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Abstract: It is important to accurately classify the defects in hot rolled steel strip since the detection of
defects in hot rolled steel strip is closely related to the quality of the final product. The lack of actual
hot-rolled strip defect data sets currently limits further research on the classification of hot-rolled
strip defects to some extent. In real production, the convolutional neural network (CNN)-based
algorithm has some difficulties, for example, the algorithm is not particularly accurate in classifying
some uncommon defects. Therefore, further research is needed on how to apply deep learning to
the actual detection of defects on the surface of hot rolled steel strip. In this paper, we proposed
a hot rolled steel strip defect dataset called Xsteel surface defect dataset (X-SDD) which contains
seven typical types of hot rolled strip defects with a total of 1360 defect images. Compared with
the six defect types of the commonly used NEU surface defect database (NEU-CLS), our proposed
X-SDD contains more types. Then, we adopt the newly proposed RepVGG algorithm and combine
it with the spatial attention (SA) mechanism to verify the effect on the X-SDD. Finally, we apply
multiple algorithms to test on our proposed X-SDD to provide the corresponding benchmarks. The
test results show that our algorithm achieves an accuracy of 95.10% on the testset, which exceeds
other comparable algorithms by a large margin. Meanwhile, our algorithm achieves the best results
in Macro-Precision, Macro-Recall and Macro-F1-score metrics.

Keywords: hot rolled steel strip defect; convolutional neural network (CNN); surface defect dataset;
RepVGG; spatial attention

1. Introduction

Hot rolled steel strip has important applications in areas such as automotive [1],
appliance manufacturing, bridges [2], electric motors which have great use in industry
and daily life. The surface quality of the steel strip is of paramount importance to the final
product, therefore surface defects in the steel strip must be strictly controlled. The surface
quality of strip steel can be affected by several factors [3–5], although the number of
strip surface defects generated can be reduced to some extent by a variety of reasonable
control methods, until now the surface of the steel strip inevitably exit different types of
defects, e.g., slag inclusion, red iron and surface scratches. These various surface defects
of hot rolled steel strip have different effects on the production quality, therefore, it is
necessary to classify the surface defects of hot rolled steel strip in order to better reduce
their adverse effects.

Existing hot rolled strip lines are usually equipped with surface defect detection
systems that can detect defects on the strip surface [6]; however, unfortunately, the system
is less accurate in classifying defects. Existing surface inspection systems for hot rolled steel
strip often have a classification accuracy of about 85% according to the systems technical
manual; however, in the actual process of operation, due to some reasons, the actual
performance of the system did not reach the expected results according to the report of
the relevant quality inspectors. This case prevents the system from completely replacing
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manual work and only serves as an aid. A steel mill has recognized the shortcomings of
the system’s classification accuracy and is now trying to use more advanced algorithms to
improve the classification accuracy of defects.

The practical steps for detecting surface defects in existing hot rolled steel strip in a
steel mill are as follows: Firstly, the hot rolled steel strip surface defect detection system
performs the initial detection as well as classification of surface defects on hot rolled steel
strips. Secondly, the defects found by the system are inspected by quality control personnel
and the steel strip is blocked according to the type and degree of its surface defects.
As the hot rolled steel strip passes through the surface inspection system very quickly,
the quality inspector needs to make a judgement on whether to block the steel strip coil
within a few minutes. After the faulty steel strip coils have been blocked, another group of
quality inspectors will make a secondary detection of the blocked coils. Then these quality
inspectors will give subsequent units some instructions such as cutting out, polishing and
taking a sample. Finally, the subsequent units, e.g., smoothing units and trimming units,
will treat the defects appropriately according to the instructions. The resulting steel strip
coil is shown in Figure 1.

Figure 1. Coils of steel strip.

The aforementioned method of detecting defects in hot rolled steel strip is much
more efficient than a purely manual method for a steel strip surface defect detection
system is used to reduce the workload of quality inspectors. However, it has the following
shortcomings: (1) The quality inspectors have to determine within a few minutes whether
the steel strip coil needs to be blocked based on the defects given by the hot rolled steel
strip surface defect detection system, which inevitably leads to misjudgements in a panic
due to time constraints [7]. (2) Due to the round-the-clock operation of the hot-rolled strip
line, quality inspectors are often required to work at night, which may have a negative
impact on their health [8]. (3) The current defect classification requires quality inspectors
to stare at the computer screen for a long time, such boring work is likely to cause visual
and brain fatigue which in turn leads to errors.

