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Abstract: In this work, we present a unified approach to the thermodynamics of hadron–quark–
gluon matter at finite temperatures on the basis of a quark cluster expansion in the form of a
generalized Beth–Uhlenbeck approach with a generic ansatz for the hadronic phase shifts that fulfills
the Levinson theorem. The change in the composition of the system from a hadron resonance gas to a
quark–gluon plasma takes place in the narrow temperature interval of 150–190 MeV, where the Mott
dissociation of hadrons is triggered by the dropping quark mass as a result of the restoration of chiral
symmetry. The deconfinement of quark and gluon degrees of freedom is regulated by the Polyakov
loop variable that signals the breaking of the Z(3) center symmetry of the color SU(3) group of QCD.
We suggest a Polyakov-loop quark–gluon plasma model with O(αs) virial correction and solve the
stationarity condition of the thermodynamic potential (gap equation) for the Polyakov loop. The
resulting pressure is in excellent agreement with lattice QCD simulations up to high temperatures.

Keywords: Polyakov quark–gluon plasma; hadron resonance gas; Beth–Uhlenbeck approach; lattice
QCD thermodynamics

1. Introduction

Recently, continuum extrapolated lattice QCD (LQCD) thermodynamics results for
physical quark masses have become available [1–4]. It has now become a major goal to con-
struct an effective low-energy QCD model that would reproduce these results in the finite
temperature and low chemical potential domain to high accuracy. Such a description could
form a basis for extrapolations to the region of low temperatures and high baryochemical
potentials where the sign problem still prevents LQCD obtaining benchmark solutions.

QCD Dyson–Schwinger equations [5,6] and functional renormalization group (FRG)
methods [7,8] are promising tools to investigate the nonperturbative aspects of the QCD
phase diagram in the vicinity of the chiral and deconfinement transitions from first princi-
ples. However, to date, they do not self-consistently account for the bound state formation.
Therefore, despite a satisfactory description of the temperature dependence of the renor-
malized light chiral condensate [8], a question arises regarding the relationship to the chiral
perturbation theory limit, where the onset of chiral condensate melting is solely due to light
pseudoscalar meson excitations in the medium [9]. The account for bound states in the
FRG approach to low-energy QCD is still under development [10] and not yet applicable
to address the role of hadronic bound states for chiral condensate melting.

Complementary to these first-principle approaches is the Polyakov–quark–meson
(PQM) model (see, e.g., [11] and references therein), which is suitable to study the inter-
relation of chiral and deconfinement transitions. Both transitions are closely correlated,
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but in comparison with LQCD, the chiral restoration temperature result is too high. It
could be suspected that the inclusion of further mesonic and baryonic degrees of freedom
could improve the situation. Furthermore, the dynamic quark self-energy effects due to
dressing by the meson cloud should be taken into account. In the PQM model, mesons are
not composites but elementary degrees of freedom.

In order to properly account for the composite nature of mesons and baryons, as well
as their Mott dissociation in a hot and dense medium, a Beth–Uhlenbeck approach can be
employed [12–22]. This approach has been limited to the application of low-lying mesons
only and did not take into account perturbative corrections, meaning that a quantitative
description of LQCD thermodynamics has not yet been possible.

To overcome these limitations, the generic behavior of the scattering phase shifts in the
hadronic channels has been constructed in the spirit of a cluster expansion model which
reproduces the full hadron resonance gas at low temperatures and the quark–gluon plasma
(QGP) with O(αs) virial corrections at high temperatures [21,22]. The model embodied the
main consequence of chiral symmetry restoration in the quark sector: the lowering of the
thresholds for the two and three-quark scattering state continuous spectrum, which triggers
the transformation of hadronic bound states to resonances in the scattering continuum. In
the early version of this model, the gap equation for the Polyakov-loop was incomplete,
and the model of the phase shifts was a rather complicated one.

We suggest here a Polyakov-loop quark–gluon plasma model with O(αs) virial cor-
rection in order to obtain a satisfactory agreement with lattice QCD simulations up to
high temperatures and solve the complete stationarity condition of the thermodynamic
potential (gap equation) for the Polyakov loop. The phase shift model employed in this
work is simpler than in previous works and universally applicable for all hadronic species.
It is in accordance with the Levinson theorem and results in the vanishing of hadronic
contributions to the thermodynamics at high temperatures.

