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Abstract: Proper plant leaf disease (PLD) detection is challenging in complex backgrounds and under
different capture conditions. For this reason, initially, modified adaptive centroid-based segmentation
(ACS) is used to trace the proper region of interest (ROI). Automatic initialization of the number
of clusters (K) using modified ACS before recognition increases tracing ROI’s scalability even for
symmetrical features in various plants. Besides, convolutional neural network (CNN)-based PLD
recognition models achieve adequate accuracy to some extent. However, memory requirements
(large-scaled parameters) and the high computational cost of CNN-based PLD models are burning
issues for the memory restricted mobile and IoT-based devices. Therefore, after tracing ROIs,
three proposed depth-wise separable convolutional PLD (DSCPLD) models, such as segmented
modified DSCPLD (S-modified MobileNet), segmented reduced DSCPLD (S-reduced MobileNet),
and segmented extended DSCPLD (S-extended MobileNet), are utilized to represent the constructive
trade-off among accuracy, model size, and computational latency. Moreover, we have compared
our proposed DSCPLD recognition models with state-of-the-art models, such as MobileNet, VGG16,
VGG19, and AlexNet. Among segmented-based DSCPLD models, S-modified MobileNet achieves
the best accuracy of 99.55% and F1-sore of 97.07%. Besides, we have simulated our DSCPLD models
using both full plant leaf images and segmented plant leaf images and conclude that, after using
modified ACS, all models increase their accuracy and F1-score. Furthermore, a new plant leaf dataset
containing 6580 images of eight plants was used to experiment with several depth-wise separable
convolution models.

Keywords: plant leaf disease; depth-wise separable convolution; modified adaptive centroid-based
segmentation; computational latency; model size

1. Introduction

Plant disease is one of the crucial reasons for food insecurity all over the world. It
reduces the quantity of plant production and the quality of plants [1]. For this reason,
early detection and protective measures of various plant diseases are a significant part of
plant monitoring in the agro-industry. However, early detection of plant disorders and
their categories are somehow tough with the naked eye and susceptible to human error.
Supports of machine learning and computer vision opens the opportunities of automatic
image-based decision [2], monitoring, 3D reconstruction [3], and robot-guidance in an
agricultural field.

Plant diseases can be detected through leaves, roots, stems, and other parts of fruits
and vegetables. For early detection of plant diseases, it is essential to detect the symptoms
from the plant part. This monitoring is vital in plant diagnosis. Sometimes, symptoms
appeared on specific parts of plants. Sometimes, symptoms are grown in one plant part
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and then speared over the other plant part. In this phenomenon, there is a chance of
diminishing symptoms in the later stage of plant diseases. Therefore, choosing the right
plant part is a significantly important. However, in our depth-wise separable convolutional
plant leaf disease (DSCPLD) recognition framework, we consider the detection of plant
diseases which spreads through young leaves.

Conventional machine learning algorithms are only appropriate and effective in
specific circumstances and setup [4]. Under diversification and uncontrolled conditions,
accuracy of these algorithms fall drastically. With the breakthrough of deep learning [5],
researchers encouraged to apply deep learning to get state-of-the-art performance in
agriculture. There are still some challenges in this perspective, such as memory restriction
of devices (number of parameters), sustainable accuracy (not a fall in testing a new dataset),
and computational latency (floating point operations and multiply accumulate operation).

Sustainable accuracy is a challenge in convolutional neural network (CNN)-based
plant leaf disease (PLD) recognition models due to a fall in accuracy after adding new
PLD images in Reference [6,7]. To overcome this challenge, it is essential to eradicate
the unnecessary information from PLD images, and consider the heterogeneous image
backgrounds. Moreover, some works are limited to symmetric backgrounds [6–10] and
sensitive to image capturing conditions [11].

Moreover, most of the state-of-the-art CNN models, such as LeNet [12] in Refer-
ence [13], VGG in Reference [6,10,14], GoogleNet [15] in Reference [7], ResNet50, ResNet101,
ResNet152, InceptionV4 in Reference [10], ResNet34 in Reference [16], Student-teacher
CNN in Reference [9], AlexNet [17] in Reference [6,7,18,19], DenseNet in Reference [10],
InceptionV3, DenseNet201, and ResNet in Reference [19], and custom CNN model in Ref-
erence [20–22], achieve better accuracy for their deep and dense structures. Faster R-CNN,
faster R-CNN with FPN, faster R-CNN with TDM, YOLOV3, SSD513, and RetinaNet are
used in Reference [19] for detecting disease symptoms in plants. However still, these mod-
els have restriction to memory (space) for mobile and IoT device-based PLD recognition
and computational costs for faster convergence.

To overcome the above-mentioned limitations of existing PLD recognition frameworks,
we propose depth-wise separable convolution (DSC)-based PLD (DSCPLD) recognition
framework. In these frameworks, we introduce a segmentation technique called adaptive
centroid-based segmentation (ACS) that traces the proper regions of interest (ROIs) under
different circumstances, such as images with shading, images behind objects, and shrunk
images overlapped with other plant leaves, in Reference [23]. Automatic initialization
of optimal cluster number (K) from the PLD images in our modified ACS solves the
insensitivity to proper K in Reference [20]. This technique helps the DSCPLD recognition
model avoid noises and destruction in ROIs irrespective of real field environments. This
phenomenon increases the generalization ability of DSCPLD and restricts to fall in accuracy
depicted in Reference [6,7].

Moreover, to reduce the parameters and computational cost for mobile and IoT
handled applications, depth-wise separable convolutional (DSC)-based PLD (DSCPLD)
models are developed based on MobileNet [24,25]. Finally, a comprehensive trade-off is
drawn among accuracy, parameter size, and computation latency for mobile and IoT-based
PLD recognition.

The primary contributions of this paper:

(i) a new dataset is introduced, including the diversified backgrounds of PLD images.
PLD images are investigated under both direction and illumination-based augmenta-
tions to recognize the PLDs in natural circumstances.

(ii) introduce a modified segmentation technique that can trace the accurate ROI irre-
spective of diversified backgrounds, under uneven illuminations and orientations.
This phenomenon increases the sustainability of our DSCPLD recognition frame-
work. Moreover, it also decreases the possibility of a fall in accuracy for testing an
independent dataset.
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(iii) various modified and reduced DSC-based architectures are developed using seg-
mented images and full PLD images to establish a concrete trade-off among accuracy,
parameter size, and computation latency for mobile and IoT-based PLD recognition.

The rest of the paper is organized as follows. Section 2 discusses the related works;
proposed model for recognizing plant leaf diseases is presented in Section 3; experimental
results and observations are illustrated in Section 4; and, finally, the paper is concluded in
Section 5.

2. Literature Review

Manual plant disease identification and monitoring the plant health is a hectic, indus-
trious, and prolonged task. More often, it is subjective, lavish, and challenging. Therefore,
researchers investigate automatic detection and identification techniques to solve this
problem and make the farmers’ activities more efficient and accurate.

