adrar.dz (K.M.)

2 Department of General Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
3 Department of Medical Research, China Medical University Hospital, China Medical University,

Taichung 40402, Taiwan
4 Department of Mathematics, Hashemite University, Zarqa 13133, Jordan
* Correspondence: wshatanawi@psu.edu.sa (W.S.); kamal@psu.edu.sa (K.A.)

Abstract: In this article, we employ the notion of coupled fixed points on a complete b-metric space
endowed with a graph to give sufficient conditions to guarantee a solution of system of differential
equations with impulse effects. We derive recisely some new coupled fixed point theorems under
some conditions and then apply our results to achieve our goal.
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1. Introduction

The fixed point theory is one of the best tools in applied sciences that can be used to
determine an existence solution for such an integral equation or differential equation.

In 2006, Bhaskar and Lakshmikantham [1] applied coupled fixed points to provide
sufficient conditions to solve some differential equations by introducing and proving
many exciting results for coupled fixed points. Many of the results were obtained in this
motivated subject; for example, see [2–11].

In recent years, some authors have employed graphs to obtain new types of fixed
point theory. Jachymski’s paper [12] is one of the best articles in fixed point endowed with
graphs. In this direction, see [13–22].

Alfuraidan and Khamsi [23] and Chifu and Petrusel [24] have very recently employed
a directed graph to gain some new coupled fixed point results.

The connotation of b-metric spaces was started by Czerwik [25] as a generalization of
metric spaces. In the 1960’s, Milman and Myshkis [26,27] initiated and studied differential
equations with impulses. Mathematically, this type of equations is used to describe an
evolution of a real process with a short-term perturbation; it is sometimes convenient to
neglect the duration of the perturbation and consider these perturbations to be “instanta-
neous.” For such an idealization, it becomes necessary to study dynamical systems with
discontinuous trajectories. As a consequence, impulsive differential equations have been
developed in modeling impulsive problems in physics, population dynamics, ecology,
biotechnology, industrial robotics, pharmacokinetics, optimal control, and so forth.

In our paper, we apply the directed graphs with the connotation of b-metric spaces to
derive new coupled fixed point results. Additionally, we employ our results to assure the
solutions of such impulsive differential equations are exist under certain conditions. We
start with the notion of b-metric space.

Definition 1. [25] Given s ≥ 1. On a set M, define a map d : M×M→ R+, such that:

(i) d(e, m) = 0 ⇐⇒ e = m,
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(ii) d(e, m) = d(m, e), and
(iii) d(e, l) ≤ s[d(e, m) + d(m, l)]

hold ∀ e, m, l ∈ M.
Subsequently, we refer the pair (M, d) to a b-metric space.

On M, let ∆ = {(s, s) : s ∈ M}. On the directed graph G = (V(G), E(G)), assume that
all loops are in E(G) and G has no parallel edges.

A finite sequence {tj}r
j=0 in V(G) with t0 = t, tr = u and (tj−1, tj) ∈ E(G), for all

j = 1, 2, . . . , r, is called a path from the vertex t to the vertex u.
For the vertex u, we put

[u]G = {t ∈ M : ∃ a path from u to t}.

If each two vertices of G can be connected by a path, then G is called connected; that is,
V(G) = [u]G for all u ∈ M.

By reversing the direction of each edge of the directed graph G, we obtained a directed
graph, which is denoted by G−1, with V(G−1) := V(G).

By ignoring the directions of the edges of the directed graph G, we obtained the
undirected graph G̃ with V(G̃) := V(G) and

E(G̃) := E(G−1) ∪ E(G).

Throughout this paper, (M, d) stands to a b-metric space that is endowed with directed
graph G, such that the set V(G) = M and ∆ ⊆ E(G). Further, we endow the product space
M×M by another graph that is also denoted by G, such that

((t, j), (v, m)) ∈ E(G)⇔ (t, v) ∈ E(G) and (m, j) ∈ E(G),

for any (t, j), (v, m) ∈ M×M.

Definition 2. Ref. [1] The pair (e, l) ∈ M×M is called a coupled fixed point of
T : M×M→ M if

T(e, l) = e and T(l, e) = l.

