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Abstract: In this paper, we obtain a new equivalent fixed-point form of the linear complementarity
problem by introducing a relaxed matrix and establish a class of relaxed modulus-based matrix split-
ting iteration methods for solving the linear complementarity problem. Some sufficient conditions
for guaranteeing the convergence of relaxed modulus-based matrix splitting iteration methods are
presented. Numerical examples are offered to show the efficacy of the proposed methods.

Keywords: linear complementarity problem; matrix splitting; iteration method; convergence

MSC: 90C33; 65F10; 65F50; 65G40

1. Introduction

In this paper, we focus on the iterative solution of the linear complementarity problem,
abbreviated as ‘LCP(q, A)’, whose form is

w = Az + q ≥ 0, z ≥ 0 and zTw = 0, (1)

where A ∈ Rn×n and q ∈ Rn are given, and z ∈ Rn is unknown, and for two s× t matrices
G = (gij) and H = (hij) the order G ≥ (>)H means gij ≥ (>)hij for any i and j. As
is known, as a very useful tool in many fields, such as the free boundary problem, the
contact problem, option pricing problem, nonnegative constrained least squares problems,
see [1–5], LCP(q, A) is most striking in the articles, see [6–11].

Designing iteration methods to fast and economically computing the numerical so-
lution of the LCP(q, A) is one of the hotspot nowadays, which were widely discussed in
the articles, see [1,2,8,9,12,13] for more details. Recently, by using w = 1

γ Ω(|x| − x) and

z = 1
γ (|x|+ x) with γ > 0 for the LCP(q, A), Bai in [14] expressed the LCP(q, A) as the

fixed-point form
(Ω + M)x = Nx + (Ω− A)|x| − γq, (2)

where A = M− N is a splitting of matrix A and Ω denotes a positive diagonal matrix, and
then first desgined a class of modulus-based matrix splitting (MMS) iteration methods.
Since the MMS method has the advantages of simple form and fast convergence rate, it was
regarded as a powerful method of solving the LCP(q, A), and raises concerns. For several
variants and applications of the MMS method, one can see [2,15–32].

In this paper, based on the MMS method, we will create a type of new iteration
methods to solve the LCP(q, A). Our strategy is to introduce a relaxed matrix for both
sides of Equation (2) and obtain a new equivalent fixed-point form of the LCP(q, A). Based
on this new equivalent form, we can establish a class of relaxed modulus-based matrix
splitting (RMMS) iteration methods for solving the LCP(q, A). This class of new iteration
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methods not alone inherits the virtues of the modulus-based methods. A more important
one is that we can choose the relaxed matrix to enhance the computational efficiency of the
classical MMS method in [14]. To guarantee the convergence of the RMMS iteration method,
some sufficient conditions will be given under suitable conditions. Numerical examples
are provided to verify that the RMMS iteration method are feasible and overmatch the
classical MMS iteration method in terms of the computational efficiency.

The layout of this paper is as follows. In Section 2, for the sake of discussion in the rest
of this paper, we provide some necessary definitions, lemmas and notations. In Section 3,
we present a class of relaxed modulus-based matrix splitting (RMMS) iteration methods
to solve the LCP(q, A). The convergence conditions of the RMMS iteration method are
presented in Section 4. Numerical experiments with regard to the proposed methods
compared to the classical MMS iteration method are reported in Section 5. In Section 6, we
summarize this work. Finally, some simple discussions are given in Section 7.

2. Preliminaries

Some necessary definitions, lemmas and notations, which are used in the sequel
discussions, are primitively introduced in this section.

Let A = (aij) ∈ Rn×n. Then it is named as a Z-matrix if aij ≤ 0 (i 6= j); a nonsingular
M-matrix if A is a Z-matrix and A−1 ≥ 0; its comparison matrix is 〈A〉 = (〈a〉ij) with
〈a〉ij being

〈a〉ij =
{
|aij| for i = j,

−|aij| for i 6= j,
i, j = 1, 2, . . . , n.

Further, a matrix A = (aij) ∈ Rn×n is named as an H-matrix if 〈A〉 = (〈a〉ij) is an
M-matrix; an H+-matrix if A is an H-matrix with diag(A) > 0; a P-matrix if all of its
principal minors are positive [33,34]. In addition, we let |A| = (|aij|).

Let A = M− N be a splitting of matrix A ∈ Rn×n. Then it is named as an M-splitting
if M is a nonsingular M-matrix and N ≥ 0; an H-splitting if 〈M〉 − |N| is a nonsingular
M-matrix. As is known, if A = M− N is an M-splitting and A is a nonsingular M-matrix,
then ρ(M−1N) < 1, where ρ(·) indicates the spectral radius (the maximum value of the
absolute value of the eigenvalues) of the matrix, see [33,34]. Finally, ‖ · ‖2 denotes the
Euclidean norm on Rn.