Conventional machine learning algorithms are only appropriate and effective in
specific circumstances and setup [4]. Under diversification and uncontrolled conditions,
the accuracy of these algorithms falls drastically. With the breakthrough of deep learn-
ing [5], researchers encouraged to apply deep learning to get state-of-the-art performance
in agriculture.

Numerous modifications are done in CNN architectures for recognizing PLDs in
recent years. Ferentinos et al. [6] performed CNN models for detecting 58 diseases of
25 plants and achieved 99.53% success rates for VGG. However, accuracy was reduced for
previously unknown data to the training model and fell by 25–35%. In Reference [7], 26
PLDS of 14 crop species were identified using GoogleNet and AlexNet by transfer learning
and learning from image scratch and achieved an accuracy of 99.35%. However, this work
has limitations, such as images are taken under control, and accuracy falls drastically
(above 31%) for the independent test dataset. Sladojevic et al. [8] performed Modified
CaffeNet using ImageNet on more than 3000 images of 13 classes collected from Internet
resources and achieved an accuracy of 96.3%. However, this work still has a limitation of
a small number of sample images in the dataset and can be improved by increasing the
samples. In Reference [10], for detecting 38 PLDs of 14 plants, VGG, ResNet, Inception and
DenseNet were performed and achieved 99.75% accuracy for DenseNet. However, still, the
computational cost is a fact. Another limitation is considering homogeneous backgrounds
with a single leaf. Liang et al. [11] proposed a custom CNN model to perform on rice blast
disease recognition and achieved better accuracy than using feature extraction technique,
such as histogram-based local binary pattern (HLBP) and haar wavelet transformation
(HaarWT). In this work, custom CNN architecture achieved the best accuracy of 95.83%.
However, this work is sensitive to image capturing conditions and needs to expand the
number of samples.

In Reference [13], two common diseases of banana were detected using LeNet architec-
ture. The experiment is performed on 3700 banana color images collected from PlantVillage
and also executed in grayscale images. In this work, LeNet architecture achieved 92–99%
accuracy. However, their proposed work still has limitations in taking the image in real con-
ditions, and accuracy falls significantly in grayscale images. Rahman et al. [14], performed
two state-of-the-art CNN architectures, such as VGG16 and InceptionV3, for recognizing
rice diseases. Besides, they have proposed a two-stage CNN model, which is effective for
memory restricted devices. The authors identified that their manual process of dividing
symptom classes might cause misclassifications. Liu et al. proposed PLD recognition
models, including five CNN architectures (AlexNet, GoogleNet, ResNet20, and VGGNet-
16) and two machine learning algorithms, such as support vector machine (SVM) and
backpropagation neural network (BPNN), for recognizing apple leaves, in Reference [18].
Among them, modified AlexNet achieved the best accuracy of 97.62%. As future work, they
figured out the need to expand the dataset. Arsenovic et al. performed various state-of-
the-art CNN architectures AlexNet, VGG19, InceptionV3, DenseNet201, and ResNet with
generative adversarial network (GAN) data augmentation for recognizing 42 classes of 12
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species in Reference [19] and achieved the best accuracy of 90.88%. Besides, in this work,
faster R-CNN, faster R-CNN with FPN, faster R-CNN with TDM, YOLOV3, SSD513, and
RetinaNet were performed for object detection in the plant. Moreover, this work proves
the generalization by executing independent training and test dataset. They pointed out
that in future, they will integrate their work into a mobile application. However, there is
no analysis of computational complexity and memory requirements for mobile devices
in this work. Authors in Reference [20] trained the custom CNN models for both full
images and segmented images of 10 diseases and achieved 98.6% for S-CNN and 42.3%
for F-CNN and having limitations of proper segmentation in uneven illuminations and
different orientations.

Chen et al. [21] proposed a custom CNN model named LeafNet for extracting features
of diseases for tea leaf images. Moreover, in this work, dense scale-invariant feature
transform features (DFTF) were also extracted and later used to construct a bag of visual
words (BOVW) model. However, then support vector machine (SVM), and multi-layer
perceptron (MLP) classifiers were performed to classify diseases. Among all the models,
LeafNet algorithm identified tea leaf diseases with an accuracy of 90.16%. Authors figured
out to investigate their model’s universality for different species. Transfer learning was used
in Reference [26] to identify plants. Six state-of-the-art architectures (AlexNet, DenseNet169,
InceptionV3, ResNet34, SqueezeNet-1.1, and VGG13) were performed on PlantVillage
dataset and achieved an accuracy of more than 99.2%. A saliency map as a visualization
method helped to learn the diversified features. In Reference [27], the authors investigated
the computational complexity and memory requirements for plant leaf disease recognition.
In Reference [28], authors performed faster R-CNN, region-based fully convolutional
network (R-FCN) and SSD, backend with VGG16 to recognize the tomato diseases. Their
motivations are to overcome limitations of tracing disease features in different illumination
and complex background. They used 5000 images and later increased the images using
geometrical and intensity transformations. Despite data augmentation, obtained accuracy
is not high and on an average 85.98%. In Reference [29], the authors proved the impact of
segmentation and background removal. To do so, the authors used 1567 images to identify
multiple diseases in the same sample. Pre-trained GoogLeNet CNN architecture achieved
75 to 100% accuracy depending on species. The work in Reference [30] represented a
concrete study among various pooling strategies, such as mean-pooling, max-pooling, and
stochastic pooling, to recognize rice leaf diseases using CNNs. In this work, CNN achieved
95.48% for stochastic pooling. The authors pointed out the need to expand the sample
images and to optimize the number of parameters. In Reference [31], machine learning-
based algorithms support vector machine (SVM), linear regression (LR), and random forest
(RF) are performed to classify six classes of peanut leaf diseases. Moreover, five CNN
models: VGG, AlexNet, ResNet50, DenseNet121, and InceptionV3 are investigated with
augmentation and without augmentation. From them, with augmentation DenseNet121
achieved 95.98% and without augmentation ResNet50 achieved 94.36%. The authors
investigated that with augmentation and ensemble with machine learning algorithms, deep
learning models achieved better accuracy. Ensemble of DenseNet121 and RF achieved
better accuracy of 97.59%. However, this work still has limitations of less number of disease
images and classes.

In recent times, some comprehensive surveys [4,23,27] are conducted to sum up
the limitations of current PLD recognition methods. Some challenges of current PLD
recognition works are as follows:

(i) diversified data with heterogeneous backgrounds, such as natural, complex, and
under uncontrolled capture conditions.

(ii) more accurate identification due to similar symptoms in various plant diseases.
(iii) drastically fall in accuracy.
(iv) disease phases identification due to symptom changes.

Most of the cases, authors solved the above mentioned problems to a certain extent;
however, there are many opportunities to improve the PLD recognition models.
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(i) sustainable accuracy. To do so:

• use diversified data with heterogeneous backgrounds, such as natural, complex
backgrounds, and under uncontrolled capture conditions.

• use segmentation phase to eradicate unnecessary noises.
• test on a dataset that is not part of a train set.

(ii) investigates memory requirements and computational latency to integrate our model
into mobile.