Once a quality inspector makes a mistake such as a surface defects of the hot rolled
steel strip that should have been treated is let go, the following undesirable consequences
may result: (1) Some steel strip surface defects are so severe that they need to be removed
during the flattening stage. If these defects are not treated, the strip may break during
the subsequent cold rolling process, which can be very troublesome to deal with. Since it
takes maintenance personnel one to two hours to handle a broken steel strip, the line has
to be shut down during this time, thus affecting subsequent production and reducing steel
strip output. (2) Some defects on the surface of the steel strip, if left untreated, will force
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the finished strip coil to be sold separately at a reduced price because it cannot meet the
customer’s requirements. This will inevitably have a negative impact on the benefits of the
steel mill.

Therefore, improving the accuracy of the classification of surface defects in hot rolled
strip to reduce the extent of manual intervention in defect classification can bring significant
economic and social benefits. On the one hand, the quality inspectors can avoid heavy
night work, which is good for their health. On the other hand, the errors caused by fatigue
and other factors of the quality inspectors will be greatly reduced, thus improving the
output and quality of the strip steel and bringing greater benefits to the steel mill.

In summary, the contributions of this paper are shown below:

• We propose a hot-rolled steel strip defect dataset for strip surface defect classification,
which is named Xsteel Surface Defect Dataset (X-SDD) and contains seven typical
hot-rolled steel strip defects with 1360 defect images;

• We apply RepVGG algorithms and spatial attention (RepVGG+SA) to classify the defects
of X-SDD we proposed. The classification accuracy, Macro-Recall,Macro-Precision,
and Macro-F1-score of the testset are 95.10%, 93.92%, 95.16%, 93.25%, respectively;

• We employ a variety of different algorithms such as ResNet, VGG, MobileNet etc. to
verify the effectiveness of the dataset X-SDD and algorithm RepVGG+SA. The com-
parison of test results demonstrate that the RepVGG+SA we proposed achieves the
best performance in several metrics.

2. Related Work

The earliest defect detection method of steel strip is totally dependent on manual
visual inspection method which cannot meet the requirement of real-time. In addition,
manual visual inspection also has the disadvantages of labor intensity, missed inspection,
mis-inspection, poor working environment and easy to cause injuries to quality inspectors.
With the increase in production speed, it is difficult to achieve complete detection by
manual visual inspection. Therefore, it gradually evolved into random inspection, i.e.,
randomly select a certain percentage of completed production of steel coils, and then
open a few meters on the uncoiler to check whether there are defects. Since the sampling
inspection method cannot achieve a comprehensive inspection of steel coils, it has been
largely replaced by machine vision inspection systems.

The machine vision inspection system is shown in Figure 2 and more detailed infor-
mation can be found in [3]. In actual production, such vision inspection systems for metal
surfaces have been used in many applications and have achieved certain results [9–11]. De-
tection devices generally include industrial cameras, light sources, protection devices, etc.
Since both the upper and lower surfaces of the steel strip need to be inspected, the detection
devices are installed symmetrically on the top and bottom surface of the steel strip. If the
detection devices cannot be installed symmetrically for some reasons on site; then two
different sets of detection algorithms are required for detection. In this case, although the
detection results can be basically the same as if the detection devices were installed symmet-
rically, this undoubtedly increases the workload. Therefore, in practice, the symmetrical
installation of the detection devices should be ensured as much as possible. The detection
range of industrial cameras needs to cover the whole steel strip, so it is necessary to arrange
an appropriate number of cameras according to the width of the steel strip. In general,
seven cameras are sufficient to cover the entire steel strip surface. If the distance between
the camera and the steel strip is increased, the camera’s observation range of the steel strip
surface becomes larger, so the number of cameras can be reduced. The speed of the strip
moving on the conveyor rollers can reach 400 m/min, so the industrial camera needs to
shoot at high speed to meet the real-time requirements. Since the exposure time is relatively
short when the camera is shooting at high speed, proper fill light is essential in order to
make enough light enter the camera in a short time. The images captured by the industrial
cameras are transmitted via optical fiber to the server, where the relevant algorithms on
the server process the images and then display the processed images on the console panel.
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The algorithms in the server are the key to this, and in general, machine learning algorithms
are mainly used.

Figure 2. Machine vision defect detection system.