Lemma 1 ([19]). Let A = (aij) ∈ Rn×n with aij ≥ 0. If there exists u ∈ Rn with u > 0 such
that Au < u, then ρ(A) < 1.

Lemma 2 ([35]). Let A ∈ Rn×n be an H-matrix, D be the diagonal part of the matrix A, and
A = D− B. Then matrices A and |D| are nonsingular, |A−1| ≤ 〈A〉−1 and ρ(|D|−1|B|) < 1.

Lemma 3 ([34]). Let A be an M-matrix and B be a Z-matrix with A ≤ B. Then B is an M-matrix.

In addition, there exists a famous result for the existence and uniqueness of the
LCP(q, A), that is to say, the LCP(q, A) has a unique solution if and only if a matrix A is a
P-matrix, see [1]. Obviously, when A is an H+-matrix, the LCP(q, A) has a unique solution
as well.

3. Relaxed Modulus-Based Matrix Splitting Method

In this section, we introduce a class of relaxed modulus-based matrix splitting (RMMS)
iteration methods for solving the LCP(q, A). For this purpose, by introducing an identical
equation Rx− Rx = 0 for Equation (2), where R ∈ Rn×n is a given relaxed matrix, then
we obtain

(Ω + M)x = Nx + (Ω− A)|x|+ R(x− x)− γq, (3)

or,
(Ω + M− R)x = (N − R)x + (Ω− A)|x| − γq. (4)
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Based on Equations (3) and (4), we can establish the following iteration method, which
is named as a class of relaxed modulus-based matrix splitting (RMMS) iteration methods
for the LCP(q, A).

Method 1. Let A = M − N be a splitting of the matrix A ∈ Rn×n. Let γ > 0 and matrix
Ω + M− R be nonsingular, where Ω is a positive diagonal matrix and R ∈ Rn×n is a given relaxed
matrix. Given an initial vector x(0) ∈ Rn, compute z(k+1) ∈ Rn

z(k+1) =
1
γ
(|x(k+1)|+ x(k+1)), k = 0, 1, 2, . . . ,

where x(k+1) can be obtained by solving the linear system

(Ω + M)x(k+1) = Nx(k) + (Ω− A)|x(k)|+ R(x(k+1) − x(k))− γq (5)

or
(Ω + M− R)x(k+1) = (N − R)x(k) + (Ω− A)|x(k)| − γq. (6)

Clearly, when R = 0, method 1 reduces to the well-known MMS iteration method
in [14]. Similarly, by introducing an identical equation, Wu and Li in [22] presented two-
sweep modulus-based matrix splitting iteration methods for the LCP(q, A). The goal of
introducing the relaxed matrix R in (5) or (6) is that the computational efficiency of the
RMMS iteration method may be better than the classical MMS iteration method in [14].

In fact, method 1 is a general framework of RMMS iteration methods for solving the
LCP(q, A). This implies that we can construct some concrete forms of RMMS iteration
methods by the specific splitting matrix of matrix A and the iteration parameters. If we take

M =
1
α
(D− βL) and N =

1
α
[(1− α)D + (α− β)L + αU],

where D, L and U, respectively, are the diagonal, the strictly lower-triangular and the
strictly upper-triangular parts of the matrix A, then this leads to the relaxed modulus-
based AOR (RMAOR) iteration method

(Ω + D− βL− R)x(k+1) = [(1− α)D + (α− β)L + αU − R]x(k) + (Ω− αA)|x(k)| − γαq, (7)

with z(k+1) = 1
γ (|x(k+1)|+ x(k+1)). When α = β, α = β = 1, and α = 1, β = 0, respectively,

the RMAOR method (7) can yield the corresponding relaxed modulus-based SOR (RM-
SOR) method, the relaxed modulus-based Gauss–Seidel (RMGS) method and the relaxed
modulus-based Jacobi (RMJ) method.

4. Convergence Analysis

In this section, some sufficient conditions are given to guarantee the convergence of
method 1.

Theorem 1. Let A = M− N be a splitting of the matrix A ∈ Rn×n with A being a P-matrix,
and matrix Ω + M− R be nonsingular, where Ω is a positive diagonal matrix and R ∈ Rn×n is a
given relaxed matrix. Let

δ(R) = f (R) + g(R),

where

f (R) = ‖(Ω + M− R)−1(N − R)‖2 and g(R) = ‖(Ω + M− R)−1(Ω− A)‖2.