Table 1 represents the brief descriptions of various PLD recognition frameworks, and
Table 2 represents the limitations of existing PLD recognition frameworks.

Table 1. Summary of some benchmark plant leaf disease (PLD) recognition frameworks.

References Data Collected from Classes/Species Number of
Images

Data
Augmentation

CNN Architecture Accuracy

[6] PlantVillage 58/25 54,309 Yes VGG 99.53%
[7] PlantVillage 38/14 54,306 Yes GoogleNet 99.35%
[8] Collected 15/6 4483 Yes Modified CaffeNet 96.30%
[10] PlantVillage 38/14 54,305 Yes DenseNet121 99.75%
[11] Collected 2/1 5808 Yes Custom 95.83%
[13] PlantVillage 3/1 3700 Yes Modified LeNet 92.88%
[14] Collected 9/1 1426 Yes Two stage CNN 93.3%
[18] Collected 4/1 1053 Yes Modified AlexNet 97.62%
[19] PlantVillage, Collected 42/12 79,265 Yes ResNet152 90.88%
[20] PlantVillage, Collected 10/1 17929 N/A F-CNN, S-CNN 98.6%
[21] Collected 7/1 7905 Yes Custom 90.16%
[26] PlantVillage 38/14 54,323 Yes InceptionV3 99.76%
[28] Collected 9/1 5000 Yes R-FCNN, ResNet50 85.98%
[29] Collected 56/14 1567 Yes GoogleNet 94%
[30] Collected 10/1 500 No Custom 95.48%
[31] Collected 6/1 6029 Yes DenseNet+RF 97.59%

Table 2. Limitations of some benchmark PLD recognition frameworks.

References Fall in Accuracy Complex
Background

Multiple Diseases
in a Sample

Train and Test Data
from Same Dataset

Computational
Complexity

Memory
Restrictions

[6] NR NR PR NR NR NR
[7] NR NR NR NR NR NR
[8] NR R R NR NR NR

[10] NR NR NR NR NR NR
[11] NR NR NR NR NR NR
[13] NR NR NR NR NR NR
[14] NR PR NR NR NR R
[18] R NR NR NR NR NR
[19] R R R R R NR
[20] R R R R NR NR
[21] NR NR NR NR NR NR
[26] NR PR NR NR NR NR
[28] PR R R NR NR NR
[29] R PR NR NR NR NR
[30] NR PR NR NR NR NR
[31] NR R PR NR NR NR

NR = not resolved, R = resolved, PR = partially resolved.

3. Materials and Proposed Method

In this section, our proposed framework is discussed in detail. Initially, the disease
recognition framework optionally enhances the RGB PLD image, and then ACS is applied
to trace the ROIs. Finally, our DSC-based architectures based on the modification of
MobileNet [24,25] is performed to recognize the PLDs. The proposed DSCPLD recognition
framework has been exhibited in Figure 1.
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Figure 1. The proposed framework for recognizing plant leaf disease.

3.1. Dataset

In the experiment, 4606 original RGB images of eight different plants are used to train,
and 1316 PLD images are used to validate. These images are collected from the PlantVillage
dataset [32], except the images for rice disease. Rice disease images are gathered from
the Rice disease image dataset [33] in Kaggle, the International Rice Research Institute
(IRRI) [34], and Bangladesh Rice Research Institute (BRRI) [35]. We vary the natural (in
Figure 2a,b,k), plain (in Figure 2e–j,l), and complex (in Figure 2a,f,g) image backgrounds
to trace a disease properly in different backgrounds. Further, the framework considers
various symptoms, such as small (in Figure 2d,f,h,j,l), large (in Figure 2e,g), isolated (in
Figure 2d–h,j,l), and spread (in Figure 2a–c,e,g,i,k). Twelve disease samples of eight plants
are represented, as shown in Figure 2. For generalization, 658 independent images from
twelve different classes are used during the test phase. Complete information regarding
the PLD dataset is described in Table 3.

Table 3. Dataset descriptions of plant leaf disease recognition.

Disease Class #Org. Images
Distribution Techniques

Train Validation Test

Corn_northern_blight 800 560 160 80
Pepper_bacterial_spot 800 560 160 80
Grape_black_measles 540 378 108 54

Rice_blast 840 588 168 84
Rice_bacterial_leaf_blight 950 665 190 95

Rice_sheath_rot 400 280 80 40
Rice_Tugro 250 175 50 25

Potato_early_blight 820 574 164 82
Potato_late_blight 310 217 62 31
Apple_black_rot 210 147 42 21

Mango_sooty_mold 310 217 62 31
Cherry_powdery_mildew 350 245 70 35

Total 6580 4606 1316 658
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)
Figure 2. Samples of plant leaf disease images under numerous health conditions in various back-
grounds and having different symptoms: (a) Rice Sheath-rot, (b) Rice Tungro, (c) Rice Bacterial
leaf-blight, (d) Rice Blast, (e) Potato Late-blight, (f) Pepper Bacterial-spot, (g) Potato Early-blight
Pepper Bacterial-spot, (h) Grape Black-measles, (i) Corn Northern Leaf-blight, (j) Apple Black-rot, (k)
Mango Sooty-mold, and (l) Cherry Powdery-mildew.

3.1.1. Adding Direction Disturbance to Dataset

One of the challenges in PLD recognition is uncontrolled capturing conditions, such
as image capturing in different orientations. Due to the relative position of the acquisition
device, the characteristics of images can be spatially transformed. However, it is challenging
to have PLD images from every angle to meet the challenges. For this reason, we use
different directional augmentation to expand our PLD dataset. This augmentation increases
the adaptability of our DSCPLD models.

Rotation in an image refers to rotation of all pixels in a certain angle. Suppose P(x0,y0)
is a certain pixel in an image. After rotating by θ◦ clockwise, this pixel changes into position
P(x,y). The co-ordinates of P(x0,y0) and P(x,y) are represented in Equations (1) and (2).

x0 = rcosα

y0 = rsinα
, (1)

x = rcos(α− θ)

y = rsin(α− θ)
. (2)

The mirror symmetry in an image refers to expand all pixels after selecting a line as
an axis. In horizontal mirror symmetry, selects a vertical line in an image and expands
all pixels. However, in vertical mirror symmetry, selects a horizontal line in an image
and expand all pixels. Suppose an image’s width is w, P(x0,y0) is a certain pixel in an
image. The point’s coordinate will be as shown in Equations (3) and (4), respectively, after
applying horizontal and vertical mirror symmetry.

x0 = w− x0

y0 = y0
, (3)



Symmetry 2021, 13, 511 8 of 29

x = x0

y = w− y0
. (4)

In our DSCPLD recognition framework, we use rotation and mirror symmetry (vertical
and horizontal) on our original PLD images as shown in Figure 3a–g.

(a) (b) (c) (d)

(e) (f) (g)

Figure 3. Directional Disturbance: (a) Original Rice Blast image. (b) Rotated by 45°. (c) Rotated
by 90°. (d) Rotated by 180°. (e) Rotated by 270°. (f) Horizontal mirror symmetry. (g) Vertical
mirror symmetry.

