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Abstract: A series of new bidentate N,S-ligands—aziridines containing a para-substituted phenyl
sulfide group—was synthesized and evaluated in the Pd-catalyzed Tsuji–Trost reaction and addition
of diethylzinc and phenylethynylzinc to benzaldehyde. A high enantiomeric ratio for the addition
reactions (up to 94.2:5.8) was obtained using the aziridine ligand bearing a p-nitro phenyl sulfide
group. Collected results reveal a specific electronic effect that, by the presence of particular electron-
donating or electron-withdrawing groups in the PhS- moiety, influences the σ-donor–metal binding
and the enantioselectivity of the catalyzed reactions.

Keywords: aziridine; N,S-ligands; asymmetric synthesis; diethylzinc addition; phenylethynylzinc
addition; Tsuji–Trost reaction

1. Introduction

Aziridines have established their position in modern organic synthesis thanks to a for-
tunate combination of properties—reactivity, stability and multidirectional transformability
with high atom economy [1]. These small heterocycles can be variously functionalized
on the nitrogen or both carbon atoms and serve as stable intermediates, which, through a
facile ring opening with various nucleophiles, can efficiently introduce a specific puzzle to
a more complex molecule [2,3]. Their utility is even greater when chirality is considered.
In a fused three-membered ring system, the chiral center is always adjacent to the nitrogen
donor, constituting an alluring ligand for asymmetric synthesis [4,5]. Till now, enantiopure
aziridines were broadly evaluated as reagents and catalysts in asymmetric reactions [6].
As heterobidentate ligands, with incorporated heteroatoms such as oxygen, in the form of
alcohols, ethers or phenols; phosphorus, as phosphines; and sulfur, as sulfides and disul-
fides, they can efficiently improve the stereoselectivity of the transition metal-catalyzed
carbon–carbon bond formation in various types of reactions, including alkenylzinc addition
to aldehydes (compounds 1 [7], 2 [8], 3 [9,10], 6 [11]) and to enones (derivative 4 [12]),
Friedel–Crafts alkylation of indoles (phosphine 5 [13]) and Pd-catalyzed allylic alkylation
(N,S-ligands 7 [14] and 8 [15])—examples are presented in Figure 1.

Divergent electronic effects of heteroatoms can improve the selectivity of the reaction
due to the different bindings of the two donors to the central metal atom. N(sp3),S-bidentate
aziridine-based ligands, presented in Figure 1, are known to enantioselectively promote
metal-catalyzed asymmetric reactions; however, the scope of investigations is limited to
the work of Braga [11,14] and Song [15]. The aim of this work was to obtain a series of new
aziridine sulfide ligands and evaluate which specific feature—steric or electronic effect—
influences the enantioselectivity of the carbon–carbon bond formation by two common
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protocols: synthesis of secondary alcohols through diethylzinc and phenylethynylzinc
addition to aldehydes and palladium-catalyzed asymmetric allylic alkylation. The obtained
compounds will combine (a) a bulky trityl moiety attached to the aziridine nitrogen, pro-
viding a steric hindrance that may direct the side of metal–donor coordination, and (b) an
electron withdrawing (EWG) or electron donating (EDG) group, at the phenylsulfanyl sub-
stituent, decreasing or increasing the electron density on the sulfur atom, thus modulating
the strength of the S–[M] binding (Figure 2).
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Figure 2. Construction of the designed ligands.