In recent years, many researchers have carried out meaningful research work on the
detection of steel strip surface defects on using machine learning algorithms. Refs. [12–14]
described the use of the k-nearest neighbor algorithm for steel strip defect detection.
Ref. [15] used back propagation (BP) neural network algorithm to steel strip surface defect
classification. Ref. [16] used random forests (RF) and support vector machines (SVMs) to
achieve multiple classification of steel strip surface defects. Refs. [17–21] described the
effectiveness of various improved versions of SVMs for the detection of steel strip surface
defects. Ref. [22] applied the LBP algorithm to the recognition of steel strip surface defects.
Although the above solutions using machine learning can achieve certain results, there
are still some shortcomings. On the one hand, traditional machine learning methods often
require feature extraction first, which leads to algorithms whose results will be limited by
the results of feature extraction. On the other hand, the classification accuracy of machine
learning is often not particularly high. For these reasons, since 2014, with the advancement
of deep learning technology, more and more scholars have employed deep learnings for
steel strip surface defects identification and classification.

Due to the powerful feature extraction capability of CNN, the use of CNN-based
classification networks has now become the most commonly used model for steel strip
surface defect classification. CNN networks generally use convolutional and pooling layers
for feature extraction, which is efficient in the way that feature extraction does not need to
be performed manually. In general, existing strip surface defect classification networks tend
to use off-the-shelf deep learning network structures and their various variants, including
AlexNet [23], VGGNet [24], GoogleNet [25], ResNet [26], DenseNet [27], SENet [28], Shuf-
fleNet [29] and MobileNet [30], etc. Compared with traditional algorithms such as machine
learning, deep learning algorithms have higher accuracy; however, deep learning often
requires a larger amount of data. The lack of high-quality steel strip defect datasets makes
the effectiveness of deep learning in steel strip defect classification somewhat limited.

Currently, the NEU surface defect database (NEU-CLS) [31] is a common dataset for
steel strip defect classification. Many high-level studies have been conducted based on this
dataset, for example, [32–36]. Although NEU-CLS meets the needs of scholars to a certain
extent; the effectiveness of the algorithm can be better verified with the complement of
other datasets, and the experimental results on multiple datasets will be more convincing.
In addition, NEU-CLS contains a total of six types of defects and each type is balanced, all
containing 300 images. In practice, the frequency of different types of defects often varies,
so researchers need a dataset with varying numbers of each type of defect to conduct
relevant studies.
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3. Introduction to Datasets
3.1. The Xsteel Surface Defect Dataset

The dataset of surface defects of hot rolled steel strip presented in this paper are from
the hot rolled steel strip field where the acquisition is similar to that shown in Figure 2.
The resolution of each defect image is 128× 128 pixels, and the image is in 3-channel
JPG format. The dataset contains seven types of 1360 defect images, including 238 slag
inclusions (abbreviated as “inclusion”), 397 red iron sheet, 122 iron sheet ash, 134 surface
scratches (abbreviated as “scratches”), 63 oxide scale of plate system, 203 finishing roll
printing and 203 oxide scale of temperature system. We chose the above seven defects to
put in the dataset because they are relatively common and fairly representative. In the
next part of this article, we will describe in detail about the style and causes of each type
of defect.

Inclusions defects are shown in Figure 3a and usually occur during the slab continuous
casting process. They are formed due to the presence of large amounts of inclusions caused
by slag entrapment in the slab, which are extended and exposed during the subsequent
hot rolling process. Inclusions defects are characterized by a visible black non-metallic
substance that has a distinct color difference from the surrounding metal. Steel strips with
severe slagging defects usually need to be cut off, while steel strips with minor slagging
defects can sometimes be removed by manual polishing.
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Figure 3. Samples of seven kinds of typical surface on X-SDD. (a-inclusion, b-red iron sheet, c-iron
sheet ash, d-scratches, e-oxide scale of plate system, f-finishing roll printing and g-oxide scale of
temperature system).
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Figure 3. Samples of seven kinds of typical surface on X-SDD. ((a)—inclusion, (b)—red iron sheet,
(c)—iron sheet ash, (d)—scratches, (e)—oxide scale of plate system, (f)—finishing roll printing and
(g)—oxide scale of temperature system).

The defects of red iron sheet are shown in Figure 3b, which are common in special steel
grades. It is mainly caused by high silicon content in steel and high heating temperature
of slab. Its characteristics are: generally reddish brown, dot, strip or flake, distributed in
the whole strip. There are obvious pits in some positions after pickling, and the thicker
the steel strip size is, the more serious the defects are. The defects of red iron sheet can be
reduced by properly increasing the coiling tension, reducing the gap of each layer of steel
coil after coiling and reducing the amount of air entering.