2. Cluster Virial Expansion to Quark-Hadron Matter

The main idea behind unifying the description of the quark–gluon plasma (QGP) and
the hadron resonance gas (HRG) phase of low-energy QCD matter is the fact that hadrons
are strong, nonperturbative correlations of quarks and gluons. In particular, mesons and
baryons are bound states (clusters) of quarks and should therefore emerge in a cluster
expansion of interacting quark matter as new, collective degrees of freedom.

For the total thermodynamic potential of the model, from which all other equations of
state can be derived, we make the following ansatz:

Ωtotal(T; φ) = ΩQGP(T; φ) + ΩMHRG(T) , (1)

where ΩQGP(T; φ) = ΩPNJL(T; φ) + Ωpert(T; φ) describes the thermodynamic potential
of the quark and gluon degrees of freedom with a perturbative part Ωpert(T; φ) and a
nonperturbative mean field part ΩPNJL(T; φ) = ΩQ(T; φ) + U (T; φ) that can be decom-
posed into the quark quasiparticle contribution ΩQ(φ; T) and the gluon contribution that
is approximated by a mean field potential U (T; φ). Note that all these contributions to the
QGP thermodynamic potential are intertwined by the traced Polyakov loop φ as the order
parameter for confinement. The correlations beyond the mean field approximation which
correspond to the hadronic bound states and their scattering state continuum are described
by the Mott–HRG pressure PMHRG(T). This is an HRG pressure that takes into account the
dissociation of hadrons by the Mott effect, when their masses would exceed the mass of the
corresponding continuum of unbound quark states. A detailed description and numerical
evaluation of these contributions is given below.
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2.1. Beth–Uhlenbeck Model for HRG with Mott Dissociation

For the MHRG part of the pressure of the model, we have PMHRG(T) = −ΩMHRG(T),

PMHRG(T) = ∑
i=M,B

Pi(T) , (2)

where the sum extends over all mesonic (M) and baryonic (B) states from the particle data
group (PDG), comprising an ideal mixture of hadronic bound and scattering states in the
channel i that are described by a Beth–Uhlenbeck formula. Then, the partial pressure of the
hadron species i is

Pi(T) = ∓di

∫ ∞

0

dp p2

2π2

∫ ∞

0

dM
π

T ln
(

1∓ e−
√

p2+M2/T
)dδi(M; T)

dM
, (3)

where di is the degeneracy factor. For the phase shift of the bound states of Ni quarks in
the hadron i, we adopt the simple model that is in accordance with the Levinson theorem:

δi(M; T) = π[Θ(M−Mi)−Θ(M−Mthr,i(T))]Θ(Mthr,i(T)−Mi). (4)

Inserting (4) into (3) results in

Pi(T) = ∓di

∫ ∞

0

dp p2

2π2 T
[
ln
(

1∓ e−
√

p2+M2
i /T
)
− ln

(
1∓ e−

√
p2+Mthr,i(T)2/T

)]
Θ(Mthr,i(T)−Mi). (5)

The temperature dependent threshold mass of the two (or three) quark continuum for
mesonic (baryonic) bound state channels i is

Mthr,i(T) =
√

2[(Ni − Ns)m(T) + Nsms(T)] , (6)

where Ns = 0, 1, ..., Ni is the number of strange quarks in hadron i. The factor
√

2
originates from quark confinement in the following way. In the confining vacuum, the
quarks are not simple plane waves with an arbitrarily long wavelength, but due to the
presence of bag-like boundary conditions, their wavelength shall not exceed a certain
length scale. Therefore, a minimal quark momentum applies to the quark dispersion
relations Eq,min(T) =

√
m2

q(T) + p2
q,min, which for the choice pq,min = mq(T) results in

Eq,min(T) =
√

2mq(T). For details, see [23]. The chiral condensate is defined as

〈ψ̄ψ〉q,T = −∂Ω(T)
∂mq

, q = u, d, s, (7)

where ml (ms) is the current-quark mass in the light (strange) quark sector, l = u, d. It is an
order parameter for the dynamical breaking of the chiral symmetry that is reflected in the
corresponding temperature dependence of the dynamical quark masses mq(T).