When δ(R) < 1, Method 1 with γ > 0 converges to the unique solution z∗ ∈ Rn
+ of the

LCP(q, A) for an initial vector.
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Proof. Let (z∗, w∗) be a solution pair of the LCP(q, A). Then x∗ = 1
2 γ(z∗−Ω−1w∗) satisfies

(Ω + M− R)x∗ = (N − R)x∗ + (Ω− A)|x∗| − γq. (8)

Based on (6) and (8), note that matrix Ω + M− R is nonsingular, we can obtain

x(k+1) − x∗ = (Ω + M− R)−1((N − R)(x(k) − x∗) + (Ω− A)(|x(k)| − |x∗|)). (9)

This indicates that

‖x(k+1) − x∗‖2 = ‖(Ω + M− R)−1((N − R)(x(k) − x∗) + (Ω− A)(|x(k)| − |x∗|))‖2

≤‖(Ω + M− R)−1(N − R)(x(k) − x∗)‖2

+ ‖(Ω + M− R)−1(Ω− A)(|x(k)| − |x∗|)‖2

≤‖(Ω + M− R)−1(N − R)‖2‖x(k) − x∗‖2

+ ‖(Ω + M− R)−1(Ω− A)‖2‖x(k) − x∗‖2

=( f (R) + g(R))‖x(k) − x∗‖2

=δ(R)‖x(k) − x∗‖2.

Obviously, when δ(R) < 1, method 1 is convergent.

Since

‖(Ω + M− R)−1(Ω− A)‖2

=‖(Ω + M− R)−1(Ω−M + N)‖2

=‖(Ω + M− R)−1(Ω−M + N − R + R)‖2

≤‖(Ω + M− R)−1(Ω−M + R)‖2 + ‖(Ω + M− R)−1(N − R)‖2,

the following corollary can be obtained.

Corollary 1. Let A = M− N be a splitting of the matrix A ∈ Rn×n with A being a P-matrix,
and matrix Ω + M− R be nonsingular, where Ω is a positive diagonal matrix and R ∈ Rn×n is a
given relaxed matrix. Let

δ̄(R) = 2 f (R) + ḡ(R),

where

f (R) = ‖(Ω + M− R)−1(N − R)‖2 and ḡ(R) = ‖(Ω + M− R)−1(Ω−M + R)‖2.

When δ̄(R) < 1, Method 1 with γ > 0 converges to the unique solution z∗ ∈ Rn
+ of the

LCP(q, A) for an initial vector.

Similar to the above proof, if we take | · | instead of ‖ · ‖2, we can also obtain Corollary 2.

Corollary 2. Let A = M− N be a splitting of the matrix A ∈ Rn×n with A being a P-matrix,
and matrix Ω + M− R be nonsingular, where Ω is a positive diagonal matrix and R ∈ Rn×n is a
given relaxed matrix. Let

Φ = |(Ω + M− R)−1(N − R)|+ |(Ω + M− R)−1(Ω− A)|

and
Ψ = 2|(Ω + M− R)−1(N − R)|+ |(Ω + M− R)−1(Ω−M + R)|.

When ρ(Φ) < 1 or ρ(Ψ) < 1, Method 1 with γ > 0 converges to the unique solution
z∗ ∈ Rn

+ of the LCP(q, A) for an initial vector.
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Theorem 2. Let A = M−N be a splitting of the matrix A ∈ Rn×n with A being a P-matrix, and
matrix Ω + M be nonsingular and matrix I − |(Ω + M)−1R| be nonsingular M-matrix, where Ω
is a positive diagonal matrix and R ∈ Rn×n is a given relaxed matrix. Let

Θ = (I − |(Ω + M)−1R|)−1(|(Ω + M)−1N|+ |(Ω + M)−1(Ω− A)|+ |(Ω + M)−1R|).

When ρ(Θ) < 1, method 1 with γ > 0 converges to the unique solution z∗ ∈ Rn
+ of the

LCP(q, A) for an initial vector.

Proof. Based on (5) and (8), we have

(Ω + M)(x(k+1) − x∗) = N(x(k) − x∗) + (Ω− A)(|x(k)| − |x∗|) + R((x(k+1) − x∗)− (x(k) − x∗)).

This implies

|x(k+1) − x∗| = |(Ω + M)−1(N(x(k) − x∗) + (Ω− A)(|x(k)| − |x∗|)

+ R((x(k+1) − x∗)− (x(k) − x∗)))|

=|(Ω + M)−1N(x(k) − x∗) + (Ω + M)−1(Ω− A)(|x(k)| − |x∗|)

+ (Ω + M)−1R((x(k+1) − x∗)− (x(k) − x∗)))|

≤|(Ω + M)−1N| · |x(k) − x∗|+ |(Ω + M)−1(Ω− A)| · ||x(k)| − |x∗||

+ |(Ω + M)−1R| · |x(k+1) − x∗|+ |(Ω + M)−1R| · |x(k) − x∗|

≤|(Ω + M)−1N| · |x(k) − x∗|+ |(Ω + M)−1(Ω− A)| · |x(k) − x∗|

+ |(Ω + M)−1R| · |x(k+1) − x∗|+ |(Ω + M)−1R| · |x(k) − x∗|.