3.1.2. Adding Lighting Disturbance to Dataset

Weather condition is one of the challenges in capturing images. Sunlight orientation,
shadow and foggy weather have an impact on the brightness of acquired images. For
improving the generalization ability, we generate images by adjusting the sharpness value,
brightness value, and contrast value.

Sharpening the image means to enhance edges and borders as the objects in that image
emerge. Suppose, a pixel in RGB is P(x,y) and P(x, y) = [R(x, y), B(x, y), G(x, y)]T . For
adding sharpness to the image, we apply Laplace to that pixel using Equation (5).

∇2[P(x, y)] =

 ∇2[R(x, y)]
∇2[G(x, y)]
∇2[B(x, y)]

. (5)

Brightness in an image refers to the increase or decrease of RGB values of a pixel.
Suppose B0 is the original RGB value and d is the brightness transformation factors. After
applying the brightness transformation factor, we get the adjusted RGB value (B) as shown
in Equation (6).

B = B0 × (1 + d). (6)

In contrast, in an image, a larger RGB value is increased, and a smaller RGB value is
decreased based on the brightness’s median. Suppose B0 is the original RGB value, d is
the brightness transformation factors, and i is the brightness’s median. After applying the
contrast, we get the adjusted RGB value (B) as shown in Equation (7).

B = i + (B0 − i)× (1 + d). (7)
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We apply various illumination-based augmentations in our DSCPLD recognition
framework, such as changes in contrast, brightness, and sharpness, on our PLD dataset, as
shown in Figure 4a–g.

(a) (b) (c) (d)

(e) (f) (g)

Figure 4. Illumination Disturbance: (a) Original Rice Blast image. (b) Brightened image. (c) Darkened
image. (d) Less contrast image. (e) More contrast image. (f) Sharpened image. (g) Blur image.

3.2. Enhancing Image Using Statistical Features

To improve the PLD image quality, the enhancement is optional as it depends on
the magnitude of degradation. Two enhancement conditions have been used here using
statistical features, such as mean (µ), median (x′), and mode (M0) of a plant leaf image. The
two conditions for image enhancement are devised as in Equations (8) and (9).

µ < x′ < M0, (8)

µ < x′ > M0. (9)

The performance of image enhancement conditions is as shown in Figure 5a–h. For
having symmetric color in ROI and image background, our enhancement condition per-
forms well, as shown in Figure 5a, using Equation (8). Using Equation (9), for presence
of leaf shadow on the image background, our enhancement condition performs well as
shown in Figure 5b.
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(a) (b)

(c) (d)

(e) (f) (g) (h)

Figure 5. Effect of image enhancement on recognizing PLD: (a) rice blast disease image, and (b) apple
black rot disease image. (c,d) are histogram of (a,b), respectively; (e,g) are the color segmentation
results of (a,b), respectively, in traditional K-means clustering having extra noise without image
enhancement, and (f,h) are the segmentation results of (a,b), respectively, in our modified color
segmentation algorithm with image enhancement.

3.3. Clustering by Adaptive Centroid-Based Segmentation

The modified adaptive centroid-based segmentation (ACS) has been applied once the
PLD image quality has been enhanced. Initially, RGB PLD image is converted to L*a*b color
space PLD image. Our modified ACS focuses on initializing optimal K, automatically from
the leaf image based on chromatic value (a and b), to eliminate the limitation of lacking
sensitivity of K in Reference [20]. In traditional K-means clustering, Euclidean distance
between each point and centroid has been calculated to check whether the point is in the
same cluster. In the modified ACS, data points are investigated for eligibility by using a
statistical threshold. After that, we calculate the distance between these eligible points
and centroids, thus, comparatively reducing the effort to form clusters and restrict the
misclustering of data points. The statistical threshold (ST) value has been calculated by
Equation (10).

ST =

√√√√ N

∑
i=1

((Xi − C)2)/N. (10)

where Xi, C, and N stand for data points, the centroid of data points, and the total number
of data points. The automatic initialization of K using ACS can effectively detect image
characteristics for different orientations and illuminations. ACS also increases the scala-
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bility of the proposed segmentation technique, as shown in Figure 5f,h over traditional
segmentation technique, as shown in Figure 5e,g. A few examples under different circum-
stances are as shown in Figure 6a–e. Rice leaf image in natural background with presence of
shadow and shrunk is as shown in Figure 6a. A blur rice leaf image in natural background
with same color light is presented in Figure 6b. In Figure 6c, there is a rice leaf image with
symmetric color of ROI and shadow of objects behind it. Figure 6d represents a rice leaf
image with complex background. A potato image with the presence of the shadow behind
the ROIs, as shown in Figure 6e. Segmented results of plant samples in Figure 6a–e are
presented, respectively, in Figure 6f–j.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6. The effect of our modified segmentation technique under different critical environments:
(a–e) are the RGB PLD samples. (f–j) are segmented regions of interest (ROIs) of (a–e) after imple-
menting adaptive centroid-based segmentation.

3.4. Recognition by DSCPLD Models

In this section, we describe the basic operations of depth-wise separable convolution,
basic modules of MobileNet variations, DSCPLD model design, and tuning.

3.4.1. Depth-wise Separable Convolution

Our PLD recognition framework is constru cted based on depth-wise separable con-
volution (DSC). Depth-wise separable convolution comprises two convolutions; one is
depth-wise convolution, and another one is point-wise convolution. DSC splits 3 × 3
convolutions into a 3 × 3 depth-wise convolution and a 1 × 1 point-wise convolution. Tradi-
tional convolution acts both the channel-wise and spatial-wise computation in a particular
step. In traditional convolution, convolution for each input channel is done with one
specific kernel, and the convolved output is the convolved results from all the channels.
On the contrary, DSC breaks the operation into two steps: Depth-wise convolution is a
channel-wise convolution that performs the convolution using individual input channels.
Then, do point-wise convolution, which is similar to traditional convolution with kernel
size 1 × 1. Point-wise convolution combines the results of each channel. The comparison
among the convolutions is as shown in Figure 7. The computational cost of the traditional
convolution (CostC) is shown in Equation (11).

CostC = M.K.K.N.P. (11)

However, in case of depth-wise separable convolution, the computational cost (CostD)
is shown in Equation (12).

CostD = M.M.K.K.N + M.M.N.P. (12)
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The weight (WC) considered for traditional convolution is shown in Equation (13).

WC = K.K.N.P. (13)

The weight (WD) considered for depth-wise separable convolution is shown in
Equation (14).

WD = K.K.N + N.P, (14)

where N is the number of input channel, and P is the number of output channel. K × K
is the width and height of the kernel, and MxM is the width and height of an input
feature map. Finally, the reduction on weights (FW) and operation (FCost) are derived in
Equations (15) and (16).

Fw =
WD
WC

=
1
P
+

1
K2

. (15)

FCost =
CostD
CostC

=
1
P
+

1
K2

. (16)

Using 3 × 3 depth-wise separable convolution [24], the computation cost decreases 8
or 9 times than the traditional convolutional layer.