2. Results and Discussion

The first step of the research involved the synthesis of N-trityl aziridine tosylate 13
that was performed by a multistep procedure presented by Schneider et al. [16] starting
from L-serine methyl ester 9. The substrate 9 was transformed to the corresponding N-trityl
derivative 10 which was cyclized to aziridine 11 by treatment with mesyl chloride. Further
reduction with lithium aluminum hydride yielded the aziridine alcohol 12, next converted
to the tosylate 13. To obtain the final sulfanylaziridines, further nucleophilic substitution of
the tosyl group was planned to be performed through the formation of a thiophenolate
PhS−M+. However, at elevated temperatures, cleavage of the aziridine ring was observed,
furnishing the allylic amine 14. Optimization involved modification of the temperature and
solvent and estimation of the influence of base exchange. Obtained data are summarized
in Table 1.
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Table 1. Synthesis of sulfanylaziridines—reaction optimization.
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LiOH THF/EtOH (3:1), 10% H2O 70 ◦C 70 ◦C 24 h 15 (79%)

The highest yield of the final aziridine was obtained when 10% of water was added to
the solvent. The increased solubility of the used base—lithium hydroxide—elevated the
rate of the product formation. The procedure was efficient for all variously p-substituted
ligands (yields: 64–80%) (Figure 3).
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Next, the catalytic properties of synthesized sulfanylaziridines were evaluated. The
Pd-catalyzed Tsuji–Trost reactions between racemic 1,3-diphenyl-2-propenyl acetate and
dimethyl malonate were carried out on a 0.2 mmol scale with 10 mol% of chiral ligands
15–19. The selected reaction conditions were based on our previous research. We observed
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that increasing the amount of catalyst does not improve the yield and enantiomeric excess
of the process. Alternatively, lowering the quantity of the catalyst decreases the overall
enantioselectivity [17–19]. Results are presented in Table 2.

Table 2. Results of palladium-catalyzed Tsuji–Trost reaction with chiral ligands 15–19 a.
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Ligand Yield (%) R/S b

15 67 69:31
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17 87 63:37

18 72 57:43

19 70 52:48
a The reactions were carried out on a 0.2 mmol scale, 10 mol% of ligand L*, 2.5 mol% of [Pd(η3-C3H5)Cl]2,
dimethyl malonate (3 equiv), BSA (3 equiv) and AcOK (3 mol%) in acetonitrile (1.5 mL) at 25 ◦C for 3–4 days;
b enantiomeric excess was determined by HPLC.

The highest enantiomeric excess was observed for the unsubstituted aziridine 15.
The overall enantioselectivity of all reactions was low, indicating that the N-trityl group
prevents an efficient Het–[M] binding. This demonstrates that when the nitrogen atom
is too sterically hindered, weak N–Pd coordination decreases the power of the nitrogen
atom as the π-acceptor. In coordination with the weak S–Pd binding, the selectivity of the
nucleophilic attack towards the carbon atoms of the formed palladium–allyl complex is
only moderate.

Further activity evaluation involved the synthesis of secondary alcohols by the addi-
tion of diethylzinc to benzaldehyde. Basing on known literature reports [20–22], we used
10 mol% of catalyst as the most common reaction condition. Results are collected in Table 3.

Table 3. Results of diethylzinc addition to benzaldehyde promoted by ligands 15–19.
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Ligand Enantiomer Ratio (a) Conversion [%] (b)

15 48.5:51.5 98

16 48.6:51.4 52

17 52.0:48.0 14

18 49.7:50.3 26

19 94.2:5.8 90
(a) The ratio of enantiomers was determined by GC analyses on a chiral column, Supelco beta-DEX 325™ (Merck,
Bellefonte, PA, USA), 30 m × 0.25 mm. (b) Determined by GC analyses on Phenomenex ZB-WAX column,
15 m × 0.53 mm.

For unsubstituted aziridine 15 and compounds with additional electron-donating
groups 16–19, the reaction proceeded with low enantiomeric excess. However, in the case of
4-nitrophenyl derivative 19, the final secondary alcohol was obtained with a high excellent
enantiomeric ratio. We can assume that when the binding power of the sulfur atom is
diminished, through the electron-withdrawing effect of the p-NO2 group, the increased
affinity of the N(sp3) atom to the metal center significantly increases the formation of
one enantiomer.
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The catalytic properties of compound 19 were further tested on several benzaldehydes.
In all cases, the result was repetitively selective, confirming the promising catalytic activity
of ligand 19 (Table 4).