Further, we have
|x(k+1) − x∗| ≤ Θ(R)(|x(k) − x∗|),

where

Θ = (I − |(Ω + M)−1R|)−1(|(Ω + M)−1N|+ |(Ω + M)−1(Ω− A)|+ |(Ω + M)−1R|).

Clearly, when ρ(Θ) < 1, Method 1 is convergent.

Similarly, we have Corollary 3.

Corollary 3. Let A = M− N be a splitting of the matrix A ∈ Rn×n with A being a P-matrix,
and matrix Ω + M be nonsingular and I − |(Ω + M)−1R| be nonsingular M-matrix, where Ω is
a positive diagonal matrix and R ∈ Rn×n is a given relaxed matrix. Let

Θ̄ = (I − |(Ω + M)−1R|)−1(2|(Ω + M)−1N|+ |(Ω + M)−1(Ω−M)|+ |(Ω + M)−1R|).

When ρ(Θ̄) < 1, method 1 with γ > 0 converges to the unique solution z∗ ∈ Rn
+ of the

LCP(q, A) for an initial vector.

Theorem 3. Let A = M − N be a splitting of the matrix A = (aij) ∈ Rn×n, where A is an
H+-matrix, and 〈M− R〉 − |N − R| be an M-matrix with R = (rij) ∈ Rn×n. Let matrix Ω =

(ωij) ∈ Rn×n satisfy ωii ≥ aii and 0 ≤ ωij ≤ 1
2 (|mij − rij|+ |nij − rij| − |aij|). Then method 1

with γ > 0 converges to the unique solution z∗ ∈ Rn
+ of the LCP(q, A) for an initial vector.

Proof. First, we prove that 〈Ω + M− R〉 is an M-matrix. In fact, since

0 ≤ ωij ≤
1
2
(|mij − rij|+ |nij − rij| − |aij|),
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we obtain

2|mij − rij|+ |nij − rij| ≥ ωij + |aij|+ ωij + |mij − rij|
≥ |ωij − aij|+ |ωij + mij − rij|.

Further, we have

2|mij − rij|+ |nij − rij| − |ωij − aij| ≤ |ωij + mij − rij|,

which is equal to

−2|mij − rij| − |nij − rij|+ |ωij − aij| ≤ −|ωij + mij − rij|.

In addition,

ωii + mii − rii = ωii − |mii − rii|+ |nii − rii|+ 2|mii − rii| − |nii − rii| > 0.

Therefore,
〈Ω + M− R〉 ≥ ∆ + 2〈M + R〉 − |N + R|, (10)

where matrix ∆ = (δij) ∈ Rn×n satisfy

(δij) =

{
ωii − |mii − rii|+ |nii − rii| ≥ 0 for i = j,

|ωij − aij| for i 6= j,
i, j = 1, 2, . . . , n.

It noted that

∆ + 2〈M− R〉 − |N − R| ≥ 2(〈M− R〉 − |N − R|). (11)

Based on Lemma 3, matrix ∆ + 2〈M− R〉 − |N − R| is an M-matrix. Based on (10)
and (11), we have

2(〈M− R〉 − |N − R|) ≤ 〈Ω + M− R〉,

which implies that 〈Ω + M− R〉 is an H+ matrix.
Based on (9) and Lemma 2, we have

|x(k+1) − x∗| =|(Ω + M− R)−1((N − R)(x(k) − x∗) + (Ω− A)(|x(k)| − |x∗|))|

≤|(Ω + M− R)−1| · |(N − R)(x(k) − x∗) + (Ω− A)(|x(k)| − |x∗|)|

≤|(Ω + M− R)−1|(|N − R|+ |Ω− A|)|x(k) − x∗|

≤〈Ω + M− R〉−1(|N − R|+ |Ω− A|)|x(k) − x∗|

=〈Ω + M− R〉−1(〈Ω + M− R〉 − 〈Ω + M− R〉+ |N − R|+ |Ω− A|)|x(k) − x∗|

=[I − 〈Ω + M− R〉−1(〈Ω + M− R〉 − |N − R| − |Ω− A|)]|x(k) − x∗|

≤[I − 〈Ω + M− R〉−1(2〈M− R〉 − 2|N − R|+ ∆− |Ω− A|)]|x(k) − x∗|.

By calculation, it is easy to obtain that matrix ∆− |Ω− A| is a nonnegative diagonal
matrix. It follows that matrix

2〈M− R〉 − 2|N − R|+ ∆− |Ω− A|

is an M-matrix. Further, there exists a positive vector u such that

(2〈M− R〉 − 2|N − R|+ ∆− |Ω− A|)u > 0.
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Therefore,

〈Ω + M− R〉−1(2〈M− R〉 − 2|N − R|+ ∆− |Ω− A|)u > 0.