Figure 7. Comparison among various convolutions.

3.4.2. Basic Depth-wise Separable Convolution Modules

Numerous CNN models are constructed based on the modifications of convolution
layers. AlexNet, VGG, Inception, ResNet are performed comparatively better in recognizing
PLD. However, it is not feasible to consider those models for mobile and IoT-based PLD
recognition applications due to their large number of network parameters. For getting
the better of it, depth-wise separable convolutions are proposed to expand the trade-
off effectiveness among accuracy, parameter size, and computational latency. There are
two variations in depth-wise separable convolution: point-wise convolution adjacent
to depth-wise convolution, as shown in Figure 8b, and batch normalization and ReLU
used between each of depth-wise convolution and point-wise convolution, as shown in
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Figure 8c. From these concepts, we propose three architectures; one is based on Figure 8b,
depicted in Reference [25],called modified MobileNet (called S-modified MobileNet for
segmented images and F-modified MobileNet for full leaf images). The other two are
reduced MobileNet (called S-reduced MobileNet for segmented images and F-reduced
MobileNet for full leaf images) based on MobileNet version in Reference [24], as shown
in Figure 8c, and another one is extended MobileNet (called S-extended MobileNet for
segmented images and F-extended MobileNet for full leaf images) based on Figure 8c using
max-pooling layer once after last point-wise convolution.

In MobileNetV2 [36], linear bottleneck and inverted residual structure are added
to build an efficient structures. It includes an additional 1× 1 convolution followed by
pair of depth-wise convolution and point-wise convolution. Moreover, there is a residual
connection between input and output depending on their same number of channels as
shown in Figure 9.

In MobileNetV3 [37], with all these layers modified swish non-linearities, and squeeze
and excitation are added to make the MobileNet efficient.

There are two extra hyper-parameters in MobileNet versions: width multiplier (α)
and resolution multiplier (ρ). Width multiplier (α) is used to make the network thinner and
resolution multiplier (ρ) is used to control the input and size of each layer.

Figure 8. Primary modules for PLD recognition. (a) traditional convolutional layer, (b) quantization friendly depth-wise separable
convolution, and (c) depth-wise separable convolution proposed in MobileNet.

Figure 9. Primary module of MobileNetV2 for PLD recognition.
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3.4.3. Model Design and Tuning

As one of our goals was to establish a concrete representation of trade-off among the
accuracy, parameter size and computational latency, we compared our DSCPLD recognition
models with state-of-the-art CNN models, such as AlexNet (input size: 224 × 224), VGG
(input size: 180 × 180), MobileNetV1 (input size: 224 × 224), MobileNetV2 (input size: 224 ×
224), and MobileNetV3 (input size: 224 × 224). Architectures of three DSCPLD recognition
models based on MobileNet are represented in Table 4 with input size 224 × 224, Table 5
with input size 224 × 224 and Table 6 with input size 256 × 256, respectively. We split our
PLD dataset into three parts: train, validation, and test in the ratio of 70-20-10, as shown
in Table 3. In the training phase, we train our DSCPLD models and other state-of-the-art
models using our PLD dataset. We validate our DSCPLD models using PLD images from
our dataset for tuning hyper-parameters and alleviating the biasness of those models. For
generalization, we test our DSCPLD models with our PLD dataset and another benchmark
rice dataset. Performance of models is evaluated on mean test accuracy (mAcc) and mean
F1-score (mF). Then, we investigate the impact of segmentation by executing all the models
using both segmented and full leaf images. For all the experiments, various optimizers,
such as Adam, SGD, and RMSprop, are used to optimize weights and minimizes the
loss. We investigate the best loss of our DSCPLD models using learning rate of 0.001 and
0.0001. Momentum for SGD optimizers is 0.8 and 0.9. We use categorical cross-entropy as
loss function and softmax as activation in output layers for multi-class PLD recognition.
Hyper-parameters used to tune the models for recognizing PLDs are shown in Table 7.

Table 4. S-modified MobileNet architecture for PLD recognition.

Function Filter/Pool #Filters Output #Parameters

Input - - 224× 224 0
Convolution 3× 3 32 32× 222× 222 896
Max pooling 2× 2 - 32× 111× 111 0

Separable Convolution 3× 3 64 64× 109× 109 2400
Separable Convolution 3× 3 64 64× 107× 107 4736

Max pooling 2× 2 - 64× 53× 53 0
Separable Convolution 3× 3 128 128× 51× 51 8896
Separable Convolution 3× 3 128 128× 49× 49 17,664

Max pooling 2× 2 - 128× 24× 24 0
Separable Convolution 3× 3 256 256× 22× 22 34,176
Separable Convolution 3× 3 256 256× 20× 20 68,096

Max pooling 2× 2 - 256× 10× 10 0
Global Average Pooling - - 1× 1× 256 0

Dense - - 1× 1× 1024 263,168
Dense - - 1× 1× 12 12,300

Softmax - - 1× 1× 12 0

Table 5. S-reduced MobileNet architecture for PLD recognition.

Function Filter/Pool #Filters Output #Parameters

Input - - 224× 224 0
Convolution 3× 3 32 32× 222× 222 896

Depth-wise Convolution 3× 3 32 32× 64× 64 32,800
Point-wise Convolution 1× 1 64 64× 64× 64 2112
Depth-wise Convolution 3× 3 64 64× 1× 1 262,208
Point-wise Convolution 1× 1 128 128× 1× 1 8320
Global Average Pooling - - 1× 1× 128 0

Dense - - 1× 1× 12 1548
Softmax - - 1× 1× 12 0
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Table 6. S-extended MobileNet architecture for PLD recognition.

Function Filter/Pool #Filters Output #Parameters

Input - - 256× 256 0
Convolution 3× 3 32 32× 254× 254 896

Depth-wise Convolution 3× 3 32 32× 75× 75 32,800
Point-wise Convolution 1× 1 64 64× 75× 75 2112
Depth-wise Convolution 3× 3 64 64× 4× 4 262,208
Point-wise Convolution 1× 1 128 128× 4× 4 8320

Max pooling 2× 2 - 128× 2× 2 0
Dense - - 1× 1× 1024 5,25,312
Dense - - 1× 1× 12 12,300

Softmax - - 1× 1× 12 0

Table 7. Hyper-parameters used in various models for PLD recognition.

Hyper-Parameters SGD Adam RMSprop

Epochs 50–150 50–150 50–150
Batch size 32, 64 32, 64 32, 64

Learning rate 0.001 0.001, 0.0001 0.0001
β1 - 0.9 -
β2 - 0.999 -

Momentum 0.8, 0.9 - -

4. Experimental Result and Observation
4.1. Hardware Requirements

All the experiments were conducted on a configuration of AMD Ryzen 7 2700X Eight-
core 3.7 GHz Processor. The operating system is Ubuntu version 20.04, 32 GB RAM, Nvidia
GeForce RTX 2060 Super of 8 GB GPU Memory. Keras backend with TensorFlow was used.