The Iron sheet ash defect is shown in Figure 3c, which mostly occurs in the head and
tail part of the steel strip. The cause of this defect is that after a long period of production,
the surface of the rolling mill equipment accumulates a large amount of metal dust, water,
oil and other substances, and when these substances accumulate to a certain extent, they fall
onto the surface of the rolled parts and become embedded in them during the subsequent
rolling process. Its appearance is characterized by a comet-shaped, visually observable
embedded metal particles and black oil residue material.
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The scratches are shown in Figure 3d, which generally appears on the lower surface
of the steel strip, and the full length and width are randomly distributed. The reason for
the formation of this defect is the hot rolling area with projections, or dead rolls, passive
rolls and stel strip surface friction. Its appearance is characterized by: defects in the steel
strip surface in the form of straight lines and grooves.

The oxide scale of plate system is shown in Figure 3e. The reason for the formation of
this defect is: in the high temperature and high speed rolling process, due to the passive
rotation of the roller table, dead roll of the roller table, bending deformation of the roller
table, wear and tear of the roller surface, the surface of the rolled piece is damaged, and the
iron oxide particles are accumulated in the damaged place, which are rolled into the rolled
piece in the subsequent rolling deformation process. Its appearance features are: the defect
position is basically fixed, and the appearance is similar to scratch and contusion.

As shown in Figure 3f, the finishing roll printing generally occurs on the edge with
width less than 1200 mm and is continuously distributed along the length direction. The for-
mation principle is that there is slippage between the work roll and the support roll, result-
ing in dot and short strip damage on the surface of the work roll. Its appearance features
are as follows: it is dot shaped and short strip-shaped pits, densely distributed at the
same location.

The oxide scale of temperature system is shown in Figure 3g; its formation is compli-
cated and may be caused by the following: (1) unreasonable rolling schedule arrangement,
such as arranging plates with high surface requirements at the later stage of rolling sched-
ule; (2) high carbon content in steel strip, which makes the grain structure of steel more
loose; (3) improper use of stand water; (4) too high temperature control in rough rolling;
(5) lower surface temperature of steel stripis higher than upper surface; (6) the rack under-
goes intense oxidation before the strip goes through the finishing roll. Its appearance is
characterized by loose or loose sand [37].

3.2. The Comparison between Xsteel Surface Defect Dataset and NEU Surface Defect Database

The NEU-CLS was collected from hot rolling site whose defect types included in-
clusion, scratch, pressed oxide scale, crack, pitting and plaque. Figure 4 shows some
examples of defects on NEU-CLS. It can be seen from the figure that the defects on X-SDD
are different from those on NEU-CLS in morphology. The NEU-CLS contains six types of
defects, while the X-SDD we proposed contains seven types of defects.
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Figure 4. Samples of six kinds of typical surface on NEU-CLS. (a-crazing, b-inclusion, c-patches,
d-pitted surface, e-rolled in scale, f-scrathes).
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Figure 4. Samples of six kinds of typical surface on NEU-CLS. ((a)—crazing, (b)—inclusion,
(c)—patches, (d)—pitted surface, (e)—rolled in scale, (f)—scrathes).

The NEU-CLS contains 300 images per defect type, but the number of defects con-
tained in each defect category of our proposed X-SDD varies considerably. The pie chart of
various types of defects is shown in Figure 5, where the total number of the defects are 1360.
From the pie chart, we can see the differences in the number of different types of defects
for the range of various defects is different in actual production. For example, defects such
as red iron sheet may be widely distributed on individual steel coils, so a large number of
samples can be collected; while defects such as iron oxide scale of plate system are easier to
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overcome when the equipment is running well, thus sometimes it may not occur. In other
words, sample imbalance between classes is a common phenomenon in practice.

Figure 5. The number of defects.

To sum up, the similarities between X-SDD and NEU-CLS are as follows: (1) Both
datasets are collected from the steel strip site; (2) Both datasets can be used for defect
classification of steel strip. While the differences between the two datasets are as follows:
(1) There are seven types of X-SDD, one more than NEU-CLS, and X-SDD contains several
defects that NEU-CLS does not have; (2) The X-SDD we proposed is not balanced in
categories, in which the category with the largest amount of data is more than 6 times of
that with the smallest. Therefore, the X-SDD we proposed can be used as a supplement
to NEU-CLS.