Let
W = I − 〈Ω + M− R〉−1(2〈M− R〉 − 2|N − R|+ ∆− |Ω− A|).

Then

Wu = [I − 〈Ω + M− R〉−1(2〈M− R〉 − 2|N − R|+ ∆− |Ω− A|)]u < u.

Based on Lemma 1, we can obtain that ρ(W) < 1. which completes the proof.

When matrix R is a diagonal matrix, Corollary 4 can be obtained.

Corollary 4. Let A = M − N be a splitting of the matrix A = (aij) ∈ Rn×n, where A is an
H+-matrix, and 〈M− R〉 − |N − R| be an M-matrix with R = (rij) ∈ Rn×n being a diagonal
matrix. Let matrix Ω = (ωij) ∈ Rn×n satisfy ωii ≥ aii and 0 ≤ ωij ≤ 1

2 (|mij|+ |nij| − |aij|).
Then Method 1 with γ > 0 converges to the unique solution z∗ ∈ Rn

+ of the LCP(q, A) for an
initial vector.

When matrix R is a zero matrix, Corollary 4 reduces to the following result, which is a
main result in [36].

Corollary 5. [36] Let A = M− N be a splitting of the matrix A = (aij) ∈ Rn×n, where A is
an H+-matrix, and 〈M〉 − |N| be an M-matrix. Let Ω = (ωij) ∈ Rn×n satisfy ωii ≥ aii and
0 ≤ ωij ≤ 1

2 (|mij|+ |nij| − |aij|). Then method 1 with R = 0 and γ > 0 converges to the unique
solution z∗ ∈ Rn

+ of the LCP(q, A) for an initial vector.

Further, when matrix R is a zero matrix and Ω = (ωij) ∈ Rn×n is a positive diagonal
matrix, Corollary 4 reduces to the following result, which is a main result in [37].

Corollary 6. [37] Let A = M− N be a splitting of the matrix A = (aij) ∈ Rn×n, where A is an
H+-matrix, and 〈M〉 − |N| be an M-matrix. Let the positive diagonal matrix Ω = (ωij) ∈ Rn×n

satisfy ωii ≥ aii. Then Method 1 with R = 0 and γ > 0 converges to the unique solution z∗ ∈ Rn
+

of the LCP(q, A) for an initial vector.

Theorem 4. Let A = D− L−U = D− B and 〈A〉 = D− |L| − |U|, where A ∈ Rn×n is an
H+-matrix. Assume that the positive diagonal matrix Ω satisfies Ω ≥ D, matrix R is a lower-
triangular matrix with diag(R) ≤ 0, and ρ := ρ(D−1|B|+ |LR|) < 1, where LR = R− diag(R).
Then for an initial vector, the RMAOR iteration method with γ > 0 is convergent if the parameters
α and β satisfy

0 ≤ max{α, β}ρ < min{1, α}.

Proof. From the proof of Theorem 3, we take

M =
1
α
(D− βL) and N =

1
α
[(1− α)D + (α− β)L + αU].

Since Ω ≥ D > 0 and diag(R) ≤ 0, obviously, matrix Ω − R + 1
α (D − βL) is an

H+-matrix. Based on Lemma 2, we have

|(Ω− R +
1
α
(D− βL))−1| ≤ 〈Ω− R +

1
α
(D− βL)〉−1 = (Ω− DR + D− |LR +

α

β
L|)−1
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with DR = diag(R) and LR = R− diag(R). Let

Ŵ = |Ω− R + M|−1(|N|+ |R|+ |Ω− A|).

Then by the simple computations we have

Ŵ =|Ω− R +
1
α
(D− βL)|−1(| 1

α
[(1− α)D + (α− β)L + αU]|+ |R|+ |Ω− A|)

=|αΩ− αR + D− βL|−1(|(1− α)D + (α− β)L + αU|+ α|R|+ α|Ω− A|)
=|αΩ− αDR − αLR + D− βL|−1(|(1− α)D + (α− β)L + αU|+ α|R|+ α|Ω− A|)
≤〈αΩ− αDR + D− αLR − βL〉−1(|(1− α)D + (α− β)L + αU|+ α|R|+ α|Ω− A|)
=(αΩ− αDR + D− |αLR + βL|)−1(|(1− α)D + (α− β)L + αU|+ α|R|+ α|Ω− A|)
≤(αΩ− αDR + D− |αLR| − |βL|)−1(|(1− α)D + (α− β)L + αU|+ α|R|+ α|Ω− A|)
=(αΩ− αDR + D− |αLR| − |βL|)−1(αΩ− αDR + D− |αLR| − |βL|
− (αΩ− αDR + D− |αLR| − |βL|) + |(1− α)D + (α− β)L + αU|+ α|R|+ α|Ω− A|)