4.2. Dataset Collection

In this experiment, 4606 images of eight plants of size 256 × 256 pixels are used to
train, and 1316 PLD images are used to validate. Moreover, independent of 658 PLD
images are used to test twelve classes. Data are collected from different internet sources
and benchmark dataset. Source-wise statistics of our PLD image dataset are shown in
Table 8.
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Table 8. Source-wise dataset distribution summary.

Sources Species Diseases No. of Training Images No. of Validation Images No. of Test Images No. of Training
Images (Source-Wise)

No. of Validation Images
(Source-Wise)

No. of Test Images
(Source-Wise)

PlantVillage

pepper Bacterial-spot 560 160 80

2898 1459 414

Potato Early-blight 574 164 82
Late-blight 217 62 31

Corn Northern-blight 560 160 80
Mango Sooty-mold 217 62 31
Apple Black-rot 147 42 21
Cherry Powdery-mildew 245 70 35
Grape Black-measles 378 108 54

Kaggle Rice Blast 588 168 84 1253 358 179Bacterial leaf-blight 665 190 95

IRRI/BRRI/
other sources Rice Sheath-rot 280 80 40 455 130 65Tungro 175 50 25

Total images 4606 1316 658
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4.3. Performance Evaluation of Our DSCPLD Frameworks Based on Mean Accuracy and Mean
F1-Score Using Segmented Images

To evaluate our proposed DSCPLD recognition model’s performance, we compare
them with MobileNetV1, MobileNetV2, MobileNetV3, VGG16, VGG19, and AlexNet based
on train, validation, test accuracy, and F1-score. To do so, we first segment the images
using our modified ACS and then apply the images to the models. In our evaluation, as
the number of samples is imbalanced classwise, we use some performance indicators, such
as mean class accuracy (mAcc) and mean class F1-score (mF), as Equations (17)–(23).

Mean Class Accuracy of a model (mCAcc) = ∑k(Recognition rate of each class× Nk)

N
, (17)

Recognition rate of a class =
True Positive + True Negative

Number of all samples of that class ,
(18)

Mean Class Precision of a model (mCP) = ∑k( Precision of each class× Nk)

N
, (19)

Precision of a class =
True Positive

True Positive + False Positive
, (20)

Mean Class Recall of a model (mCR) = ∑k(Recall of each class× Nk)

N
, (21)

Recall of a class =
True Positive

True Positive + False Negative
, (22)

Mean F1 score of a class (mF) = 2× mP×mR
mP + mR

, (23)

where k represents each of the class, Nk indicates the number of samples in class k, and N
is the total number of samples used to test the model.

The comparison among PLD recognition models using segmented images with per-
spective to accuracies and mean F1-score (mF) is as shown in Table 9.

Table 9. A concrete representation of accuracies and mean F1-score of various PLD recognition models using seg-
mented images.

Models Training Accuracy Validation Accuracy Mean Test Accuracy Mean F1-Score

VGG16 99.91% 99.53% 99.21% 96.74%
VGG19 99.93% 99.53% 99.39% 96.91%
AlexNet 99.07% 98.82% 98.78% 96.31%

MobileNetV1 99.93% 99.41% 99.24% 95.67%
MobileNetV2 99.96% 99.82% 99.41% 96.07%
MobileNetV3 100% 99.89% 99.55% 96.97%

S-extended MobileNet 99.78% 99.31% 98.37% 95.92%
S-reduced MobileNet 99.93% 99.70% 99.41% 96.93%
S-modified MobileNet 100% 99.70% 99.55% 97.07%

4.4. Performance Evaluation of Our DSCPLD Frameworks Using Segmented Images Based on
Model Size and Computational Latency

We calculate the number of training parameters for memory requirements and floating-
point operation (FLOPs) and multiply-accumulate operation (MACC) for computational
latency for further evaluation. FLOPs are used to measure the complexity of a model
and represent the operation of a model. MACC represents the number of additions
and multiplications (dot product computation). Calculations of FLOPs and MACC are
performed, as shown in Reference [38]. Concrete memory requirements and computational
complexity representation of various models are as shown in Table 10.
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Table 10. A concrete representation of computational latency and model size of various PLD recogni-
tion models using segmented images.

Models Image Size FLOPs MACC # Parameters

VGG16 180× 180 213.5 M 106.75 M 15.2 M
VGG19 180× 180 287.84 M 143.92 M 20.6 M
AlexNet 224× 224 127.68 M 63.84 M 6.4 M

MobileNetV1 224× 224 83.87 M 41.93 M 3.2 M
MobileNetV2 224× 224 81.91 M 40.96 M 1.61 M
MobileNetV3 224× 224 59.8 M 29.90 M 3.2 M

S-extended MobileNet 256× 256 16.86 M 8.43 M 0.84 M
S-reduced MobileNet 224× 224 3.70 M 2.15 M 0.31 M
S-modified MobileNet 224× 224 5.78 M 2.89 M 0.41 M

4.5. Selection of the Best DSCPLD Framework Based on All Criteria

From Table 9, it is shown that S-modified MobileNet and state-of-the-art architecture
MobileNetV3 achieve the best mean test accuracy of 99.55% on our PLD dataset. However,
MobileNetV3 requires almost 5–10 times parameters than our proposed three DSCPLD
recognition models, as shown in Table 10. Besides, S-modified MobileNet achieves the
best mean F1-score of 97.07%. According to model size, FLOPs and MACCs as shown in
Table 10, the best one is S-reduced MobileNet; however, considering all factors included in
Tables 9 and 10, S-modified MobileNet is best among all the PLD recognition models for
mobile and IoT-based PLD recognition.

Confusion metrices, ROC curves, Accuracy, and Loss curves of our three proposed
DSCPLD models are as shown in Figures 10a–d, 11a–d, and 12a–d.

4.6. Processing Steps Using Our DSCPLD Framework

A processing example of rice blast leaf image using S-modified MobileNet is shown
in Figure 13a–r with some activation on each of the layers. The presence of symmetrical
color in both infected area and image background makes this leaf disease recognition quite
difficult. Results in Figure 13a–r proves the followings:

• effectiveness of our segmentation technique in a complex situation.
• accurate recognition in natural background.