In our present model, we do not treat the dynamical quark mass as an order parameter
that should follow from the solution of an equation of motion (gap equation) that minimizes
the thermodynamic potential, as in the case of the Polyakov-loop variable φ, but we use
the quantity ∆l,s(T) from simulations of 2 + 1 flavor lattice QCD as an input. This quantity
has been introduced in [24] with the definition

∆l,s(T) =
〈ψ̄ψ〉l,T − (ml/ms)〈ψ̄ψ〉s,T

〈ψ̄ψ〉l,0 − (ml/ms)〈ψ̄ψ〉s,0
, (8)

and was used later on, e.g., in [1,2]. Further, we assume the following for the temperature-
dependent light quark mass,

m(T) = m(0)∆l,s(T) + ml , (9)
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where ml = 5.5 MeV is the current-quark mass, and for the strange quark mass, we adopt

ms(T) = m(T) + ms −ml = m(0)∆l,s(T) + ms , (10)

with ms = 100 MeV. The LQCD result for the temperature dependence of the chiral
condensate [1,2] can be fitted by

∆l,s(T) =
1
2

[
1− tanh

(
T − Tc

δT

)]
, (11)

where Tc = 154 MeV is the common pseudocritical temperature of the chiral restoration
transition of both LQCD Collaborations and δT = 26 MeV is its width for the data from [1],
while δT = 22.7 MeV for those from [2], see Figure 1. For our present applications modeling
QCD thermodynamics, we use the fit of the chiral condensate (11), but with the modern
value of Tc = 156.5± 1.5 MeV [25]. We have checked that the results for the total pressure
of our model are practically inert against a changing value of δT within the above range of
variation. Inserting (9) and (10) into (6), we get

Mthr,i(T) =
√

2[Nim(T) + Ns(ms(T)−m(T))]

=
√

2[msNs + ml(Ni − Ns) + m(0)Ni∆l,s(T)] , (12)

and using (9) results in

Mthr,i(T) =
√

2
{

msNs + ml(Ni − Ns) + m(0)Ni

[
1
2
− 1

2
tanh

(
T − Tc

δT

)]}
. (13)

Figure 1. Comparison of the fit (11) for the temperature dependence of the chiral condensate
∆l,s(T) and the LQCD data for it from the Wuppertal–Budapest Collaboration [1] and the hotQCD
Collaboration [2].

In Figure 2 we show the pressure (2) as a function of temperature for the hadron
resonance gas (HRG) model with stable hadrons (red line) and for the HRG with Mott
dissociation of hadrons (MHRG) according to the simple phase shift model (4) employed
in the present work. These results are compared to the LQCD data from the HotQCD
Collaboration [4] (green band) and the Wuppertal–Budapest Collaboration [3] (blue band).
We want to point out that due to the Mott dissociation effect hadrons completely vanish
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from the system at T ≈ 190 MeV while the pressure of the ideal HRG model is misleadingly
still in perfect agreement with LQCD data at this temperature!

Figure 2. Pressure as a function of temperature for the HRG model with stable hadrons (red line) and
for the MHRG model with Mott dissociation of hadrons according to the simple phase shift model (4)
employed in the present work. These results are compared to the LQCD data from the HotQCD
Collaboration [4] (green band) and the Wuppertal–Budapest Collaboration [3] (blue band).

2.2. Polyakov-Loop Improved Nambu–Jona-Lasinio (PNJL) Model

The underlying quark and gluon thermodynamics are divided into a perturbative
contribution Ωpert(T) which is treated as virial correction in two-loop order following [26]
and a nonperturbative part described within a PNJL model in the form

PPNJL(T; φ) = PQ(T; φ) + U (T; φ) , (14)

where the quark quasiparticle contribution is given by

PQ(T; φ) = 4Nc ∑
q=u,d,s

∫ dp p2

2π2
T
3

ln
[
1 + 3φ(1 + Yq)Yq + Y3

q

]
, Yq = e−

√
p2+m2

q(T)/T , (15)

and the Polyakov-loop potential U (T; φ) takes into account the nonperturbative gluon
background in a meanfield approximation using the polynomial fit of [27]

U (T; φ) =
b2(T)

2
φ2 +

b3

3
φ3 − b4

4
φ4 , (16)

where the temperature-dependent coefficient b2(T) is given by

b2(T) = a0 + a1

(
T0

T

)
+ a2

(
T0

T

)2
+ a3

(
T0

T

)3
, (17)

and the coefficients are given in Table 1.
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Table 1. Set of values for the Polyakov-loop potential U (T; φ) [27].