Definition 3. Ref. [23] Endowed the complete metric space (M, d) with the direct graph G. The
mapping T : M×M→ M possess the mixed G-monotone property if

(t1, t2) ∈ E(G)⇒ (T(t1, l), T(t2, l)) ∈ E(G),

for all t1, t2, l ∈ M, and

(m1, m2) ∈ E(G)⇒ (T(l, m2), T(t, m1)) ∈ E(G),

for all l, m1, m2 ∈ M.

Seshagiri Rao and Kalyani [8] gave the following result:

Theorem 1. Ref. [8] Endowed the set M with partial order �. On (M, d,�), let the continuous
map T : M×M→ M with a strict mixed monotone property on M satisfy:

d(T(l, w), T(m, v)) ≤ α
d(l, T(l, w))[1 + d(m, T(m, v))]

1 + d(l, m)

+ β[d(l, T(l, w)) + d(m, T(m, v))] + γd(l, m),

where α, β, γ ∈ [0, 1), such that 1 > α + 2β + γ. If there exist two points t0, w0 ∈ M with
t0 � T(t0, w0) and T(w0, t0) � w0, then T possess a coupled fixed point (t, w) ∈ M×M.
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2. Main Result

Let (M, d, G) stands to a complete b-metric space endowed with directed graph G and
T : M×M→ M possess the mixed G-monotone property.

Theorem 2. On (M, d, G), suppose that T is continuous. Assume that ∃ α, β, γ ∈ [0, 1) with

∞

∑
i=0

si
(

β + γ

1− α− β

)i
< ∞

such that

d(T(l, w), T(m, v)) ≤ α
d(l, T(l, w))[1 + d(m, T(m, v))]

1 + d(l, m)

+ β[d(l, T(l, w)) + d(m, T(m, v))] + γd(l, m),

holds ∀ (l, w), (m, v) ∈ M × M with ((l, w), (m, v)) ∈ E(G). If ∃ l0, w0 ∈ M such that
((l0, w0), (T(l0, w0), T(w0, l0))) ∈ E(G), then T possess a coupled fixed point (l∗, w∗) ∈ M×M.

Proof. Set l1 = T(l0, w0) and w1 = T(w0, l0). The assumption implies that

((l0, w0), (l1, w1)) ∈ E(G).

Hence

d(l2, l1) = d(T(l1, w1), T(l0, w0)) ≤ α
d(l1, T(l1, w1))[1 + d(l0, T(l0, w0))]

1 + d(l1, l0)
+ β[d(l0, T(l0, w0)) + d(l1, T(l1, w1))] + γd(l0, l1).

So,

d(l2, l1) ≤
β + γ

1− α− β
d(l1, l0).

Similarly, because ((w1, l1), (w0, l0)) ∈ E(G), then

d(w2, w1) ≤
β + γ

1− α− β
d(w1, w0).

Further, for n = 1, 2, ..., we let

ln+1 = T(ln, wn), and wn+1 = T(wn, ln).

Referring to the fact that T possess the mixed G-monotone property on M, we have

((ln, wn), (ln+1, wn+1)) ∈ E(G) and ((wn+1, ln+1), (wn, ln)) ∈ E(G).

Afterwards,

d(ln+1, ln) ≤
β + γ

1− α− β
d(ln, ln−1),

and
d(wn+1, wn) ≤

β + γ

1− α− β
d(wn, wn−1).

Therefore, for n ∈ N we get

d(ln+1, ln) ≤
(

β + γ

1− α− β

)n
d(l1, l0),
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and

d(wn+1, wn) ≤
(

β + γ

1− α− β

)n
d(w1, w0).

For n ∈ N and p ∈ N∗, we gain

d(ln, ln+p) ≤ sd(ln, ln+1) + s2d(ln+1, ln+2) + · · ·+ snd(ln+p−1, ln+p)

=
1

sn−1

n+p−1

∑
i=n

sid(li, li+1) ≤
1

sn−1

n+p−1

∑
i=n

si
(

β + γ

1− α− β

)i
d(l0, l1).