4.7. Performance Evaluation of Our PLD Frameworks Using Segmented Images and Full
Leaf Images

Further, we execute DSCPLD models (F-modified MobileNet, F-reduced MobileNet
and F-extended MobileNet) and six state-of-the-art CNN models (VGG16, VGG19, AlexNet,
MobileNetV1, MobileNetV2, and MobileNetV2) using full leaf images to evaluate the
effectiveness of segmentation. The performance of DSCPLD models is shown in Table 11.
From Table 11, F-modified MobileNet (modified mobileNet using full leaf images) achieves
the highest accuracy of 99.10%. The performance comparisons among the segmented-based
DSCPLD models and DSCPLD models using full leaf images are as shown in Tables 12–14.
The confusion matrix and ROC curve of F-modified MobileNet are shown in Figure 14a,b.
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(a)

(b) (c) (d)

Figure 10. (a) Confusion matrix for recognizing PLDs; (b) ROC curve of each PLD; (c) Accuracy curve, and (d) Loss curve in S-modified
MobileNet-based recognition framework.
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(a)

(b) (c) (d)

Figure 11. (a) Confusion matrix for recognizing PLDs; (b) ROC curve of each PLD; (c) Accuracy curve, and (d) Loss curve in S-reduced
MobileNet-based recognition framework.
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(a)

(b) (c) (d)

Figure 12. (a) Confusion matrix for recognizing PLDs; (b) ROC curve of each PLD; (c) Accuracy curve, and (d) Loss curve in S-extended
MobileNet-based recognition framework.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r)

Figure 13. Processing steps of depth-wise separable convolutional PLD (DSCPLD) recognition framework using S-modified
MobileNet: (a) Original Rice Blast image. (b) Segmented image after applying adaptive centroid-based segmentation (ACS).
(c) Activations on the first CONV layer. (d) Activations on the first ReLU layer. (e) Activations on the first Max-pooling layer.
(f) Activations on the first separable CONV layer. (g) Activations on the second separable CONV layer. (h) Activations on
the second Max-pooling layer. (i) Activations on the second ReLU layer. (j) Activations on the third separable CONV layer.
(k) Activations on the fourth separable CONV layer. (l) Activations on the third Max-pooling layer. (m) Activations on the
third ReLU layer. (n) Activations on the fifth separable CONV layer. (o) Activations on the sixth separable CONV layer.
(p) Activations on the fourth Max-pooling layer. (q) Activations on the fourth ReLU layer. and (r) Predicted result.
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4.8. Performance Evaluation of Our PLD Frameworks Using Various Parameters on MobileNetV3

Further, we execute MobileNetV3 on segmented PLD images and investigate the
results using width multipliers 0.25, 0.5, 0.75, and 1.0 with fixed size of image 224× 224 as
shown in Table 15. Then, we execute resolutions 128, 160, 192, and 224 with a definite width
multiplier 1.0 as shown in Table 16. From Tables 15 and 16, it is observed that S-modified
MobileNet is more effective than the variations experimented on MobileNetV3 based on
accuracy, computational latency, and model size.

(a)

(b)

Figure 14. (a) Confusion matrix for recognizing PLDs and (b) ROC curve of each PLD in F-modified
MobileNet-based recognition framework.
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Table 11. Various accuracies and mean F1-score of PLD models using full leaf images.

Models Training Accuracy Validation Accuracy Mean Test Accuracy Mean F1-Score

VGG16 99.78% 99.39% 98.78% 96.32%
VGG19 99.78% 99.41% 99.01% 96.54%
AlexNet 98.71% 98.64% 98.34% 95.89%

MobileNetV1 99.81% 99.43% 98.79% 96.54%
MobileNetV2 99.89% 99.53% 98.99% 96.56%
MobileNetV3 99.91% 99.53% 99.05% 96.58%

F-extended MobileNet 99.58% 99.21% 98.14% 95.22%
F-reduced MobileNet 99.91% 99.58% 99.07% 96.60%
F-modified MobileNet 99.91% 99.63% 99.10% 96.63%

Table 12. Performance comparison of each disease using S-modified MobileNet and F-modified MobileNet.

Class S-modified MobileNet F-modified MobileNet

Accuracy (%) F1-Score (%) Accuracy (%) F1-Score (%)

Corn_northern_blight 99.08 96.34 98.18 92.77
Pepper_bacterial_spot 99.85 99.37 99.39 97.50
Grape_black_measles 99.85 99.08 99.39 96.30

Rice_blast 99.54 98.24 99.24 96.93
Potato_early_blight 100 100 99.70 98.87

Apple_black_rot 99.08 84.24 98.63 80
Mango_sooty_mold 99.85 98.36 99.39 93.75

Cherry_powdery_mildew 99.54 95.52 98.78 87.88
Rice_bacterial_leaf_blight 99.85 99.45 99.85 99.45

Potato_late_blight 99.85 98.41 99.24 91.80
Rice_sheath_rot 99.85 98.76 98.94 91.02

Rice_Tugro 100 100 99.85 97.96
Total 99.55 97.07 99.10 96.63

Table 13. Performance comparison of each disease using S-reduced MobileNet and F-reduced MobileNet.

Class S-reduced MobileNet F-reduced MobileNet

Accuracy (%) F1-Score (%) Accuracy (%) F1-Score (%)

Corn_northern_blight 98.63 94.54 98.18 92.77
Pepper_bacterial_spot 99.08 99.38 99.39 97.50
Grape_black_measles 99.54 98.15 99.39 96.30

Rice_blast 99.54 98.18 99.24 96.93
Potato_early_blight 99.85 99.40 99.70 98.87

Apple_black_rot 98.94 83.72 98.63 80
Mango_sooty_mold 99.85 98.36 99.39 93.75

Cherry_powdery_mildew 98.63 97.07 98.78 97.88
Rice_bacterial_leaf_blight 99.85 99.48 99.85 99.45

Potato_late_blight 99.54 96.88 99.24 91.80
Rice_sheath_rot 98.93 93.33 97.85 98.05

Rice_Tugro 100 100 99.85 97.96
Total 99.41 96.93 99.07 96.60

From Table 12, it is shown that S-modified MobileNet achieves improved accuracy of
0.45% and F1-score of 0.44% more than the F-modified MobileNet due to eradication of
extra noises from the leaf images in situations, such that obstacles behind the leaf images,
images with shading and shrunk images overlapped with other plant leaves, as shown in
Figure 6a–e.
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Table 14. Performance comparison of each disease using S-extended MobileNet and F-extended MobileNet.

Class S-extended MobileNet F-extended MobileNet

Accuracy (%) F1-Score (%) Accuracy (%) F1-Score (%)

Corn_northern_blight 97.87 91.36 97.18 90.67
Pepper_bacterial_spot 99.08 96.25 98.79 97.50
Grape_black_measles 99.54 97.25 99.39 96.30

Rice_blast 99.39 97.62 99.24 96.93
Potato_early_blight 100 100 99.70 98.87

Apple_black_rot 98.48 73.06 97.03 70.03
Mango_sooty_mold 99.39 95.24 99.39 93.75

Cherry_powdery_mildew 98.63 86.96 97.78 87.88
Rice_bacterial_leaf_blight 99.85 99.47 99.85 99.45

Potato_late_blight 99.54 95.24 99.24 90.67
Rice_sheath_rot 98.93 90.67 97.85 88.05

Rice_Tugro 99.84 97.96 99.85 97.96
Total 98.37 95.92 98.14 95.22

Table 15. A concrete representation of experiments on MobileNetV3 with width multipliers.

Models Mean Test Accuracy Mean F1-Score FLOPs MACC # Parameters

0.25 MobileNetV3-224 95.48% 93.39% 4.30 M 2.15 M 0.38 M
0.5 MobileNetV3-224 97.78% 95.01% 15.66 M 7.83 M 0.99 M
0.75 MobileNetV3-224 98.81% 95.64% 34.16 M 17.08 M 1.98 M
1.0 MobileNetV3-224 99.55% 96.97% 59.8 M 29.90 M 3.2 M

Table 16. A concrete representation of experiments on MobileNetV3 with resolutions.

