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Abstract: In this work, we study cylindrically symmetric solutions within SU(3) non-Abelian Proca
theory coupled to a Higgs scalar field. The solutions describe tubes containing either the flux of a
color electric field or the energy flux and momentum. It is shown that the existence of such tubes
depends crucially on the presence of the Higgs field (there are no such solutions without this field).
We examine the dependence of the integral characteristics (linear energy and momentum densities)
on the values of the electromagnetic potentials at the center of the tube, as well as on the values of
the coupling constant of the Higgs scalar field. The solutions obtained are topologically trivial and
demonstrate the dual Meissner effect: the electric field is pushed out by the Higgs scalar field.

Keywords: non-Abelian Proca theory; longitudinal electric field; flux tube; energy flux; momentum density

1. Introduction

In quantum chromodynamics (QCD), it is assumed that the color non-Abelian fields
between quark and anti-quark are confined in a tube due to a strong nonlinear interaction
between different components of such fields. The properties of this tube are such that
outside the tube, all fields, and hence the energy density, decrease exponentially with
distance. Inside such a tube, there is a longitudinal electric field connecting quarks and
attracting them to each other; this is the explanation of quark confinement. In classical SU(3)
non-Abelian Yang-Mills theory uncoupled to other fields, such solutions are apparently
absent. In turn, the lattice calculations in QCD indicate that such configurations of non-
Abelian fields do exist; when other fields are involved, such solutions are already present.
For example, when an electromagnetic field interacts with the Higgs scalar field, there exist
tubes possessing a flux of a magnetic field—the well-known solutions found by Nielsen
and Olesen [1]. Non-Abelian flux tube solutions with the flux of a magnetic field whose
force lines are twisted along the tube axis have been obtained in [2].

Another interesting fact is that such tubes can exist in Proca theories. For example,
in [3], it was shown that there exist gravitating and nongravitating Q-tubes supported
by a complex vector field with nonlinear terms which can in some sense imitate the self-
interaction in non-Abelian Yang-Mills theory. In [4,5], the existence of tubes within SU(3)
Proca theory coupled to a Higgs scalar field has been demonstrated. In those papers, two
types of tube solutions have been found. In the tubes of the first type, there is a flux of a
longitudinal color electric field along the tube created by color charges (quarks) located at
£oo. In the tubes of the second type, there is a momentum directed along the tube. The
presence of such a momentum is apparently equivalent to the presence of the energy flux
transferred along the tube.
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In the present paper, we continue our investigations in this direction. In doing so, we
calculate integral characteristics of the solutions such as the total flux of the non-Abelian
longitudinal Proca electric field, the linear energy density and the total momentum passing
across the cross section of the tube, depending on the system parameters.

2. Non-Abelian-SU(3)-Proca-Higgs Theory

The Lagrangian that describes a system supported by a non-Abelian SU(3) Proca field
Aj, interacting with nonlinear scalar field ¢ can be taken in the form (hereafter, we work in
units such thatc =7 = 1)

2\ab,p
_1aayv (‘u>1’abv1 u AZuayAZ 22
L= —ZELFM = S ALAY 4 20,909 + S97 AT A _Z("’ —M) .

M

where Fj, = 0, A} — A}, +¢ fabcAZAf/ is the field strength tensor for the Proca field, f,;,
are the SU(3) structure constants, g is the coupling constant, a,b,c = 1,2, ...,8 are color

indices, p and v = 0,1, 2,3 are spacetime indices. The Lagrangian (1) also contains the

arbitrary constants M, A, A and the Proca field mass matrix ( yz)ah's )

Using (1), the corresponding field equations can be written in the form

b,
D, F™Y — /\(/)ZA’W — _(‘uz)ﬂ HAbv, )

v

Op = AALA™g+ Ap(M - ¢?), 3)

and the energy density is

_1 a\2 1 a\2 2”b’aa b,E 2ab’lx a AbB 1 2 1 2
e =3 (EN?+ 3 (H)? = | (1) Asab = 5 (1) 404" | + 5 0) + (Vo)
2 ay2 _1 a pae é 2 af2 2
+A¢ [(Ao> SALA ]+4(¢ M2)",
where i = 1,2,3 and Ef and H}' are the components of the electric and magnetic field
strengths, respectively.