a0 a1 a2 a3 b3 b4

6.75 −1.95 2.625 −7.44 0.75 7.5

2.3. Perturbative Contribution

It is well known that the lattice QCD thermodynamics at high temperatures of T ∼ 1 GeV
follow a Stefan–Boltzmann like behavior ∝ T4, but with a 15–20% reduction of the effective
number of degrees of freedom. It has been observed, e.g., in [26], that this deviation can
be described by the virial correction to the pressure due to the quark–gluon scattering at
O(αs) shown in Figure 3. Here, we modify the standard expression [28] of the form

Ωpert(T; φ) = − 8
π

αsT4
[

I(T; φ) +
3

π2 (I(T; φ))2
]

(18)

by introducing the modified integral

I(T; φ) =
∫ ∞

Λ/T
dx x fφ(x), (19)

where the generalized Fermi distribution function of the PNJL model for the case of
vanishing quark chemical potential considered here is defined as

fφ(x) = [φ(1 + 2Y)Y + Y3]/[1 + 3φ(1 + Y)Y + Y3], Y = exp(−x) (20)

and Λ = ml(T) is the momentum range below which nonperturbative physics dominates
and is accounted for by the dynamically generated quark mass. Here, we use a temperature-
dependent, regularized running coupling [29–31]

αs =
g2

4π
=

12π

11Nc − 2N f

(
1

ln(r2/c2)
− c2

r2 − c2

)
, (21)

where r = 3.2T, c = 350 MeV and Nc = N f = 3.

Figure 3. Two-loop diagram for the contribution of the one-gluon exchange interaction to the
thermodynamic potential of quark matter.

3. Stationarity Condition for the Polyakov Loop

The pressure follows from the thermodynamic potential under the condition of sta-
tionarity with regard to variations of the order parameters. Since the chiral condensate is
fixed by the fit (11) to the numerical result from lattice QCD, the Polyakov loop φ is the
only free-order parameter in the system to be varied; this condition means

PQGP(T) = −min
φ

{
ΩQGP(T; φ)

}
. (22)
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This is realized by demanding

dΩQGP(T; φ)

dφ
=

dU(T; φ)

dφ
+

dΩQ(T; φ)

dφ
+

dΩpert(T; φ)

dφ
= 0 , (23)

where the separate contributions come from the variations of the Polyakov loop potential

dU(T; φ)

dφ
= b2(T)φ + b3φ2 − b4φ3 , (24)

and the quark quasiparticle pressure

dΩQ(T; φ)

dφ
= 4Nc ∑

q=u,d,s

∫ dp p2

2π2
(1 + Yq)Yq

1 + 3φ(1 + Yq)Yq + Y3
q

, (25)

with Yq = exp[−
√

p2 + m2
q(T)/T], and the O(αs) quark loop contribution

dΩpert(T; φ)

dφ
= − 8

π
αsT4

[
dI(φ, T)

dφ
+

6
π2 I(φ, T)

dI(φ, T)
dφ

]
, (26)

where
dI(T; φ)

dφ
=
∫ ∞

Λ/T
dx x

d fφ(x)
dφ

, (27)

and

d fφ(x)
dφ

=
Y + 2Y2 − 2Y4 −Y5

(1 + 3φ(1 + Y)Y + Y3)
2 =

(1 + 2Y)Y− (2 + Y)Y4

(1 + 3φ(1 + Y)Y + Y3)
2 , Y = exp(−x) . (28)

The equation resulting from the stationarity condition (23) can be dubbed a “gap
equation” for φ since it has a similar structure to the quark mass gap equation, known
from Nambu–Jona-Lasinio models. In previous work [21,22], the contribution to this
gap equation from the O(αs) quark loop diagram was omitted. Since this perturbative
contribution is calculated with the Polyakov-loop generalized quark distribution functions
fφ, it has to be included to the generalized gap equation for the traced Polyakov loop. This
has been done in the present paper for the first time.

Moreover, an infrared cutoff is placed at the loop integrals in the perturbative con-
tribution which is set at the medium-dependent quark mass. Therefore, the full pertur-
bative contribution in accordance with [28] is restored only at high temperatures, where
m(T)→ ml and φ ≈ 1, while in the vicinity of the chiral and deconfinement transition, the
effects of both the quark mass and Polyakov loop are taken into account. The solution of
this gap equation gives the temperature dependence of the traced Polyakov loop φ. This is
discussed in the next section.