=I − (αΩ− αDR + D− α|LR| − β|L|)−1(αΩ− αDR + D− |αLR| − |βL|
− |(1− α)D + (α− β)L + αU| − α|R| − α|Ω− A|)

=I − (αΩ− αDR + D− α|LR| − β|L|)−1(αΩ− αDR + D− |αLR| − |βL|
− |1− α|D− |αB− βL| − α|DR| − α|LR| − α(Ω− D)− α|B|)

=I − (αΩ− αDR + D− α|LR| − β|L|)−1((1 + α)− |1− α|)D− 2α|LR|
− |αB− βL| − β|L| − α|B|)

Since
(1 + α− |1− α|) = 2 min{1, α}

and

|αB− βL|+ α|B|+ β|L| = |αL + αU − βL|+ α|U|+ α|L|+ β|L|
= (|α− β|+ α + β)|L|+ 2α|U|
≤ 2 max{α, β}|B|,

then
Ŵ ≤ W̃,

where

W̃ = I − 2(αΩ− αDR + D− α|LR| − β|L|)−1D(min{1, α}I −max{α, β}D−1(|B|+ |LR|)).

Note that ρ(D−1(|B|+ |LR|)) < 1. Then there exists an arbitrary small number ε > 0
such that

ρε := ρ(Jε) < 1,

where Jε := D−1(|B|+ |LR|) + εeeT and e := (1, . . . , 1)T ∈ Rn. Based on Perron–Frobenius
theorem in [34], there exists a positive vector uε ∈ Rn such that

Jεuε = ρεuε.

Therefore,

W̃uε ≤ uε − 2(αΩ− αDR + D− α|LR| − β|L|)−1D(min{1, α}uε −max{α, β}Jεuε)

= uε − 2(min{1, α} −max{α, β}ρε)(αΩ− αDR + D− α|LR| − β|L|)−1Duε

< vε.
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Based on Lemma 1, we can obtain that ρ(Ŵ) ≤ ρ(W̃) < 1, which implies that the
result of Theorem 4 is true.

When matrix R in Theorem 4 is a nonpositive diagonal matrix, Theorem 4 reduces to
the following result.

Corollary 7. Let A = D− L−U = D− B and 〈A〉 = D− |L| − |U|, where A ∈ Rn×n is an
H+-matrix. Assume that the positive diagonal matrix Ω satisfies Ω ≥ D, matrix R is a nonpositive
diagonal matrix and ρ := ρ(D−1|B|). Then for an initial vector, the RMAOR iteration method
with γ > 0 is convergent if the parameters α and β satisfy

0 ≤ max{α, β}ρ < min{1, α}.

5. Numerical Experiments

In this section, we utilize two examples to illustrate the computational efficiency of
the RMMS iteration method in terms of iteration steps (IT) and elapsed CPU time (CPU) in
seconds, and the following norm of absolute residual vectors (RES)

RES(z(k)) := ‖min(Az(k) + q, z(k))‖2,

where the minimum is componentwisely taken.
To show the advantages of the RMMS iteration method, we compare the RMMS

iteration method with the classical MMS iteration method. During these tests, all initial
vectors are chosen to be

x(0) = (1, 0, 1, 0, . . . , 1, 0, . . .)T ∈ Rn,

all the iterations are stopped once RES(z(k))≤ 10−5 or the number of iteration exceeds 500.
For convenience, here we consider the relaxed modulus-based SOR (RMSOR) method and
the modulus-based SOR (MSOR) method. The basis of this comparison is that the modulus-
based SOR (MSOR) method in [14] outperforms other forms of the modulus-based matrix
splitting iteration method, the projected relaxation methods and the modified modulus
method. In actual implementations, we take Ω = D and γ = 2 for the RMSOR method
and the MSOR method. All of computations are performed in MATLAB 7.0. In addition, in
the following tables, ‘–’ denotes that the iteration steps exceed 500 or the residual norms
exceed 10−5.

In our computations, we take the following two examples, which were considered
in [14,18]. Parts of two examples are symmetry, see case 1 of Example 1 and the diagonal
matrix of Example 2. Of course, we consider the non-symmetry case, see case 2 of Example 1
and Example 2.

Example 1 ([14]). Let the LCP(q, A) be given by q = −Az∗ and A = Â + µI, where

Â = tridiag(−rI, S,−tI) =



S −tI 0 · · · 0 0
−rI S −tI · · · 0 0

0 −rI S · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · S −tI
0 0 0 · · · −rI S


∈ Rn×n
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with

S = tridiag(−r, 4,−t) =



4 −t 0 · · · 0 0
−r 4 −t · · · 0 0
0 −r 4 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 4 −t
0 0 0 · · · −r 4


∈ Rm×m,

and
z∗ = (1, 2, 1, 2, . . . , 1, 2, . . .)T ∈ Rn

is the unique solution of the LCP(q, A).