3. Proca Tube with the Flux of the Electric Field
To obtain a tube filled with a longitudinal color electric field, we choose the Ansiitze [6,7]

a2 =) 45 _ o) AT = Poe) s — (o), ®)

T e

where p, z, and ¢ are cylindrical coordinates. In [4,5], it was shown that solutions describing
such configurations do exist. Here, we study the dependence of the flux of the electric field
along the tube on the parameters determining the solutions in more detail.

To simplify the problem, we consider field configurations with a zero potential A; = 0.
In this case, we have the following nonzero components of the electric and magnetic field
intensities: " L .

B=-2, E=2, H=-2. ©6)

8 28 8
For such a tube, the energy density (4) yields
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with the following components of the Proca field mass matrix: p? = (;42)22’: and

3= (1)

S(ubs)titljting the potentials (5) in Equations (2) and (3) and introducing the dimension-
less variables ¢ = ¢v/A/¢po, It = h/do, T = v/Po, M = MV/A/ o, A = A/g% A = A/A,
fi1p = p12/¢o, and x = p¢o (here, ¢g is the value of the scalar field at the center), we have
the following set of equations:

=y B *

s = h(4+¢ —zzl), ®
~ 7,2

7+ = v(};ﬂl?zﬁ%)r ©)

qsu%' _ 4;{;(,,;%52)%(@2*1\22)] (10)

where the prime represents differentiation with respect to the dimensionless radius x. We
seek a solution to Equations (8)—(10), which in the vicinity of the origin of coordinates has
the form

2 i ~2

h(x) = fzo—i-fzz%—i—... with fzzz@(ZierqBS—ﬁ%), (11)
2 i 77 S

5(x) = Go+Pre +... with 52=°<—0+¢3—ﬂ§>, (12)
2 2 4

5 . : s POl 2 2\ L A (a2 2

(P(x) = (PO —|—(p27 +... with (Pz = ? |:A(_h0 +Uo> +A<¢0 -M >:|/ (13)

where the expansion coefficients h, 3, and $o are arbitrary.
The asymptotic behavior of the functions h,d and ¢, which follows from
Equations (8)—-(10), is

_ L e XV MP-pig 5 5 XM —fi5 L e—XV2AM?
(_X) %th, U(p %UWT, qb’r\\".a — OOTI

where /i, oo and o are integration constants.

The derivation of solutions to the set of Equations (8)—(10) is an eigenvalue problem
for the parameters fiy, fi; and M. The numerical solution describing the behavior of the
Proca field potentials and of the corresponding electric and magnetic fields is given in
Figure 1. The behavior of the electric field E/ indicates that we are dealing with the dual
Meissner effect: this field is pushed out by the scalar field ¢. Notice also that the tube
solutions obtained are topologically trivial, in contrast to the Nielsen—Olesen solution.
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Figure 1. The typical profiles of the functions /(x), f(x), and ¢(x) and of the dimensionless fields
EZ, EZ, and Hj, for M = 3.29316, fi; = 219828, fip = 2.10505, ¢ = 1.0, hy = 0.3, Gp = 1.8, A = 2.0,
A=0.1.
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Let us define the linear energy density £ and the total flux ®, of the longitudinal
electric field E7 transferred across the cross section of the flux tube as follows:

2 B 2 (e} A [ee]
e=%g 0% [yedx = 2n 90/Agcn)* heA2 xédx, (14)
gz gz g QCD
0 0
i A 2 7T
_ Zo &, — 27'5% / xEdx = 27-((4’0/(?&) hcAéCD/xEde, (15)
0 0

where g’ 2 = ¢*hc is the dimensionless coupling constant, the tilde sign denotes that
the corresponding quantities are dimensionless, and Aqcp is a characteristic parameter
coming from QCD. The integral characteristics of these quantities are shown in Figure 2.
The analysis of the results shown in Figure 2 suggests the following:

e Whenuy — 0, hy = const the linear energy and momentum densities & (x), ®,(x) —

e  Whenovy — o, hy = const the linear energy and momentum densities & (x), ®,(x) — oo;
e Whenhy — 0, vp = const the linear energy and momentum densities £ (x )s ®.(x) — const;
e When hy — o0, vy = const the linear energy and momentum densities £ (x), ®,(x) — 0.

Ob— v v e e el "“1“‘1“‘1“‘1“‘1’;,“
0 0.2 0.4 0.6 0.8 1.0 ! 0 0.2 0.4 0.6 0.8 1.0

Figure 2. The contour profiles of the dimensionless linear energy density £ (x) (left panel) and of the
dimensionless flux of the longitudinal electric field &, (x) (right panel) as functions of the parameters
lg and @y for the tube with the flux of the longitudinal electric field.

Note that, unfortunately, the technical difficulties of numerical solving the set of
Equations (8)—(10) do not permit one to study the dependencies £(x) and ®;(x) on the
parameters hy and 7 in more detail. The reason is that, for small values of 3, the calculation
accuracy implemented in Wolfram Mathematica does not permit one to find the eigenvalues
]7[1,2 and M.

4. Proca Tubes with the Momentum Density

In the previous section, we considered tubes filled with a longitudinal electric field.
Such a tube is described by a non-Abelian Proca field sourced by quarks located at +co.
In this section, we consider a tube containing nonzero flux of the Poynting vector, whose
presence results in the fact that there is an energy flux, and thus the momentum is directed
from one source (located at —o0) to another (located at +o0).

For this case, we choose the Ansiitze

A5:M A5:m A7
» Az g e

= %(m ¢ = (p), (16)
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which give the following components of the electric and magnetic field intensities:

!
B - PP s f (17)
? 2" P g
! 1 w
H = -2 p3=_F H7:<w’+>. 18
. 28" ¢ 8 °g p (19

In this case, the Poynting vector

is already nonzero (see Equations (31) and (43) below).
Substituting the potentials (16) in Equations (2) and (3) and using the dimensionless
variables given before Equation (8), we derive the following equations:

] 72
f”+f; = f(ziJrsT’z—ﬁ?)/ (20)
z7”+%/ = ﬁ(wz+432ﬁ§), (21)
I f 7
T T (‘4* - ) .
P+l = GA(-Peead) AR )], (23)

where f = f/¢o, @ = w/ ¢y, and we have introduced the component of the Proca field
mass matrix p§ = ( y2)77’f;. This set of equations has a cylindrically symmetric solution
describing a tube with nonzero momentum density and energy flux (the Poynting vector).

Our purpose is to study the dependence of the linear momentum density J Sd& on
the boundary conditions fo, Tp, Wo given at the center and the parameter A. Unfortunately,
the number of these parameters is too large to investigate this dependence in detail; our
goal is therefore to reduce this number. To do this, in the next subsection, we examine
the case with @ = 0. Such a restriction results in the fact that we actually deal with
Proca electrodynamics; i.e., with U(1) massive electrodynamics possessing the U(1) group
spanned on the A5 Gell-Mann matrix.

4.1. Abelian Proca Tubes

Consider the simplest case in which the component of the potential A; = 0. In this
case, we deal with massive (Proca) electrodynamics.

Let us examine the simplest particular case where f = hsinh& ¢ = hcosh & with
¢ = const. and fi; = ji; = fi. In this case the set of Equations (20)—(23) is split as follows.
Equation (20) takes the form of the Schrodinger equation,

/
—n" - % + h¢? = ji*h, (24)

where the function ¢ plays the role of the effective potential for the “wave function” k. In
order to ensure a regular solution of this equation, it is necessary for the effective potential
to have a well. In this case, Equation (24) must be solved as an eigenvalue problem for the
parameter ji* with the eigenfunction h.