By assumption, we get lim
n→∞

d(ln, ln+p) = 0.

By the same process, we obtain

d(wn, wn+p) ≤
1

sn−1

n+p−1

∑
i=n

si
(

β + γ

1− α− β

)i
d(w0, w1).

Subsequently, lim
n→∞

d(wn, wn+p) = 0.

This implies that {ln}∞
n=1 and {wn}∞

n=1 are Cauchy. The completeness of M implies
that ∃l∗, w∗ ∈ M with

lim
n→∞

ln = l∗ and lim
n→∞

wn = w∗.

The continuity of T implies that

l∗ = lim
n→∞

ln = lim
n→∞

T(ln−1, wn−1) = T
(

lim
n→∞

ln−1, lim
n→∞

wn−1

)
= T(l∗, w∗),

w∗ = lim
n→∞

wn = lim
n→∞

T(wn−1, ln−1) = T
(

lim
n→∞

wn−1, lim
n→∞

ln−1

)
= T(w∗, l∗),

i.e., T possess (l∗, w∗) as a couple fixed point.

The continuity of T in Theorem 2 can be discarded by adding some new conditions.
Now, assume that (M, d, G) possess property (∗); that is,

(i) for any {ln}n∈N in M such that (ln, ln+1) ∈ E(G) and lim
n→∞

ln = l, then

(ln, l) ∈ E(G),
and

(ii) for any {ln}n∈N in M, such that (ln+1, ln) ∈ E(G) and lim
n→∞

ln = l, then

(l, ln) ∈ E(G).

Theorem 3. Endowed (M, d, G) with the property (∗). Suppose ∃ α, β, γ ∈ [0, 1) with

∞

∑
i=0

si
(

β + γ

1− α− β

)i
< ∞

such that

d(T(l, w), T(m, v)) ≤ α
d(l, T(l, w))[1 + d(m, T(m, v))]

1 + d(l, m)

+ β[d(l, T(l, w)) + d(m, T(m, v))] + γd(l, m),

holds ∀ (l, w), (m, v) ∈ M × M with ((l, w), (m, v)) ∈ E(G). If ∃ l0, w0 ∈ M such that
((l0, w0), (T(l0, w0), T(w0, l0))) ∈ E(G), then T possess a coupled fixed point (l∗, w∗) ∈ M×M.
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Proof. By referring to the proof of Theorem 2, we only need to show that l∗ = T(l∗, w∗)
and w∗ = T(w∗, l∗).

Accordingly, lim
n→∞

ln+1 = lim
n→∞

T(ln, wn) = l∗, lim
n→∞

wn+1 = lim
n→∞

T(wn, ln) = w∗ and

(ln, ln+1) ∈ E(G) and (wn+1, wn) ∈ E(G), the property (∗) implies that

(ln, l∗) ∈ E(G) and (w∗, wn) ∈ E(G).

Hence,
((ln, wn), (l∗, w∗)) ∈ E(G).

Thus, we get

d(T(ln, wn), T(l∗, w∗) ≤ α
d(ln, T(ln, wn))[1 + d(l∗, T(l∗, w∗))]

1 + d(ln, l∗)
+ β[d(ln, T(ln, wn)) + d(l∗, T(l∗, w∗))] + γd(ln, l∗)

= α
d(ln, ln+1)[1 + d(l∗, T(l∗, w∗))]

1 + d(ln, l∗)
+ β[d(ln, ln+1) + d(l∗, T(l∗, w∗))] + γd(ln, l∗).

By the same way, we have

d(T(wn, ln), T(w∗, l∗)) ≤ α
d(wn, wn+1)[1 + d(w∗, T(w∗, l∗))]

1 + d(wn, w∗)
+ β[d(wn, wn+1) + d(w∗, T(w∗, l∗))] + γd(wn, w∗).

Letting n→ ∞, we arrive

lim
n→∞

d(T(ln, wn), T(l∗, w∗)) = 0 and lim
n→∞

d(T(wn, ln), T(w∗, l∗)) = 0.