Example 2 (([18]). Let the LCP(q, A) be given by

A =



W −I −I 0 · · · 0 0
0 W −I −I · · · 0 0
0 0 W −I · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · W −I
0 0 0 0 · · · 0 W


∈ Rn×n and q =



−1
1
−1

...
(−1)n−1

(−1)n


∈ Rn,

with

W = tridiag(−1, 4,−1) =



4 −1 0 · · · 0 0
−1 4 −1 · · · 0 0
0 −1 4 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 4 −1
0 0 0 · · · −1 4


∈ Rm×m.

In Examples 1 and 2, the value of m is chosen to be a prescribed positive integer, and then
n = m2. For Example 1, we consider two cases: one is the symmetric case and the other is the
nonsymmetric case. For the former, we take r = t = 1; for the latter, we take r = 1.5 and t = 0.5.
In the implementations, the value of the iteration parameter α used in both the RMSOR method and
the MSOR method is chosen to be 1.3. For convenience, the value of matrix is chosen to be R = 2I
for the RMSOR method, where I is the identity matrix.

For Example 1, for different problem sizes of m and the different values of µ, the
numerical results (including IT, CPU and RES) for the RMSOR method and the MSOR
method are listed in Table 1 when r = t = 1. Clearly, the RMSOR method and the MSOR
method can rapidly compute a satisfactory approximation to the solution of the LCP(q, A).

From the numerical results in Table 1, fixed the value of µ, the iteration steps and
the CPU times of the RMSOR method and the MSOR method are incremental when the
problem size n = m2 is increasing. Whereas, fixing the value of the problem size n = m2,
the iteration steps and the CPU times of the RMSOR method and the MSOR method are
descended when the value of µ is increasing. This implies that both may be fit for the larger
µ when as a solver for solving the LCP(q, A).

Base on the presented numerical results in Table 1, our numerical experiment show
that the RMSOR method compared to the MSOR method requires less iteration steps and
CPU times. This shows that when both RMSOR and MSOR methods are used to solve the
LCP(q, A), the former is superior the latter.

Table 2 presents the numerical results of the nonsymmetric case of Example 1. Specif-
ically, some numerical results (including IT, CPU and RES) for the RMSOR method and
the MSOR method for different problem sizes of m and the different values of µ are listed
when r = 1.5 and t = 0.5. Table 2 shows that the RMSOR method and the MSOR method
can still rapidly compute a satisfactory approximation to the solution of the LCP(q, A).
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Table 1. Numerical results for Example 1 with r = t = 1.

m 20 30 40 50 60

µ = 2

RMSOR

IT 25 25 26 27 27

CPU 0.0313 0.0313 0.0625 0.0625 0.1094

RES 5.908 × 10−6 5.819 × 10−6 8.472 × 10−6 6.027 × 10−6 7.469 × 10−6

MSOR

IT 51 53 53 54 55

CPU 0.0313 0.0781 0.0938 0.1094 0.1875

RES 8.427 × 10−6 7.753 × 10−6 9.798 × 10−6 8.895 × 10−6 7.782 × 10−6

µ = 4

RMSOR

IT 20 20 21 21 21

CPU 0.0313 0.0313 0.0625 0.0625 0.0781

RES 7.566 × 10−6 9.882 × 10−6 5.930 × 10−6 6.748 × 10−6 7.476 × 10−6

MSOR

IT 34 35 35 35 36

CPU 0.0313 0.0625 0.0781 0.1094 0.0938

RES 7.574 × 10−6 6.854 × 10−6 8.276 × 10−6 9.488 × 10−6 7.083 × 10−6

µ = 8

RMSOR

IT 18 18 18 18 18

CPU 0.0156 0.0313 0.0313 0.0469 0.0625

RES 4.675 × 10−6 5.998 × 10−6 7.078 × 10−6 8.014 × 10−6 8.851 × 10−6

MSOR

IT 24 24 25 25 25

CPU 0.0313 0.0313 0.0625 0.0625 0.0781

RES 7.476 × 10−6 9.658 × 10−6 6.343 × 10−6 7.197 × 10−6 7.961 × 10−6

Table 2. Numerical results for Example 1 with r = 1.5 and t = 0.5.