The remaining Equation (23) for the function ¢ is then

= \ﬁz

P+ 5 =g+ A(§2 - ). (25)



Symmetry 2021, 13, 640

60f 11

Introducing new variables ¥ = xA and ¢ = ¢/ VA and the constants i = fi/ V2,
M= M/V?], Equations (24) and (25) can be recast in the form

—h' — h;/ + ¢*h =p*h, (26)
'+ L =gl 4 (5 - w2, @7)

where the prime denotes differentiation with respect to .

We seek regular solutions with a finite linear energy density. This means that, asymp-
totically (as ¥ — o0), the function /(%) — 0. Then, taking into account the positiveness of
the effective potential ¢?, one can conclude that the function ¢ must go to a constant, and
Equation (27) implies that this constant is M; i.e., § — M as ¥ — oo.

We seek solutions for Equations (26) and (27), which in the vicinity of the origin of
coordinates have the form

=2

W) =ho + S with =" (), (28)
-2 -

B =fo+dos +.. with §2= D13+ A(7 - 1)), (29)

where the expansion coefficients /1) and ¢g are arbitrary.
In turn, the asymptotic behavior of the functions is

where ho and ¢oo are integration constants.

The typical profiles of the potential #(%) and of the scalar ¢(x), obtained numerically,
are shown in Figure 3. Furthermore, this figure shows the corresponding graph for the
dimensionless energy density

g° sinh? & 4 cosh?Z , ;.2 (¢') s (sinh2 ¢ + cosh? ‘:) )
2445 (H)"+ - h
A2y 2 2 2 30)
22 (o2 2 3
ji=(sinh® & +cosh” &) A
+ ( ) ¢2h2 + Z(

432 . Mz)z'

0.5

PR I e [T Y TR SR [N SO S S N T WA I /A [ RS R R RR

L. X
0 2 4 6 8 10 0 2 4 6 8 10

Figure 3. The typical profiles of the functions k(%) and ¢(%) and of the dimensionless energy density
g(x) and dimensionless momentum density 5*(%) for M = 2.33824, i = 1.67446587, ¢y = 1.0,
hy=15A=01,&=0.1.
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The substitution of the components of electric and magnetic fields (17) and (18) in
Equation (19) yields the following expression for the Poynting vector:
. Ldfdo _ N} 90/ Moo
g dpdp  g° 8"

/\2 4 B _
sinh ¢ cosh ¢ ()* = g—fos‘z = Az( RS AgepS?, (31)

whose typical behavior is given in Figure 3. Note that the presence of the gradient terms f’
and v’ means (as already shown above) that we are dealing with massive Proca electrody-
namics.

In our study, the integral characteristics are of great interest. Namely, these are the
linear energy density,

- g2 s
=% ¢c=on / xeds 32)
) 0
and the linear momentum density across the cross section of the tube,
_ gz ¢ -
e =& M =2n / 252dz (33)
9 J

shown in Figure 4 as functions of the parameters hy and A. The numerical calculations
indicate that both these integral characteristics depend weakly on the coupling constant A.

AF A
1.4 1.4]

[ r 0.6
1.27 1'25 0.5

[ [ 04
1.0 1.0

[ [ 0.3
0.8: 0.8} 0.2

r r 0.1
0‘6, 06j
0.4} 0.4f
0.2} 0.2}

0 | | I hn 0L O T Y ‘\H‘\H*hu

0‘.2 0‘.4 0.6 0.8 1.0 1.2 1‘.4 ‘0‘.2‘ ‘ 04 0.6 0.8 ‘ 1.0‘ ‘ 1.2 1.4
Figure 4. The contour profiles of the dependence of the linear energy density £ (left panel) and of
the linear momentum density I1? (right panel) on the parameters hy and A.