4. Results
4.1. Polyakov Loop

We performed the numerical solution of the gap Equation (23) for the traced Polyakov
loop as a function of the temperature which enters via the coefficient b2(T) of the Polyakov-
loop potential (16) and the Boltzmann factors Yq and Y of the distribution functions in the
integrals (26) and (27). The result is shown in Figure 4 along with a comparison to the
lattice QCD data for the renormalized Polyakov loop from the TUMQCD Collaboration [32]
and the Wuppertal–Budapest Collaboration [1].
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Figure 4. The traced Polyakov loop φ from the solution of the stationarity condition (23) on the
thermodynamical potential as a function of temperature (magenta solid line) compared with the
lattice results for the renormalized Polyakov loop the TU Munich QCD (TUMQCD) Collaboration [32]
(green band) and the Wuppertal–Budapest Collaboration [1] (blue symbols).

In Figure 5, we compare the Polyakov-loop susceptibility dφ/dT with the chiral suscep-
tibility d∆l,s/dT and obtain a strong synchronization effect of the chiral and Polyakov-loop
crossover transitions. This is demonstrated by the almost coincident vertical lines indicating
the peak positions of these transitions at Tχ = 156.5 MeV and Tφ = 159.0 MeV, respectively.

Figure 5. The temperature derivatives of the chiral condensate (chiral susceptibility d∆l,s/dT, red
solid line) and of the Polyakov loop (Polyakov-loop susceptibility dφ/dT, ) as functions of temper-
ature. The vertical lines indicate their almost coincident peak positions at Tχ = 156.5 MeV and
Tφ = 159.0 MeV, respectively.

4.2. Pressure

The main result of this work is a unified approach to the pressure of hadron–quark–
gluon matter at finite temperatures that is in excellent agreement with lattice QCD ther-
modynamics (see Figure 6). The nontrivial achievement of the presented approach is that
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the Mott dissociation of the hadrons described by the MHRG model pressure conspires
with the quark–gluon pressure described by the Polyakov-loop quark–gluon model with
O(αs) corrections in such a way that the resulting pressure as a function of temperature
yields a smooth crossover behavior. By virtue of the Polyakov-loop-improved perturba-
tive correction, the agreement with the lattice QCD thermodynamics extends to the high
temperatures of T = 1960 MeV reported in [33]; see Figure 7.

Figure 6. The temperature dependence of the total scaled pressure (red solid line) and it’s constituents:
MHRG (coral dotted line), quark (dashed magenta line), Polyakov-loop potential U (T; φ) (dash–
dotted green line) and perturbative QCD contribution (dash-dotted blue line) compared to the lattice
QCD data: HotQCD Collaboration [4] (green band) and Wuppertal–Budapest Collaboration [3]
(blue band).

Figure 7. The temperature dependence of the total scaled pressure (red solid line) and its constituents:
MHRG (coral dotted line), quark (dashed magenta line), Polyakov-loop potential U(φ, T) (dash-
dotted green line) and perturbative QCD contribution (dash-dotted blue line) compared to the lattice
QCD data: HotQCD Collaboration [4] (green band) and Wuppertal–Budapest Collaboration [3] (blue
band), and the high-temperature result [33] (magenta band).
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4.3. Quark Number Susceptibilities

In the present work, we did not consider the generalization of the approach to finite
chemical potentials which would then allow us to evaluate the (generalized) susceptibil-
ities as derivatives of pressure with respect to the corresponding chemical potential in
appropriate orders. On that basis, ratios of susceptibilities could be formed as they indicate
different aspects of the QCD transition between the limiting cases of a HRG and a QGP.
Here, we would like to discuss, as an insight into these extensions of the approach, one of
the simplest susceptibility ratios, namely the dimensionless ratio of quark number density
to quark number susceptibility:

R12(T) =
nq(T)

µq χq(T)

∣∣∣∣
µq=0

, (29)

where nq(T) = ∂P(T, µq)/∂µq|µq=0 and χq(T) = ∂2P(T, µq)/∂µ2
q|µq=0. This ratio (29) has

two well-known limits. At low temperatures, in the hadron resonance gas phase, it is
given by

RHRG
12 (T) =

T
3µq

tanh
(

3µq

T

)
, (30)

while in the QGP phase for massless quarks it approaches

RQGP
12 (T) =

1 + (1/π2)(µq/T)2

1 + (3/π2)(µq/T)2 . (31)

An evaluation of (29) for the present model for the QCD pressure would require
its extension to a finite µq, which we will perform in a subsequent work. In the present
model, we used our knowledge of the composition as a function of temperature to define a
proxy for (29) by interpolating between the two known limits (30) and (31) with the partial
pressure of the HRG, xHRG(T) = PMHRG(T)/Ptot(T), as