Table 4. Results of diethylzinc addition to substituted benzaldehydes promoted by ligand 19.
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Finally, the catalytic activity of all ligands 15–19 was tested in the addition of
phenylethynylzinc to benzaldehyde (Table 5).

Table 5. Results of phenylethynylzinc addition to benzaldehyde promoted by ligands 15–19.
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15 51.0:49.0 98 

16 51.0:49.0 84 
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result was also observed for the p-nitrosubstituted aziridine 19. 

3. Materials and Methods 
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Melting points were measured with a Büchi Tottoli SPM-20 heating unit (Büchi La-
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or solvent resonance (CDCl3 δ7.26, CD3OD δ3.31). Multiplicities were given as: s (singlet), 

Ligand Enantiomer Ratio (b) Yield (%) (a)

15 51.0:49.0 98

16 51.0:49.0 84

17 50.0:50.0 44

18 52.0:48.0 96

19 57.0:43.0 86
(a) Isolated yield. (b) The ratio of enantiomers was determined by HPLC analyses on a chiral column, Daicel-
Chiralcel OJ, 250 × 4.6 mm.

The resultant enantiomeric ratio was moderate for all derivatives; however, the best
result was also observed for the p-nitrosubstituted aziridine 19.

3. Materials and Methods
3.1. General

Melting points were measured with a Büchi Tottoli SPM-20 heating unit (Büchi
Labortechnik AG, Flawil, Switzerland) and were uncorrected. NMR spectra were recorded
on a Bruker Avance III/400 or Bruker Avance III/700 (Karlsruhe, Germany) for 1H and
176.1 MHz or 100.6 MHz for 13C. Chemical shifts were recorded relative to SiMe4 (δ0.00)
or solvent resonance (CDCl3 δ7.26, CD3OD δ3.31). Multiplicities were given as: s (singlet),
d (doublet), dd (double doublet), ddd (double double doublet), t (triplet), dt (double
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triplet) and m (multiplet). NMR spectra were carried out using ACD/NMR Processor
Academic Edition. Elemental analyses were performed on a Vario MACRO CHN analyzer.
Commercially available solvents DMF, DCM and MeOH (Aldrich, St. Louis, MO, USA)
and chemicals were used without further purification. Column chromatography was
performed using Merck 40-63D 60Å silica gel (Merck, Darmstadt, Germany) [23]. HPLC
analysis was performed on SHIMADZU NEXERA X2 apparatus using CHIRALPAK®

IA-3 (4.6 mm × 25 cm) (Chiral Technologies INC. West Chester, PA, USA) without a guard
column. Each HPLC analysis was controlled by comparison with the pure sample and
the racemate.

3.2. Procedures and Analysis Data
3.2.1. Synthesis of (S)-Methyl 3-Hydroxy-2- (Tritylamino)Propanoate 10

A mixture of (S)-methyl 2-amino-3-hydroxypropanoate hydrochloride 9 (5.0 g, 32 mmol)
and Et3N (8.94 mL, 64 mmol) in DCM (90 mL) was stirred under an argon atmosphere at
room temperature until it dissolved. Next, the solution was cooled to 0 ◦C, tritylchloride
(8.95 g, 32 mmol) was added portion-wise and the mixture was stirred at ambient tem-
perature. After 24 h, the solution was washed with aqueous citric acid (10%) (3 × 30 mL)
and water (2 × 30 mL). The combined organic layers were dried over MgSO4, filtered and
concentrated on a rotary evaporator. The crude product was purified by crystallization
(solvent: methanol) [16]. Yield: 60%.