Therefore,
lim

n→∞
ln+1 = T(l∗, w∗) and lim

n→∞
wn+1 = T(w∗, l∗).

Accordingly, l∗ = T(l∗, w∗) and w∗ = T(w∗, l∗), i.e., T possess (l∗, w∗) as a couple fixed
point.

Remark 1. Suppose that T satisfies the hypotheses of Theorem 2 (Theorem 3). If the coupled fixed
point (l∗, w∗) of T satisfies ((l∗, w∗), (l0, w0)) ∈ E(G), then (l∗, w∗) is unique. Indeed, if we
suppose that there is another coupled fixed point (u, v). By referring to the proof of Theorem 2
or Theorem 3, we construct two sequences {ln}∞

n=1 and {wn}∞
n=1 such ln+1 = T(ln, wn) and

wn+1 = T(wn, ln) for n ∈ N with lim
n→∞

ln = l∗ and lim
n→∞

wn = w∗. Because T possess the mixed

G-monotone, then ((u, v), (ln, wn)) ∈ E(G). Therefore,

d(u, ln+1) = d(T(u, v), T(ln, wn))

≤ α
d(u, T(u, v))[1 + d(ln, ln+1)]

1 + d(u, ln)
+ β[d(u, T(u, v)) + d(ln, ln+1)]

+ γd(u, ln) = βd(ln, ln+1) + γd(u, ln),

and

d(v, wn+1) = d(T(v, u), T(wn, ln))

≤ α
d(v, T(v, u))[1 + d(wn, wn+1)]

1 + d(v, wn)
+ β[d(v, T(v, u)) + d(wn, wn+1)]

+ γd(v, wn) = βd(wn, wn+1) + γd(v, wn).
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On letting n→ ∞, we arrive to

lim
n→∞

ln+1 = u and lim
n→∞

wn+1 = v.

Thus,
l∗ = u and w∗ = v.

Theorem 4. Suppose that T satisfies the hypothesis of Theorem 2 (Theorem 3). If (l∗, w∗) ∈ E(G),
then l∗ = w∗.

Proof. Since (l∗, w∗) ∈ E(G), we have ((l∗, w∗), (w∗, l∗)) ∈ E(G). Thus,

d(l∗, w∗) = d(T(l∗, w∗), T(w∗, l∗)) ≤ α
d(l∗, T(l∗, w∗))[1 + d(w∗, T(w∗, l∗))]

1 + d(l∗, w∗)
+ β[d(l∗, T(l∗, w∗)) + d(w∗, T(w∗, l∗))] + γd(l∗, w∗) = 0,

and hence l∗ = w∗.

Referring to the fact that every metric space is a b-metric, we derive the next results:

Corollary 1. Endowed the complete metric space (M, d) with the direct graph G. Suppose that the
continuous mapping T : M×M→ M possesses the mixed G-monotone property on M. Assume
∃ α, β, γ ∈ [0, 1) with 1 > α + β + γ, such that

d(T(l, w), T(m, v)) ≤ α
d(l, T(l, w))[1 + d(m, T(m, v))]

1 + d(l, m)

+ β[d(l, T(l, w)) + d(m, T(m, v))] + γd(l, m),

holds ∀ (l, w), (m, v) ∈ M×M with ((l, w), (m, v)) ∈ E(G). If there exists l0, w0 ∈ M such that
((l0, w0), (T(l0, w0), T(w0, l0))) ∈ E(G), then T possess a coupled fixed point (l∗, w∗) ∈ M×M.

Corollary 2. Endowed the complete metric space (M, d) with the direct graph G. Suppose that
(X, d, G) possess property(∗). Suppose that T : M×M → M satisfies the mixed G-monotone
property on M. Additionally, assume ∃ α, β, γ ∈ [0, 1) with 1 > α + β + γ1, such that

d(T(l, w), T(m, v)) ≤ α
d(l, T(l, w))[1 + d(m, T(m, v))]

1 + d(l, m)

+ β[d(l, T(l, w)) + d(m, T(m, v))] + γd(l, m),

holds ∀ (l, w), (m, v) ∈ M × M with ((l, w), (m, v)) ∈ E(G). If ∃ l0, w0 ∈ M such that
((l0, w0), (T(l0, w0), T(w0, l0))) ∈ E(G), then T possess a coupled fixed point (l∗, w∗) ∈ M×M.