Models Mean Test Accuracy Mean F1-Score FLOPs MACC # Parameters

1.0 MobileNetV3-128 96.88% 95.39% 19.55 M 9.77 M 3.2 M
1.0 MobileNetV3-160 99.08% 95.78% 30.48 M 15.24 M 3.2 M
1.0 MobileNetV3-192 99.31% 96.64% 43.93 M 21.97 M 3.2 M
1.0 MobileNetV3-224 99.55% 96.97% 59.8 M 29.90 M 3.2 M

4.9. Evaluation of Generalization for Our DSCPLD Framework

As in the segmentation phase, noises are removed, only ROI with symptoms is applied
to our DSCPLD recognition models. This phenomenon increases the generalization and
sustainability of those PLD recognition models. For evaluation of generalization in our
S-modified MobiNet, we test this model using a rice leaf disease dataset (https://github.
com/aldrin233/RiceDiseases-DataSet (accessed on 17 February 2021)). We consider only
rice blast and rice bacterial blight leaf images for testing our DSCPLD model. There are
160 infected rice blast leaf images, including 80 rotated rice blast leaf disease images and
180 rice bacterial leaf blight images, including 90 rotated images. S-modified MobileNet
achieves the best mean test accuracy of 98.53% for recognizing the two rice disease classes,
and accuracy (mAcc) falls down 1.02% less than testing with our dataset, as shown in
Table 17. For further evaluation, we also test this dataset using F-modified MobileNet,
and accuracy (mAcc) falls down 3.57% less than testing with our dataset using F-modified
MobileNet, as shown in Table 18.

Table 17. Performance evaluation trained on our dataset using S-modified MobileNet and test on
different datasets using various optimizers.

Dataset SGD Adam RMSprop

Rice dataset 98.25% 97.05% 98.53%
Our PLD dataset 99.31% 99.39% 99.55%

https://github.com/aldrin233/RiceDiseases-DataSet
https://github.com/aldrin233/RiceDiseases-DataSet
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Table 18. Performance evaluation trained on our dataset using F-modified MobileNet and test on
different datasets using various optimizers.

Dataset SGD Adam RMSprop

Rice dataset 90.65% 92.25% 95.53%
Our PLD dataset 98.39% 98.53% 99.10%

4.10. Comparison among Some Benchmark PLD Recognition Frameworks

Most of the works did not investigate fall in accuracy with the independent dataset,
computational complexity, and memory restriction as shown in Table 2. However, in our
work, we investigate a fall in accuracy for testing a new set of plant images. It is 1.02% for S-
modified MobileNet, as shown in Table 17 and 3.57% for F-modified MobileNet, as shown in
Table 18 for testing a rice dataset (separated from training dataset). However, generalization
is better than the works in Reference [6,7]. By performing DSCPLD recognition models,
we prove that we can reduce the computational latency and memory spaces for mobile
and IoT-based PLD recognition than CNN models, as shown in Table 10. These models
not only mobile compatible PLD recognition models but also achieve better accuracy than
other PLD works, as shown in Tables 9 and 19.

Table 19. Comparison among some benchmark PLD recognition frameworks.

References Classes/Species CNN
Architecture

Fall in
Accuracy

Computational
Complexity

Memory
Restriction

Accuracy

[6] 58/25 VGG NR NR NR 99.53%
[7] 38/14 GoogleNet NR NR NR 99.35%
[8] 15/6 Modified CaffeNet NR NR NR 96.30%
[11] 2/1 Custom NR NR NR 95.83%
[13] 3/1 Modified LeNet NR NR NR 92.88%
[14] 9/1 Two stage CNN NR NR R 93.3%
[18] 4/1 Modified AlexNet R NR NR 97.62%
[19] 42/12 ResNet152 R R NR 90.88%
[20] 10/1 F-CNN, S-CNN R NR NR 98.6%
[21] 7/1 Custom NR NR NR 90.16%
[28] 9/1 R-FCNN, ResNet50 PR NR NR 85.98%
[29] 56/14 GoogleNet R NR NR 94%
[30] 10/1 Custom NR NR NR 95.48%
[31] 6/1 DenseNet+RF NR NR NR 97.59%

Our work 12/8 S-modified MobileNet R R R 99.55%

NR = not resolved, R = resolved, PR = partially resolved.

5. Conclusions

Accurate plant leaf disease recognition is an issue in the agro-industry. The recent use
of deep learning methods adds precision agriculture by early and accurate detection of
plants’ diseases. Deep feature extraction and faster processing embedded by hardware in
deep learning methods make this optimal decision possible. However, sustainable accuracy,
computational latency, and model size are the factors to recognize plant leaf diseases in
mobile and IoT-based devices.

To gain sustainable accuracy, we introduced a new dataset containing PLD images
under complex and natural backgrounds. Furthermore, we added some direction and
illumination-based augmentation to the dataset. It increases the scalability of tracing
the ROI in various circumstances. In this paper, we introduced a DSCPLD recognition
framework, in which the modified segmentation technique initially finds optimal K from
the PLD images and solves the limitation of segmentation-based CNN in Reference [20].
In the segmentation phase, image characteristics for uncontrolled conditions, such as
under uneven illumination and different orientations, are correctly traced and make the
models sustainable. However, accuracy falls at 1.02% using S-modified MobileNet and
3.57% using F-modified MobileNet in case of testing new data from another dataset. These
methods provide better results than that of the methods reported in Reference [6,7] in terms
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of accuracy. Besides, S-modified MobileNet is very effective for mobile and IoT-based
applications due to the lower network parameters of the model and lower computational
cost.

We will extend our proposed model to detect multiple plant leaf diseases from the
same image in the future. Further, we will focus on the stages of plant leaf diseases to
visualize the symptoms’ changes with time.
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Abbreviations
The following abbreviations are used in this manuscript:

CNN convolutional neural network
PLD plant leaf disease
DSCPLD depth-wise separable convolution-based PLD
ACS modified adaptive centroid-based segmentation
Faster R-CNN with TDM faster R-CNN with top down modulation
Faster R-CNN with FPN faster R-CNN with feature pyramid network
GAN generative adversarial network
R resolved
PR partially resolved
NR not resolved
S-modified MobileNet modified MobileNet using segmented leaf images
S-reduced MobileNet reduced MobileNet using segmented leaf images
S-extended MobileNet extended MobileNet using segmented leaf images
F-modified MobileNet modified MobileNet using full leaf images
F-reduced MobileNet reduced MobileNet using full leaf images
F-extended MobileNet extended MobileNet using full leaf images
BPNN backpropagation neural network
SVM support vector machine
DFTF dense scale-invariant feature transform features
BOVW bag of visual words
MLP multi-layer perceptron
HLBP histogram-based local binary pattern
HaarWT haar wavelet transformation
RF random forest
LR logistic regression
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