Thus, we have shown in this subsection that, in Proca electrodynamics, there can
exist tubes filled with constant electric and magnetic fields creating the energy flux (or,
equivalently, the momentum) directed along the tube axis. This situation differs in principle
from the case in an electromagnetic wave, where the energy flux (and the momentum)
is created by time-dependent electric and magnetic fields. The existence of such a tube
possessing energy flux and momentum depends in principle on the presence of the Higgs
scalar field.

Based on the analysis of numerical solutions of the corresponding equations, we can
suppose that

¢ thelinear energy, £, and momentum, IT%, densities depend weakly on the coupling
constant of the Higgs scalar field A;

*  when iy — 0 the quantities £, IT* — 0;

e when hy — oo the quantities £, IT* — .
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4.2. Non-Abelian Proca Tubes

Consider the case of f = 9,@ # 0 and fij = fi = fi. In this case, the set of
Equations (20)-(23) is split as follows. Equation (20) takes the form of the
Schrodinger equation,

£/
N - Yy
—f”—;“‘fuf,effzﬂfr (34)
where the effective potential for the “wave function” f is

? o,
Useit = 5 + ¢~ (35)

As in the prev10us subsection, Equation (34) must be solved as an eigenvalue problem
for the parameter ji> with the eigenfunction f.
The remaining Equations (22) and (23) for the functions @ and ¢ are then

@' 5

W=+ WUperr = i3, (36)
g+ = [+ A(p - )], @)

and they do not already contain the function f. The effective potential, which appears in
Equation (36), is

|
Usgets = 5 + §*- (38)

The Equation (36) has the form of the Schrédinger equation with the “wave function’
@ and with the “energy” ji3. This means that it will have a regular solution only if the
effective potential Uy ¢ possesses a well.

We seek solutions of Equations (34), (36), and (37), which in the vicinity of the origin
of coordinates have the form

7

0y ~
fx) = f +f2£ +... with fo= %(q% - ﬁ2>, (39)
3
ZTJ(x) — wlx =+ Z,U3 3' Wlth ZI)3 = % ~1 ((ﬁ% — ﬁ%), (40)
2 -

where the expansion coefficients fo, §o, and @; are arbitrary.
In turn, the asymptotic behavior of the functions is

5 _ ey M2 ; e X M2 —ji _ L exV2AM?
— = — = M- QDOOT/

where foo, Weo, and o are integration constants.
The typical profiles of the functions f(x), @(x), and ¢(x) and of the dimensionless
energy density

i . (ﬁ;)2+;<w,+z§>2+;(<ﬁ2’)2 @(f +#)

8
PR LR e ()

(42)



Symmetry 2021, 13, 640

9of11

are shown in Figure 5. The substitution of the components of electric and magnetic fields
(17) and (18) in Equation (19) yields the following expression for the Poynting vector:

d 4 - 4 4)4 / A4 -
5 = L (4% +1fowr) = Y4(F7 + Lfoa?) = 45 = ( VU JheAbepSt,  (43)
whose distribution is given in Figure 5. Note that this expression contains the gradient
term f'9’ (which is the same as that given in Equation (31)) and the nonlinear term fo@?/4,
which appears because the Proca field is non-Abelian.

= R B RRE M I o e B
3O sk _
FM ] o
Z3E _ 1 4 . E
E b ] c &
2.05- ': 3E 7
1.5F 3 E
s E 2F =
1.0F E F
s ] 1t Ky E
0sF/ 4 E OE
-..j.r Loy Innnnlnnnnl....I:x :....l....|....|....|....|....|....|:x
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Figure 5. The typical profiles of the functions f(x),
the momentum density $?(x) for A = 2.0,A = 0.
fiz = 1.92906, M = 2.89307.