3. Application

The development of the theory of impulsive differential equations gives an opportu-
nity for some real-world processes and phenomena to be more accurately modeled; see
the monographs [28–31]. Coupled fixed point theory plays a basic role in applications
of many branches of mathematics, especially in differential equations, stochastics, and
statistics [32,33]. For this reason, we will use our results to prove the existence of solutions
for differential equations with impulse effects.
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Let consider the following system of differential equations with impulse effects:

w′(τ) = f (τ, w(τ), z(τ)), z′(τ) = f (τ, z(τ), w(τ)), (1)

w(τ+)− w(τ−) = I(w(τ), z(τ)), z(τ+)− z(τ−) = I(z(τ), w(τ)), (2)

w(0) = w0, z(0) = z0, (3)

where 0 < τ < 1, J := [0, 1], f : J × R × R → R, I ∈ C(R × R,R). The notations
w(τ+) = lim

h→0+
w(τ + h) and w(τ−) = lim

h→0+
w(τ − h).

In order to define a solutions for Problems (1)–(3), consider the space of piecewise
continuous functions:

PC([0, 1],R) ={z : [0, 1]→ R, z ∈ C(J\{τ},R); such that z(τ−) and z(τ+)

exist and satisfy z(τ−) = z(τ)}.

Define d on PC([0, 1]) by

d(w, z) = (sup
t∈J
|w(t)− z(t)|)2.

Assumption 1. Assume the following assertions:

1. f : J ×R×R→ R is continuous.
2. ∀ w, z, u, v ∈ PC([0, 1]), with w ≤ u and z ≤ y, we have

f (t, w(t), z(t)) ≤ f (t, u(t), y(t)) and I(w(t), z(t)) ≤ I(u(t), v(t)) ∀ t ∈ [0, 1];

3. ∃ α, β, γ ∈ [0, 1) with
∞
∑

i=0
2i
(

β+γ
1−α−β

)i
< ∞ such that

| f (t, w(t), z(t))− f (t, u(t), v(t)|2 ≤ α

2
|w(t)− f (t, w(t), z(t))|2[1 + |u(t)− f (t, u(t), v(t))|2]

1 + |w(t)− u(t)|2

+
β

2

[
|w(t)− f (t, w(t), z(t))|2 + |u(t)− f (t, u(t), v(t))|2

]
,

and
|I(w(t), z(t))− I(u(t), v(t))|2 ≤ γ

2

(
|w(t)− u(t)|2

)
and for each t ∈ J, w, z, u, v ∈ PC([0, 1]), w ≤ u and v ≤ z.

We shall obtain the unique solution of Equations (1)–(3). This problem is equivalent
to the integral equations:{

w(t) = w0 +
∫ t

0 f (s, w(s), z(s))ds + I(w(τ), z(τ)),
z(t) = z0 +

∫ t
0 f (s, z(s), w(s))ds + I(z(τ), w(τ)),

t ∈ J. (4)

Consider, on PC([0; 1],R)× PC([0; 1],R), the partial order relation:

(w1, z1) ≤ (w2, z2)⇔ w1(t) ≤ w2(t) and z1(t) ≥ z2(t), t ∈ J,

and define for t ∈ J,

T(w, z)(t) = w0 +
∫ t

0
f (s, w(s), z(s))ds + I(w(τ), z(τ)), t ∈ J.
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Note that, if (w, z) ∈ PC([0; 1],R)× PC([0; 1],R) is a couple fixed point of T, then
we have

w(t) = T(w, z)(t) and z(t) = T(z, w)(t),

for all t ∈ J, and (w, z) is a solution of (4).

Theorem 5. Assume that the Assumption 1 holds. Assume that there exists (u0, v0) ∈ PC([0; 1],R)×
PC([0; 1],R) such that

u0(t) ≤ u0(0) +
∫ t

0
f (s, u0(s), v0(s))ds + I(u(τ), v(τ))

and

v0(t) ≥ v0(0) +
∫ t

0
f (s, v0(s), u0(s))ds + I(v(τ), u(τ)), t ∈ [0, 1].