4. Methodology
4.1. Introduction of RegVGG Algorithom

To improve the performance of deep learning without making the network struc-
ture increasingly more and more complex, Ding et al. [38] proposed RepVGG algorithm,
a VGG-style architecture which outperforms many complicated models. The VGG-style ar-
chitecture has the following characteristics: (1) The architecture has no branch structure; (2)
The architecture only applies 3× 3 convolution; (3) The architecture only uses ReLU as the
activation function. The sketch of RepVGG architecture is shown in Figure 6. The RepVGG
architecture was inspired by ResNet so it also uses identity and 1× 1 branches, but only for
training. After training, the trained RepVGG model needs to be transformed equivalently
to get the deployment model. A 1× 1 convolution can be considered as a special 3× 3
convolution with many zeros in a special convolution kernel, while a constant mapping is a
special 1× 1 convolution with a unit matrix as the convolution kernel. Therefore, according
to the additivity of convolution, the three branches of each RepVGG block can be combined
into a 3× 3 convolution.
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(a) ResNet

(b) RepVGG (training)

(c) RepVGG (inreference)

(d) Illustrations

Figure 6. The Sketch of RepVGG architecture.
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And µ(0), δ(0), γ(0), β(0) was identity branch. We set M(1) ∈ RN×C1×H1×W1 , M(2) ∈
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Figure 6. The Sketch of RepVGG architecture.

Figure 6 describes the convolution conversion method of RepVGG. In [38], the input
and output channels are both 2, so the parameter of 3× 3 convolution is four 3× 3 matrices,
and the parameter of 1× 1 convolution is a 2× 2 matrix. Please note that each of the three
branches has a batch normalization (BN) layer, and its parameters include the accumulated
mean and standard deviation, the learned scaling factor and bias. After transforming
the convolution layer and BN layer of the three branches into a convolution layer with
bias, the 1× 1 convolution kernel is transformed into 3× 3 by 0 for padding. In this way,
the output of each RepVGG block before and after conversion is exactly the same, so the
trained model can be converted to a single channel model with only 3× 3 convolution.

Next, we describe how to transform a training block into a separate 3× 3 convolutional
layer for reasoning as shown in Figure 7. Formally, W(3) ∈ RC2×C1×3×3 was used to express
the kernel of 3 × 3 convolutional layer with C1 input channel and C2 output channel.
W(1) ∈ RC2×C1 was used to express the kernel of 1× 1 branch layer. µ(3), δ(3), γ(3), β(3)

was used to express the mean value, standard deviation, learning factor and deviation of
BN layer respectively after 1× 1 convolutional layer. In addition, µ(0), δ(0), γ(0), β(0) was
identity branch. We set M(1) ∈ RN×C1×H1×W1 , M(2) ∈ RN×C2×H2×W2 as input and output
respectively, * as convolution operator. If C1 = C2, H1 = H2, W1 = W2, then we can get
Equation (1).

M(2) = bn(M(1) ∗W(3), µ(3), δ(3), γ(3), β(3)) + bn(M(1) ∗W(1), µ(1), δ(1), γ(1), β(1))

+bn(M(1), µ(0), δ(0), γ(0), β(0))
(1)

Otherwise, if identity branch is not used, Equation (1) has only the first two terms. Here
BN is the inference time BN function. Formally, ∀1 ≤ i ≤ C2 we can get Equation (2).

bn(M, µ, δ, γ, β) :, i, :, := (M :, i :, : −µi)
γi
δi

+ βi (2)
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Each BN and its preceding convolution layer are converted into a convolution with a bias
vector. Then, let {W ′, b′} be the kernel and bias converted from {W, µ, δ, γ, β} Then we can
get Equations (3) and (4).

W ′i,:,:,: =
γi
δi

W ′i,:,:,: (3)

b′i = −
µiγi

δi
+ βi (4)

Then it is easy for us to verity that ∀1 ≤ i ≤ C2 we can get Equation (5)

bn(M ∗W, µ, δ, γ, β) :, i, :, := (M ∗W ′) :, i, :, : +b′i (5)

The above transformation is also applicable to identity branch, for identity mapping can be
regarded as 1× 1 convolution with identity matrix as the kernel.
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4.2. Introduction of Spatial Attention Mechanism

Attention can be understood as weighted summation, i.e., for weights that are origi-
nally distributed equally, they are redistributed according to the importance of the object
of attention. The important units are given more points, and the unimportant or bad
units are given less points. Wang et al. [39] first proposed non local operations, which
use self attention mechanism to establish remote dependence. This is the first application
of attention mechanism in computer vision. Attention mechanism can be divided into
many kinds: spatial attention mechanism, channel attention mechanism, mixed attention
mechanism etc. The attention mechanism used in this paper is spatial attention mechanism,
which can be seen in [40].The spatial attention module is shown in Figure 8.
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Figure 8. The spatial attention module.