@(x), $(x), the dimensionless energy &(x) and
1, ¢o = 1.0,@ = 1.5,fy = 0.1, i = 1.53212,

Similarly to Section 4.1, we have calculated the integral characteristics of the non-
Abelian tube filled with the color electric and magnetic Proca fields. The results are given
in Figure 6.

w, T

0.8f

0.6

04f

02[] : : 7 o N ST . | -
0 02 0.4 0.6 0.8 1.0 0 02 04 0.6 0.8 1.0

Figure 6. The contour profiles of the linear energy density £ (left panel) and of the linear momentum
density I'T? (right panel) on the parameters f and ;.

Thus, we have shown in this subsection that in SU(3) non-Abelian Proca theory, there
exist tubes filled with stationary, crossed color electric and magnetic fields, which, by virtue
of being crossed, create the energy flux and momentum directed along the tube axis. These
solutions are topologically trivial.

The analysis of the results obtained permits us to assume that

e the linear momentum density I1* depends weakly on w;, which is the value of the
potential AZ on the tube axis;
* the linear energy density £ — const for fo — 0, w; = const;

e the linear momentum density IT* — 0 for fo — 0, w; = const;
o & IIF > oc0aswy — .
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5. Conclusions

In the present paper, we continued our investigations that we began in [4,5] concern-
ing tube solutions within SU(3) non-Abelian-Proca—Higgs theory. Our purpose was to
obtain the integral characteristics of those solutions. We were interested in obtaining the
dependencies of the flux of the longitudinal electric field and linear momentum/energy
densities on the system parameters.

We have considered two types of tubes. For tubes of the first type, possessing the flux
of the longitudinal color electric field, we have obtained the dependencies of the flux and
of the linear energy density on the value of the coupling constant A and on the values of
the fields at the center of the tube. For the tubes of the second type, possessing momentum
density, we have found the dependencies of the linear momentum and energy densities on
the values of the fields at the center of the tube.

The results obtained can be summarized as follows:

*  For the tube with the flux of a color electric Proca field directed along the tube axis,
we have studied the dependence of the linear energy density and of the flux of such a
field on the values of the components A% and A2 on the tube axis;

¢ For the tube with the energy flux (and thus with the momentum directed along the
tube axis), we have examined the dependence of the linear energy and momentum

densities on the values of the components A?,Z and Aé on the tube axis;

e  The existence of the aforementioned tube solutions depends crucially on the presence
of the Higgs scalar field singlet (there are no such solutions without this field);

®  The tube solutions obtained are topologically trivial, in contrast to the Nielsen—-Olesen
solution [1] carrying a topological charge;

*  The solution with the color longitudinal electric field demonstrates the dual Meissner
effect: the electric field is pushed out by the Higgs scalar field.

QCD is SU(3) non-Abelian Yang-Mills theory containing one dimensional constant
Agcp = 200 MeV/hc =~ 1 fm~! ~ 10" cm~!. Here, we have considered SU(3) non-
Abelian Proca theory, which differs from QCD by having massive terms. It is seen from the
corresponding formulae that all the integral characteristics calculated here depend on ¢y,
whose dimension is [¢g] = cm 1. For this reason, it is interesting to estimate the values of
the integral quantities under consideration for ¢p ~ Agcp. In this case, the dimensional
coefficients appearing in the expressions (14) and (15) are

A 2
((PO/gIQCD) hcAéCD ~ 200 MeV /fm ~ 3.2 - 10° erg/cm ~ 3 tones;

the latter value is of the same order as the force of interaction between quarks, which
appears as a consequence of the existence of a flux tube filled with a SU(3) gauge Yang—
Mills field and connecting the quarks.