3.2.2. Synthesis of (S)-Methyl 1-Tritylaziridine-2-Carboxylate 11

To a solution of trityl serine methyl ester 10 (7.0 g, 19.38 mmol) in THF (80 mL), cooled
to 0 ◦C, Et3N (5.93 mL, 42.64 mmol) was added dropwise under an argon atmosphere.
Next, methanesulfonyl chloride (1.80 mL, 23.26 mmol) was added, and the solution was
stirred at 0 ◦C for 30 min and then refluxed for 72 h. The solvent was evaporated under
vacuo, and the reaction mixture was dissolved in ethyl acetate and washed with 10% citric
acid solution (3 × 50 mL), sodium bicarbonate (2 × 40 mL) and water. The combined
organic layers were dried over anhydrous magnesium sulfate and evaporated. The crude
product was purified by crystallization (solvent: methanol) [16]. Yield: 65%.

3.2.3. Synthesis of f (S)-(1-Tritylaziridin-2-yl)Methanol 12

The aziridine ester 11 (4.30 g, 12.56 mmol) was dissolved in THF (70 mL) and cooled
to 0 ◦C, and LiAlH4 (1.19 g, 31.33 mmol) was added portion-wise. After 24 h of stirring
at room temperature, the mixture was cooled to 0 ◦C and 2 M aqueous NaOH was added
dropwise until the gray residue turned to white solid. The resulting suspension was
washed with Et2O and decantated several times. The combined organic layers were dried
over anhydrous magnesium sulfate and evaporated. The crude product was used without
further purification [16]. Yield: 96%.

3.2.4. Synthesis of (S)-(1-Tritylaziridin-2-yl)Methyl 4- Methylbenzenesulfonate 13

To a solution of (S)-(1-tritylaziridin-2-yl)-methanol 12 (3.80 g, 12.06 mmol) in DCM
(60 mL), cooled to 0 ◦C, triethylamine (1.36 g, 13.54 mmol), tosyl chloride (2.53 g, 13.27 mmol)
and DMAP (0.015 g, 1.20 mmol) were added. The mixture was stirred at room tempera-
ture for 24 h. Next, the solution was washed with sodium bicarbonate (3 × 30mL) and
water. The combined organic layers were dried over anhydrous magnesium sulfate and
evaporated. The crude product was used without further purification [16]. Yield: 87%.

3.2.5. Synthesis of 2-Thiophenylaziridines 15–19

To a solution of p-substituted thiophenol (1.00 mmol) in a mixture of THF (3 mL) and
ethanol (2 mL), an aqueous solution of lithium hydroxide (2.30 mmol/0.8 mL H2O) was
added and stirred for 2 h in reflux. Next, tosylate (1.00 mL), dissolved in THF (3 mL), was
added and the reaction mixture was stirred for an additional 24 h at 70 ◦C. The reaction was
cooled to room temperature and the solvents were evaporated on a rotary evaporator. The



Symmetry 2021, 13, 502 7 of 10

obtained residue was dissolved in DCM and washed with water. The combined organic
layers were dried over magnesium sulfate and evaporated. The obtained crude product
was purified by column chromatography on basic aluminum oxide, using hexane/diethyl
ether (98:2) as eluent.

(S)-2-(Phenylsulfanylmethyl)-1-Tritylaziridine 15

Yield: 79%; crystalline solid, mp 92–94 ◦C; [∝]20
D = −65.00 (c = 1, CHCl3)

1H NMR (700 MHz, CDCl3) δ = 1.17 (d, J = 5.6 Hz, 1H), 1.53—1.56 (m, 1H), 1.75 (d,
J = 3.5 Hz, 1H), 3.08 (dd, J1 = 13.3 Hz, J2 = 7.0 Hz, 1H); 3.45 (dd, J1 = 7.7 Hz, J2 = 4.2 Hz, 1H),
7.17 −7.31 (m, 14H), 7.51 (d, J = 7.7 Hz, 6H) ppm; 13C NMR (100.6 MHz, CDCl3) δ = 27.4
(CH2), 32.3 (CH), 37.4 (CH2), 74.2 (C), 126.1 (CH), 126.7 (3 × CH), 127.5 (6 × CH), 128.9 (2
× CH), 129.5 (6 × CH), 129.7 (2 × CH), 136.4 (C), 144.5 (3 × C) ppm; IR: 3057, 3018, 2920,
2851, 1579, 1487, 1445, 1385, 1242, 1214, 1185, 1154, 1085, 1067, 1021, 1004 cm−1; Elemental
Anal. Calcd for C28H25NS (407.58): C, 82.51; H, 6.18; N, 3.44 Found: C, 82.46; H, 6.10; N,
3.43 (see Supplementary Materials S1).