According to [40], max pooling and average pooling are used in channel dimension
to get two different feature descriptions FS

avg ∈ R1×H×W and FS
max ∈ R1×H×W . Then,

concatenation is used to merge the two feature descriptions, and convolution is used to
generate spatial attention map {W, µ, δ, γ, β}. In short, the spatial attention is computed as
Equation (6).

Ms(F) = σ( f 7×7([AvgPool(F); MaxPool(F)])) = σ( f 7×7([FS
avg; FS

max])) (6)

where σ enotes the sigmoid function and f 7×7 represents a convolution operation with the
filter size of 7× 7.

4.3. Introduction of Spatial Attention Mechanism

Considering the excellent performance of RepVGG algorithm in ImageNet dataset,
we decided to apply it to steel strip defect classification. Since adding attention mechanism
can improve the classification accuracy of deep learning algorithm, we decided to combine
spatial attention mechanism with RepVGG algorithm. We argue that the performance of
RepVGG network with spatial attention mechanism will be greatly improved than that of
the original network. In the next part of this article, we will design experiments to prove
our conjecture and compare it with many other networks. The version of RepVgg we chose
is RepVgg_B3g4, more details about the algorithm can be found at https://github.com/
Fighter20092392/X-SDD-A-New-benchmark (accessed on 18 January 2021).

5. Experiments
5.1. Experimental Environment

The experimental environment is equipped with a single NVIDIA RTX2080S GPU,
an Intel Core i7-9700 CPU, a 16GB of RAM, Windows 10 operating system and PyTorch
deep learning framework. In the experiment, the image size is adjusted to 224× 224 pixels,
the mini-batch of model training is 10, the whole training is 100 epochs, the learning rate is
set to 0.0001, and the Adam optimization algorithm is used to optimize the model.

We use 70% of the data in X-SDD as the trainset and 30% of the data in X-SDD as the
testset. Therefore, the trainset contains 952 images while the testset contains 408 images.
Our experiments were conducted on the anaconda platform.

5.2. Experimental Results

To make the experimental results more convincing, we compared several metrics,
including Accuary, Macro-recall, Macro-precision, and Macro-F1. Macro-Recall, Macro-
precision, and Macro-F1 are obtained by averaging the Recall, Precision, F1-score of each
category after considering the multiclassification problem as multiple binary classification
problems. Recall, Precision and F1 in the binary classification problem are given by
Equations (7)–(9).

Recall =
TP

TP + FN
(7)

Precision =
TP

TP + FP
(8)

https://github.com/Fighter20092392/X-SDD-A-New-benchmark
https://github.com/Fighter20092392/X-SDD-A-New-benchmark
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F1 =
2PR

P + R
(9)

where TP denotes true positive, which is the number of positive samples classified correctly.
TN denotes true negative, which is the number of negative samples classified correctly. FP
denotes false postive, which is the number of negative samples classified as postive. FN
denotes false negative, which is the number of postive samples classified as negative. aking
each class of the multiclassification separately and combining the other classes as one class,
we can find TP, TN, FP, FN of each class separately. Based on the above indicators for each
category, we can obtain Equations (10)–(14).

n_correct = TP0 + TP1 + ...... + TPN−1 (10)

Accuary =
n_correct
n_total

(11)

Macro− Recall = (
TP0

TP0 + FN0
+

TP1

TP1 + FN1
+ ... +

TPN−1

TPN−1 + FNN−1
)× 1

N
(12)

Macro− Precision = (
TP0

TP0 + FP0
+

TP1

TP1 + FP1
+ ... +

TPN−1

TPN−1 + FPN−1
)× 1

N
(13)

Macro− F1 = (
2P0R0

P0 + R0
+

2P1R1

P1 + R1
+ ... +

2PN−1RN−1

PN−1 + RN−1
)× 1

N
(14)

where N is the number of categories, n_total is the total number of samples, P and R are
abbreviations of Precision and Recall respectively.