In conclusion, we would like to state that, in order to understand the nature of
confinement in QCD, it is necessary to have flux tubes filled with a color longitudinal
electric field that connect quarks and create a linear potential between quarks ensuring
confinement. Another interesting feature of QCD is that gluon fields give a considerable
contribution to the proton spin. As we demonstrated in [4,5] and in the present paper, in
SU(3) non-Abelian Proca theory, there are two types of tube solutions: (i) those with the flux
of color electric field (in Proca theory, where such tubes connect “quarks” and may lead to
confinement in massive Yang-Mills theories); (ii) those with the momentum directed along
the tube (if such tubes connect “quarks” in a Proca proton, they will contribute to the Proca
proton spin). This means that massive non-Abelian Yang-Mills theories (non-Abelian Proca
theories) have some similarities to quantum chromodynamics; this gives a good reason for
the detailed study of such theories. One more motivation for studying cylindrical solutions
supported by massive vector fields might be the possibility of using them for the modeling
of such gravitating configurations as cosmic strings both within Einstein’s gravity [8] and
in various modified gravities [9].



Symmetry 2021, 13, 640 11 of 11

Author Contributions: Conceptualization, V.D.; methodology, V.D. and V.E,; validation, V.D. and
V.E; formal analysis, V.E,; investigation, V.D. and V.F.; numerical calculations, A.T.; writing—original
draft preparation, V.D.; writing—review and editing, V.E; visualization, V.F. and A.T.; supervision,
V.D,; project administration, V.F,; funding acquisition, V.D. All authors have read and agreed to the
published version of the manuscript.

Funding: V.D. and V.F. gratefully acknowledge the Research Group Linkage Program of the Alexan-
der von Humboldt Foundation for the support of this research. The work was supported by the
program “Complex Research in Nuclear and Radiation Physics, High Energy Physics and Cosmology
for the Development of Competitive Technologies” of the Ministry of Education and Science of the
Republic of Kazakhstan.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Nielsen, H.B.; Olesen, P. Vortex Line Models for Dual Strings. Nucl. Phys. B 1973, 61, 45-61. [CrossRef]

2. Brihaye, YJ.; Verbin, Y. Superconducting and spinning non-Abelian flux tubes. Phys. Rev. D 2008, 77, 105019. [CrossRef]

3. Brihaye, Y.J.; Verbin, Y. Proca Q Tubes and their Coupling to Gravity. Phys. Rev. D 2017, 95, 044027. [CrossRef]

4 Dzhunushaliev, V.; Folomeev, V. Proca tubes with the flux of the longitudinal chromoelectric field and the energy flux/momentum
density. Eur. Phys. ]. C 2020, 80, 1043. [CrossRef]

5.  Dzhunushaliev, V.; Folomeev, V.; Kozhamkulov, T.; Makhmudov, A.; Ramazanov, T. Non-Abelian Proca theories with extra fields:
Particlelike and flux tube solutions. Phys. Scripta 2020, 95, 074013. [CrossRef]

6.  Obukhov, Y.N. Analog of black string in the Yang-Mills gauge theory. Int. ]. Theor. Phys. 1998, 37, 1455. [CrossRef]

7. Singleton, D. Axially symmetric solutions for SU(2) Yang-Mills theory. ]. Math. Phys. 1996, 37, 4574. [CrossRef]

8. Vilenkin, A.; Shellard, E.P.S. Cosmic Strings and Other Topological Defects, 2nd ed.; Cambridge University Press: Cambridge, MA,
USA, 2000.

9.  Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution.

Phys. Rep. 2017, 692, 1-104. [CrossRef]


http://doi.org/10.1016/0550-3213(73)90350-7
http://dx.doi.org/10.1103/PhysRevD.77.105019
http://dx.doi.org/10.1103/PhysRevD.95.044027
http://dx.doi.org/10.1140/epjc/s10052-020-08633-0
http://dx.doi.org/10.1088/1402-4896/ab9791
http://dx.doi.org/10.1023/A:1026603516460
http://dx.doi.org/10.1063/1.531659
http://dx.doi.org/10.1016/j.physrep.2017.06.001

	Introduction
	Non-Abelian-SU(3)-Proca-Higgs Theory
	Proca Tube with the Flux of the Electric Field
	Proca Tubes with the Momentum Density
	Abelian Proca Tubes
	Non-Abelian Proca Tubes

	Conclusions
	References