(S)-2-(p-Tolylsulfanylmethyl)-1-Tritylaziridine 16

Yield: 80%; oil, [∝]20
D = −17.00 (c = 1, CHCl3)

1H NMR (700 MHz, CDCl3) δ = 1.11 (d, J = 6.3 Hz, 1H), 1.46—1.49 (m, 1H), 1.67 (d,
J = 4.2 Hz, 1H), 2.30 (s, 3H), 2.98 (dd, J1 = 12.6 Hz, J2 = 7.7 Hz, 1H); 3.36 (dd, J1 = 13.3 Hz, J2
= 4.2 Hz, 1H), 7.03 (d, J = 7.7 Hz, 2H), 7.19−7.26 (m, 11 H), 7.46 (d, J = 7.7 Hz, 6H) ppm
13C NMR (100.6 MHz, CDCl3) δ = 21.1 (CH3), 27.5 (CH2), 32.5 (CH), 38.2 (CH2), 74.2 (C),
126.8 (3 × CH), 127.5 (6 × CH), 129.6 (6 × CH), 129.7 (2 × CH), 130.7 (2 × CH), 132.7 (C),
136.3 (C), 144.6 (3 × C) ppm; IR: 3054, 3018, 2976, 2917, 1961, 1893, 1808, 1595, 1489, 1446,
1386, 1316, 1245, 1213, 1182, 1151, 1118, 1088, 1032, 1013 cm−1; Elemental Anal. Calcd
for C29H27NS (421.60): C, 82.62; H, 6.46; N, 3.32 Found: C, 82.72; H, 6.63; N, 3.24 (see
Supplementary Materials S2).

(S)-2-((4-Tert-Butylphenylsulfanyl)Methyl)-1-Tritylaziridine 17

Yield: 75%; oil, [∝]20
D = −6,5 (c = 1, CHCl3)

1H NMR (700 MHz, CDCl3) δ = 1.12 (d, J = 5.6 Hz, 1H), 1.29 (s, 6H), 1.46—1.49 (m,
1H), 1.53 (s, 3H), 1.70 (d, J = 3.5 Hz, 1H), 3.00 (dd, J1 = 16.3 Hz, J2 = 7 Hz, 1H); 3.40 (dd,
J1 = 16.3 Hz, J2 = 4.2 Hz, 1H), 7.19–7.26 (m, 13 H), 7.46 (d, J = 7.7 Hz, 6H) ppm; 13C NMR
(100.6 MHz, CDCl3) δ = 27.0 (CH2), 30.9 (3 × CH3), 31.9 (C), 34.0 (CH), 37.3 (CH2), 73.7
(C), 125.4 (2 × CH), 126.2 (3 × CH), 127.0 (6 × CH), 129.1 (6 × CH), 129.5 (2 × CH), 132.2
(C), 144.0 (3 × C), 149.0 (C) ppm;IR: 3056, 3030, 2956, 2866, 1595, 1488, 1459, 1446, 1393,
1316, 1267, 1246, 1201, 1184, 1151, 1120, 1084, 1052, 1012 cm−1; Elemental Anal. Calcd
for C32H33NS (463.68): C, 82.89; H, 7.17; N, 3.02 Found: C, 83.05; H, 7.21; N, 2.92 (see
Supplementary Materials S3).