Subsequently, the system (1)–(3) possess a solution.

Proof. We prove that the integral system (4) has a solution by showing that the operator
T : M×M→ M has a coupled fixed point in M×M. To do this, we have to show that T
satisfies the conditions of Theorem 2 or Theorem 3.

Consider the graph G with V(G) = PC([0; 1],R)× PC([0; 1],R), and

E(G) = {(w, z) ∈ PC([0; 1],R)× PC([0; 1],R), w ≤ z},

and we endow the product space PC([0; 1],R)× PC([0; 1],R) by another graph also de-
noted by G, such that

((w, z), (u, v)) ∈ E(G)⇔ (w, u) ∈ E(G) and (v, z) ∈ E(G),

for any (w, z), (u, v) ∈ PC([0; 1],R)× PC([0; 1],R).
By using Assumption 1, we obtain for all w, z, w1, w2, z1, z2 ∈ PC([0; 1],R),
if (w1, w2) ∈ E(G), then

T(w1, z)(t) = w0 +
∫ t

0
f (s, w1(s), z(s))ds + I(w1(τ), z(τ))

≤ w0 +
∫ t

0
f (s, w2(s), z(s))ds + I(w2(τ), z(τ)) = T(w2, z)(t).

Thus (T(w1, z), T(w2, z)) ∈ E(G).
Also, if (z1, z2) ∈ E(G) we have

T(w, z2)(t) = w0 +
∫ t

0
f (s, w(s), z2(s))ds + I(w(τ), z2(τ))

≤ w0 +
∫ t

0
f (s, w(s), z1(s))ds + I(w(τ), z1(τ)) = T(w, z1)(t).

Subsequently, (T(w, z2), T(w, z1)) ∈ E(G).
Thus, T(w, z) possesses the mixed G-monotone property.

Now, let us consider (w, z), (u, v) ∈ PC([0; 1],R)× PC([0; 1],R) such that ((w, z), (u, v)) ∈
E(G), then
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|T(w, z)(t)− T(u, v)(t)|2 = |
∫ t

0
f (t, w(s), z(s))ds + I(w(τ), z(τ))

−
∫ t

0
f (t, u(s), v(s))ds− I(u(τ), v(τ))|2

≤ 2
∫ t

0
| f (t, w(s), y(s))− f (t, u(s), v(s))|2ds

+ 2|I(w(τ), z(τ))− I(u(τ), v(τ))|2

≤
∫ t

0
α
|w(s)− f (s, w(s), z(s))|2[1 + |u(s)− f (s, u(s), v(s))|2]

1 + |w(s)− u(s)|2

+ β[|w(s)− f (s, w(s), z(s))|2 + |u(s)− f (s, u(s), v(s))|2]ds

+ γ|x(τ)− u(τ)|2.

Therefore,

d(T(w, z), T(u, v)) ≤ α
d(w, T(w, z))[1 + d(u, T(u, v))]

1 + d(w, u)
+ β[d(w, T(w, z)) + d(u, T(u, v))] + γd(w, u).

Now, by hypotheses we can conclude that

((u0, v0), (T(u0, v0), T(v0, u0))) ∈ E(G).

Because T is a continuous mapping and (X, d, G) possesses the property (∗), which
shows that all hypotheses of Theorem 2 and Theorem 3 are satisfied. Thus, T(x, y) has a
coupled fixed point in PC([0; 1],R)× PC([0; 1],R).

4. Conclusions

In this work, we employed the notion of coupled fixed point to formulate and prove
many fixed point theorems for mapping satisfying certain conditions over a complete
b-metric space endowed with a directed graph. On a complete b−metric space endowed
with a directed graph (M, d, G) we precisely proved the mapping T : M×M → M has
a coupled fixed point under some conditions on M and T. Our results have been ap-
plied to provide sufficient conditions to guarantee an existence solution of such impulse
differential equations.
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