The experimental results are shown in Table 1. It can be seen from Table 1 that multiple
deep learning algorithms have achieved 87.01–95.10% Accuracy, 82.04–93.92% Macro-
Recall, 82.04–95.16% Macro-Precision, 81.58–93.25% Macro-F1 on X-SDD we proposed.
The above facts show that there are differences in the results of different deep learning
models tested on X-SDD, and our X-SDD can provide a data resource for the research of
deep learning algorithms.

Table 1. The experimental results.

Model Accuary Macro-Recall Macro-Precision Macro-F1

EspNet-v2 89.95% 84.19% 88.28% 84.28%
GhostNet 88.72% 87.87% 86.93% 87.07%
ShuffleNet 87.50% 85.84% 84.83% 84.68%

SqueezeNet 91.42% 83.21% 90.36% 84.15%
Xception 90.44% 87.39% 89.41% 88.25%
VGG16 92.65% 90.46% 91.70% 90.92%

ResNet50 93.87% 89.41% 93.45% 90.02%
ResNet101 87.01% 88.30% 88.18% 87.05%
ResNet152 92.16% 89.41% 91.41% 89.92%

RepVGG_B1g2 88.97% 82.04% 90.79% 81.58%
RepVGG_B3g4 91.67% 85.28% 88.46% 84.94%

RepVGG_B3g4+SA(ours) 95.10% 93.92% 95.16% 93.25%

In addition, according to [41], ResNet50 achieves better results in the field of strip steel
classification compared to other models. In this paper, the model achieves results second
only to our proposed RegVGG+SA model in both Accuary and Macro-Precision metrics.
In addition, on both Macro-Recall and Macro-F1 metrics, the ResNet50 model achieved
the third best performance. Our test results demonstrate the effectiveness of the ResNet50
model used in [41], while our proposed RepVGG+SA model is more advantageous with
respect to the ResNet50 model. Compared with other models, our proposed RepVGG+SA
model achieves the best performance in all of the four metrics: Accuary, Macro-Recall,
Macro-Precision and Macro-F1. The experimental results show that the algorithm we
proposed is effective in the field of hot strip defect classification. Moreover, The classifi-
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cation accuracy of more than 95% proves that the algorithm proposed in this paper has
enough engineering practical value, and can be used in the actual strip defect classification.
The 93.92% of Macro-Recall, 95.16% of Macro-Precision and 93.25% of Macro-F1 proves
that our RepVGG+SA has some advantageous in handling unbalanced hot rolled steel strip
defects images.

The confusion matrix of RepVGG+SA algorithm is shown in Figure 9. It can be
seen from the figure that our proposed RepVGG+SA algorithm has high classification
accuracy for each category in the dataset. Among them, the algorithm has the highest
accuracy in classifying the defects of finishing roll printing, reaching 100%. One possible
reason for the algorithm’s 100% accuracy in classifying this type of defect is that the
characteristic morphology of the finishing roll printing defect is more pronounced and
differs significantly from the characteristics of other defects. To see more intuitively the
classification accuracy of our proposed algorithm on each defect category, we display it in
the form of a table, as shown in Table 2.

Figure 9. The confusion matrix.

Table 2. The Classification results of RepVGG+SA.

Defect Category/Indicators Right Error Total Number Accuary

oxide scale of plate system 15 4 19 78.95%
red iron sheet 112 7 119 94.12%

scratches 39 1 40 97.50%
inclusion 60 1 61 98.36%

finishing roll printing 71 0 71 100%
iron sheet ash 31 6 37 83.78%

oxide scale of temperature system 60 1 61 98.36%
total 388 20 408 95.10%

It can be seen from Table 2 that the classification accuracy of our model is low, and the
classification accuracy is 78.95%. There are two reasons for the low classification accuracy
of this category: one is that the sample size of this category is relatively small, and the
model does not learn enough about the characteristics of this category; the other is that
the morphology of plate channel scale and slag inclusion is relatively close, which is prone
to misclassification, which leads to several plate channel scale being classified as slag
inclusion in the testset. Using cascade structure or integrating multiple different algorithms
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may help to solve the problem of low classification accuracy. Next we analyze the model
complexity and the relevant results are shown in Table 3.

Table 3. The Comparison of Model Parameters and Complexity.