(S)-2-((4-Chlorophenylsulfanyl)Methyl)-1-Tritylaziridine 18

Yield: 79%; crystalline solid, mp: 112-114 ◦C; [∝]20
D = −6,2 (c = 1, CHCl3)

1H NMR (700 MHz, CDCl3) δ = 1.13 (d, J = 6.3 Hz, 1H), 1.44—1.47 (m, 1H), 1.70 (d,
J = 2.8 Hz, 1H), 3.01 (dd, J1 = 16.3 Hz, J2 = 7.0 Hz, 1H); 3.60 (dd, J1 = 16.3 Hz, J2 = 4.2 Hz,
1H), 7.15—7.29 (m, 13H), 7.45 (d, J = 7.7 Hz, 6H) ppm; 13C NMR (100.6 MHz, CDCl3) δ =
27.0 (CH2), 31.7 (CH), 37.1 (CH2), 74.0 (C), 126.3 (3 × CH), 127.1 (6 × CH), 128.6 (2 × CH),
129.0 (6 × CH), 130.5 (2 × CH), 134.4 (C), 143.9 (3 × C), 145.83 (C) ppm; IR: 3051, 3033,
2921, 2851, 1594, 1487, 1446, 1376, 1240, 1219, 1175, 1155, 1111, 1092, 1047, 1032, 1006 cm−1;
Elemental Anal. Calcd for C28H24ClNS (442.02): C, 76.08; H, 5.47; N, 3.17 Found: C, 76.09;
H, 5.48; N, 3.12 (see Supplementary Materials S4).

(S)-2-((4-Nitrophenylsulfanyl)Methyl)-1-Tritylaziridine 19

Yield: 64%; crystalline solid, mp: 125–127 ◦C; [∝]20
D = −16,4 (c = 1, CHCl3)
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1H NMR (700 MHz, CDCl3) δ = 1.19 (d, J = 5.6 Hz, 1H), 1.48—1.52 (m, 1H), 1.81 (d,
J = 3.5 Hz, 1H), 3.17 (dd, J1 = 16.3 Hz, J2 = 7.0 Hz, 1H); 3.47 (dd, J1 = 15.6 Hz, J2 = 4.2 Hz,
1H), 7.22—7.30 (m, 13H), 7.47 (d, J = 10.7 Hz, 6H), ppm; 13C NMR (100.6 MHz, CDCl3) δ =:
27.0 (CH2), 31.0 (CH), 35.0 (CH2), 73.9 (C), 123.5 (2 × CH), 126.2 (2 × CH), 126.5 (3 × CH),
127.2 (6 × CH), 129.0 (6 × CH), 143.8 (3 × C), 145.6 (C), 147.0 (C) ppm; IR: 3052, 3020,
2913, 2852, 1594, 1485, 1470, 1445, 1380, 1272, 1242, 1181, 1153, 1087, 1056, 1031, 1002 cm−1;
Elemental Anal. Calcd for C28H24N2O2S (452.57): C, 74.31; H, 5.35; N, 6.19 Found: C, 76.66;
H, 5.95; N, 6.79 (see Supplementary Materials S5).

3.2.6. General Procedure for AAA (Trost–Tsuji) Reaction

The solution of chiral ligand (0.020 mmol, 10 mol%) and [Pd(η3-C3H5)Cl]2 (1.9 mg,
0.005 mmol) in acetonitrile (0.5 mL) was stirred under argon atmosphere at room tem-
perature for 15 min. To this mixture, the solution of rac-1,3-diphenyl-2-propenyl acetate
(0.20 mmol, 0.050 g) in CH3CN (1.0 mL) was added followed by dimethyl malonate
(0.069 mL, 0.6 mmol), N,O-bis(trimethylsilyl)acetamide (BSA, 0.148 mL, 0.6 mmol) and
anhydrous potassium acetate (0.5 mg, 0.006 mmol). The solution was stirred at room
temperature and the reaction was monitored by TLC. After 3–4 days, the solvent was
evaporated and the residue was purified by column chromatography (n-hexane/ethyl
acetate, 5:1 v/v) and analyzed by 1H NMR, and the enantiomeric excess was determined
using chiral HPLC (Chiracel IA-3 column, n-hexane/i-PrOH 95:5, flow rate 1.0 mL/min, λ
251 nm, t(R) 9.4 min, t(S) 11.7 min) [24].