m 20 30 40 50 60

µ = 2

RMSOR

IT 21 21 22 22 23

CPU 0.0156 0.0313 0.0469 0.0469 0.0781

RES 4.669 × 10−6 9.734 × 10−6 7.082 × 10−6 9.528 × 10−6 5.772 × 10−6

MSOR

IT 28 28 29 29 29

CPU 0.0313 0.0313 0.0625 0.0938 0.1094

RES 6.588 × 10−6 8.501 × 10−6 6.252 × 10−6 7.091 × 10−6 7.840 × 10−6

µ = 4

RMSOR

IT 15 15 16 16 16

CPU 0.0156 0.0156 0.0469 0.0625 0.0625

RES 8.430 × 10−6 4.328 × 10−6 5.092 × 10−6 5.756 × 10−6 6.351 × 10−6

MSOR

IT 23 23 24 24 24

CPU 0.0313 0.0469 0.0625 0.0781 0.0781

RES 6.771 × 10−6 8.646 × 10−6 5.609 × 10−6 6.345 × 10−6 7.004 × 10−6

µ = 8

RMSOR

IT 15 15 15 15 15

CPU 0.0156 0.0313 0.0313 0.0313 0.0469

RES 4.011 × 10−6 5.077 × 10−6 5.955 × 10−6 6.719 × 10−6 7.405 × 10−6

MSOR

IT 19 19 20 20 20

CPU 0.0156 0.0313 0.0625 0.0625 0.0938

RES 7.112 × 10−6 8.999 × 10−6 4.977 × 10−6 5.617 × 10−6 6.191 × 10−6
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From Table 2, these numerical results further verify the observed results from Table 1.
Our numerical experiments show that the computational efficiency of the RMSOR method
is better than the MSOR method. It is noted that compared with the symmetric case, the
iteration steps and the CPU times of the RMSOR method and the MSOR method slightly
decrease in the nonsymmetric case.

Table 3 presents the numerical results of Example 2. To compare the RMSOR method
with the MSOR method, Table 3 lists the numerical results (including IT, CPU and RES)
for the different values of µ under the same iteration parameter α. From the presented
numerical results in Table 3, our numerical experiments show that that the RMSOR method
requires less iteration steps and CPU times than the MSOR method. The numerical results
in Table 3 confirm that the RMSOR method is still superior to the MSOR method.

Table 3. Numerical results for Example 2.

α 1.4 1.6 1.8 2

m = 20

RMSOR

IT 33 30 43 80

CPU 0.0313 0.0313 0.0469 0.0938

RES 7.452 × 10−6 9.803 × 10−6 9.105 × 10−6 9.712 × 10−6

MSOR

IT 38 82 296 −
CPU 0.0469 0.0781 0.3438 −

RES 8.648 × 10−6 8.408 × 10−6 9.475 × 10−6 −

m = 30

RMSOR

IT 50 47 54 107

CPU 0.0781 0.0675 0.0938 0.25

RES 6.121 × 10−6 1.691 × 10−6 6.982 × 10−6 8.419 × 10−6

MSOR

IT 57 108 410 −
CPU 0.0938 0.2344 0.5781 −

RES 3.915 × 10−6 7.102 × 10−6 9.266 × 10−6 −

m = 40

RMSOR

IT 65 62 74 129

CPU 0.1406 0.1250 0.2188 0.3594

RES 9.235 × 10−6 7.330 × 10−6 6.697 × 10−6 9.493 × 10−6

MSOR

IT 80 138 − −
CPU 0.1875 0.2813 − −

RES 7.557 × 10−6 8.111 × 10−6 − −

m = 50

RMSOR

IT 79 76 91 156

CPU 0.1719 0.1563 0.2031 0.3438

RES 9.926 × 10−6 8.954 × 10−6 9.862 × 10−6 8.250 × 10−6

MSOR

IT 100 174 − −
CPU 0.2188 0.3281 − −

RES 9.408 × 10−6 8.764 × 10−6 − −

m = 60

RMSOR

IT 93 89 110 178

CPU 0.2969 0.2813 0.3906 0.5625

RES 7.478 × 10−6 9.642 × 10−6 9.490 × 10−6 8.071 × 10−6

MSOR

IT 119 211 − −
CPU 0.3281 0.5938 − −

RES 8.510 × 10−6 7.022 × 10−6 − −
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6. Conclusions

In this paper, by introducing a relaxed matrix to obtain a new equivalent fixed-point
form of the LCP(q, A), we establish a class of relaxed modulus-based matrix splitting
(RMMS) iteration methods. Some sufficient conditions are presented to guarantee the
convergence of RMMS iteration methods. Numerical examples show that the RMMS
iteration method is feasible and overmatches the classical MMS iteration method under
certain conditions.

It is noted that our approach can be extended to other modulus-based matrix splitting
methods, such as two-step modulus-based matrix splitting iteration methods, accelerated
modulus-based matrix splitting methods, and so on.

7. Discussion

From our numerical experiments, we find that both the MMS iteration method and
the RMMS iteration method are sensitive to the iteration parameter. This implies that
the iteration parameter may play an important part in these two methods. Therefore, the
determination of the optimal parameters for these two methods could be still an open
problem, which is an interesting topic in the future.
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