R12(T) = xHRG(T)RHRG
12 (T) + [1− xHRG(T)]R

QGP
12 (T) . (32)

The result is shown in Figure 8 for two values of µq/T, for which lattice QCD results
in the two-flavor case [34] are shown for a comparison. The fact that the present approach
reproduces the transition between HRG and QGP asymptotics well in the narrow range
of temperatures 150 MeV . T . 190 MeV is a nontrivial result. In previous effective
approaches to describe the finite-temperature lattice QCD thermodynamics results based
on a spectral broadening of the HRG states, the transition to the QGP asymptotics occurred
at a much higher temperature 250 MeV . T . 400 MeV [35] or never [26,36,37]. In
the latter case, the QGP asymptotic behavior is mimicked by an appropriate number of
unaffected low-lying hadronic degrees of freedom.
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Figure 8. The dimensionless ratio of quark number density to quark number susceptibility
R12(T) = nq(T)/(µqχq(T))|µq=0 as a function of temperature for µq/T = 0.4 (red solid line) and
µq/T = 0.8 (blue dash-dotted line) compared to the lattice QCD data [34] µq/T = 0.4 (red band),
µq/T = 0.8 (blue band). For details, see text.

5. Discussion and Conclusions

The main result of the present work is a unified approach to the thermodynamic
potential of hadron–quark–gluon matter at finite temperatures that is in excellent agreement
with lattice QCD thermodynamics on the temperature axis of the QCD phase diagram.
The key aspect to this approach is the quark cluster decomposition of the thermodynamic
potential within the Beth–Uhlenbeck approach [38], which allowed us to implement the
effect of Mott dissociation to the hadron resonance gas phase of low-temperature/low-
density QCD. The MHRG model description includes, in principle, the information about
the spectral properties of all hadronic channels with their discrete and continuous part of the
spectrum, encoded in the hadronic phase shifts. Instead of solving the equations of motion
with a coupled hierarchy of Schwinger–Dyson equations in the one, two and many-quark
channels self-consistently (a formidable task of finite-temperature quantum field theory),
we applied a schematic model for the in-medium phase shifts that was in accordance
with the Levinson theorem and sufficiently general to be applicable for all multiquark
cluster channels. This phase shift model requires only the knowledge of the vacuum mass
spectrum which can come from the particle data group tables or from relativistic quark
models and the medium dependence of the multi-quark continuum threshold.

The latter requires the knowledge of the quark mass (i.e., the chiral condensate)
with its medium dependence as an order parameter of the chiral symmetry breaking and
restoration. Since a quark mean field model of the (P)NJL type is not sufficient as it lacks
the back-reaction from the hadron resonance gas on the quark propagator properties, we
employ here the chiral condensate measured in continuum-extrapolated, full lattice QCD
with physical current quark masses as an input. This procedure restricts the applicability
of the present model to small chemical potentials only, where lattice QCD data for the
chiral condensate are available. In a further development of the model, a beyond-mean-
field derivation of the quark self-energy will be given. Furthermore, at the same level
of approximation, the corresponding sunset-type diagrams for the Φ functional of the
2PI approach should be derived and evaluated. This would allow us to calculate the
generalized polarization-loop integrals which determine the analytic properties of the multi-
quark states. These can be equivalently encoded in the corresponding medium-dependent
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phase shifts of the generalized Beth–Uhlenbeck approach, as has been demonstrated in
particular examples for pions, diquarks [16,39] and nucleons [40] within the Polyakov-loop
generalized NJL model.

Another important aspect of the present approach is that it leads to a relativistic density
functional theory for QCD matter in the QCD phase diagram, with the known limits of
the HRG and pQCD manifestly implemented. Such an approach allows us to predict
the existence and location of critical endpoints in the QCD phase diagram, as has been
demonstrated, e.g., in [41], where a dependence on a free parameter could have—besides
the critical endpoint of the liquid–gas transition in the nuclear matter phase—another
endpoint for the deconfinement transition or none. This “crossover all over” case of
the QCD phase diagram is impossible to address with two-phase approaches that use a
Maxwell construction for the phase transition. Other models that are in use for the analysis
of the critical behavior of QCD (see, e.g., [42,43]) impose this by assuming a so-called
“switch function” between HRG and QGP phases. They are valuable tools but do not have
predictive power.
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