Model Params (M) MACs (G)

EspNet-v2 0.627 0.090
GhostNet 3.127 0.208
ShuffleNet 0.840 0.129

SqueezeNet 0.722 0.720
Xception 20.822 4.617
VGG16 134.289 15.480

ResNet50 23.522 4.109
ResNet101 42.515 7.832
ResNet152 58.158 11.557

RepVGG_B1g2 43.748 9.815
RepVGG_B3g4 81.282 17.888

RepVGG_B3g4+SA(ours) 83.825 17.892

It can be seen from Table 3 that our proposed RegVGG+SA model is relatively large
in terms of both number of parameters and computational complexity. Compared to
the lightweight deep learning model EspNet-v2 with 0.627 M and 0.090 G in the num-
ber of parameters and computational complexity, respectively, our proposed model has
83.825 M and 17.892 G in these two metrics, respectively. This indicates that our proposed
RepVGG+SA model is more costly in terms of computational complexity while achieving
good classification accuracy. In the future study, we will try to reduce the computational
complexity of the model in order to reduce its deployment cost.

6. Discussion and Conclusions

In the research field of hot rolled steel strip surface defect detection, the surface defect
datasets are crucial, and although there are commonly used NEU-CLS datasets, they are still
not sufficient to completely solve the problem of lack of steel strip surface defect datasets.
To make some contribution to solve the limitation of defect dataset on the research of defect
classification, a defect data set of hot rolled steel strip is proposed in this paper. The dataset,
named Xsteel surface defect dataset (X-SDD), contains seven kinds of 1360 defect images
from the hot steel strip rolling site. Compared with the existing NEU-CLS, our dataset
has one more categories.Meanwhile, there is a big difference between X-SDD and NEU-
CLS. This shows that our dataset can be used as an important supplement to NEU-CLS,
thus researchers can verify the algorithm on X-SDD and NEU-CLS respectively. On this
basis, due to the imbalance of the number of samples in X-SDD, it provides conditions for
researchers to solve the problem of sample imbalance.

In this paper, we apply a variety of algorithms to verify the effectiveness of our
proposed X-SDD, and introduce the recently proposed RepVGG algorithm to combine it
with spatial attention mechanism.The comparison results show that ResNet50, used in
the literature [41], achieves results on Accuracy and Macro-Precision that are second only
to our proposed RepVGG+SA algorithm. As for Macro-Recall and Macro-F1, ResNet50
achieved the third best result. The excellent performance of ResNet50 in strip classifica-
tion indicates that the residual network has some advantages in the classification of strip
defects. In addition, ResNet50 performs better on X-SDD than the deeper ResNet101 and
152, indicating that the deeper the network level is not better when the amount of data is
not particularly large. In addition, our RepVGG+SA algorithm achieves promising results,
while the metrics of Accuracy, Macro-Recall, Macro-Precision, Macro-F1 are all the best
among numerous algorithms. The classification accuracy of RepVGG+SA algorithm is
95.10% on this dataset, while the classification accuracy of single memory RepVGG algo-
rithm is 91.67%, which indicates that the mechanism of adding spatial attention is effective
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and the RepVGG+SA algorithm has some advantages in dealing with the imbalanced
sample problem.

Although the experimental results prove the effectiveness of the RepVGG+SA algo-
rithm, we can observe that on a relatively small number of defects such as oxide scale
of plate system, the performance of the algorithm is not very well, with a classification
accuracy of only 78.95%. To solve the problem of low accuracy in individual category
classification, we argue that when the sample size is more sufficient or cascade structure
is adopted, the classification accuracy will be improved. In addition, if artificial prior
knowledge can be added to deep learning, e.g., combining manual feature extraction with
deep learning feature extraction methods, it may help to improve the classification accuracy
when the sample is not very sufficient.

In the future, we may continue to study from the following two aspects: one is to
collect and update the existing sample library. We argue that more high-quality samples
from the scene will help researchers to propose better performance algorithms. The other is
that we will consider using the improved transformer [42] algorithm to classify the surface
defects of steel strip. The improved version of the transformer was proved to have excellent
performance in the field of classification. We believe that it can provide a new idea for
the classification of steel strip defects. Our further research plan for the algorithm is as
follows: Firstly, considering the excellent performance of the VIT [43] algorithm on the
classification problem, we plan to apply the algorithm to strip surface defects classification.
Secondly, considering that the VIT algorithm is not satisfactory for classification with small
datasets, we will explore to improve the structure of this algorithm or and use suitable
data augmentation, so that the improved VIT algorithm has excellent. Last but not least,
the original VIT algorithm is not conducive to practical applications in engineering due
to its large time overhead in the inference process; therefore, we will investigate ways to
speed up its inference efficiency in conjunction with the latest references.
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