3.2.7. General Procedure for the Asymmetric Addition of Diethylzinc to Aldehydes

Toluene (0.5 mL) and Et2Zn (1 M in hexane, 0.376 mmol) were added to a 25 mL
round-bottom flask under argon atmosphere. The catalyst (15–19) (10% mol, 0.0126 mmol)
in toluene (0.5 mL) was then added and the mixture was stirred for 20 min at room
temperature. After cooling to 0 ◦C in an ice bath, the solution of benzaldehyde (1 M in
toluene, 0,126 mmol, 126 µL) was added to the reaction flask. After stirring overnight, the
reaction was quenched with a saturated solution of NH4Cl (3 mL). The reaction mixture
was extracted with diethyl ether (3 × 10 mL). The combined organic layers were washed
with 1 M HCl (5 mL) and saturated NaCl solution (5 mL) and dried over anhydrous MgSO4.
After filtration, the solvent was removed on a rotary evaporator to afford the product
alcohol, which was analyzed on GC [25].

3.2.8. General Procedure for the Asymmetric Addition of Phenylethynylzinc
to Benzaldehyde

In a 25 mL flask under argon toluene (0.5 mL), Et2Zn (1 M in hexane, 0.26 mmol,
0.26 mL) and phenylacetylene (0.286 mmol) were placed and stirred for 30 min at room
temperature. Then, the catalyst (15–19) (10% mol, 0.013 mmol) in toluene (0.5 mL) was
added and the mixture was stirred for 20 min at room temperature. The flask was cooled
to 0 ◦C in an ice bath and the solution of benzaldehyde (1 M in toluene, 0,13 mmol, 130 µL)
was added. After stirring overnight, the reaction was quenched with a saturated solution
of NH4Cl (3 mL). The reaction mixture was extracted with diethyl ether (3 × 10 mL). The
combined organic layers were washed with 1 M HCl (5 mL) and saturated NaCl solution
(5 mL) and dried over anhydrous MgSO4. After filtration, the solvent was removed on a
rotary evaporator under vacuum to give the product alcohol, in agreement with published
data [26], which was analyzed on a chiral HPLC column (Chiracel OJ column, n-hexane/i-
PrOH 80:20, flow rate 0.7 mL/min, λ 254 nm, t(1) 14.34 min, t(2) 24.32 min) [25].

4. Conclusions

This article presents an efficient methodology for the synthesis of new N(sp3),S-
bidentate aziridine-based ligands. The addition of 10% of water to the used solvent
significantly increased the yield of the product, indicating that the solubility of the used
base is crucial for the nucleophile (PhS−M+) formation. The catalytic activity of all lig-
ands was tested in the Pd-catalyzed Tsuji–Trost reaction and addition of diethylzinc and
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phenylethynylzinc to benzaldehyde. The obtained results conclude that the N-trityl moi-
ety can presumably prevent the N–Pd coordination, decreasing the enantioselectivity
of the reaction. In the case of the diethylzinc addition to benzaldehyde, the highest
e.r. (94.2:5.8) was observed for the (S)-2-((4-nitrophenylsulfanyl)methyl)-1-tritylaziridine.
This suggests that the EWG, through the reduction in the electron density on the sulfur
atom, increases the N–Zn coordination. It can be concluded that in the case of this type
of ligand, 2-(phenylsulfanyl)methylaziridines’ steric and electronic effects that enhance
the N–[M] coordination correspond to the improvement in the enantioselectivity of the
performed reactions.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-899
4/13/3/502/s1.
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