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Abstract: Suppose ai indicates the number of orbits of size i in graph G. A new counting polynomial,
namely an orbit polynomial, is defined as OG(x) = ∑i aixi. Its modified version is obtained by
subtracting the orbit polynomial from 1. In the present paper, we studied the conditions under
which an integer polynomial can arise as an orbit polynomial of a graph. Additionally, we surveyed
graphs with a small number of orbits and characterized several classes of graphs with respect to their
orbit polynomials.

Keywords: orbit; group action; polynomial roots; orbit-stabilizer theorem

1. Introduction

By having the orbits and their structures in a graph, we can infer many algebraic prop-
erties about the automorphism group and thus about the similar vertices. For example, the
length of orbits of a network gives provides important information about each individual
component in the network. In other words, all vertices in an orbit have the same properties
such as the degree of vertices which yield useful data about the number of components’
interconnections. Finding the counting polynomial [1] of a graph often helps to investigate
the structural properties regarding the graph.

Hosoya was the first chemist that introduced the Hosoya counting polynomial (C-
polynomial) [2] and other well-known C-polynomials that have been defined to date, which
can be found in references [3–7] as well as [8–11].

One of the important polynomials, as recently defined by Dehmer et al. [12], is the
orbit polynomial that uses the cardinalities of the vertex orbit sizes. In the definition
of an orbit polynomial, which is ∑n cxn, c is the number of orbits of graph G of size n.
The coefficients of this polynomial are all positive, so subtracting this polynomial from 1
results in the new polyomial O?

G(x) = 1−OG(x) that has a unique positive root, as can be
seen [13–19]. It is possible to define the orbit polynomial for general cases of a graph such
as weighted graphs. For instance, for a graph with multiple edges or for a hetero molecule
in which an atom is replaced by another, the orbit polynomial can be calculated, as can be
seen in [20].

Additionally, in [12], some bounds for the unique and positive zero of O?
G were

computed. The authors indicated that the unique positive root of this new polynomial
can be served as a relative measure of a graph’s symmetry. The magnitude of this root
measures symmetry and can therefore be used to compare graphs with respect to this
property. Finally, it is shown that this measure can be quite useful for tackling applications
in chemistry, bioinformatics, and structure-oriented drug design. In [21], the structural
attributes of the automorphism group of a graph were investigated, and then the orbit
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polynomial of some graph operations were computed. Moreover, the degeneracy of an orbit
polynomial is compared with a new counting polynomial. In [22], several properties of
orbit polynomial with respect to the stabilizer elements of each vertex and many classes of
graphs with a small number of orbits were studied. This method was applied to investigate
the symmetry structure of some real-world networks. The main contribution of this text
was to construct graphs with a given integer polynomial as its orbit polynomial. We
proceed as follows. Section 2 outlines the concepts and definitions that will be used in
this paper. In Section 3, we survey some well-known results about the orbit polynomial.
In Section 4, we construct graphs whose orbit polynomials are integer and we show that
there is a one-to-one correspondence with the number of partitions of an integer n and the
number of distinct orbit polynomials of a graph of order n.

2. Preliminaries

The notations of the current work are standard, for example, as can be seen in [23].
The vertex and edge sets of a graph G are denoted by V(G) and E(G), respectively. We only
considered simple and connected graphs. The orbit polynomial is based on two concepts:
the automorphism group and the vertex orbits.

Consider the automorphism group Aut(G) of graph G. Then, for each vertex v ∈ V(G),
the set [v] = {ρ(v) : ρ ∈ Aut(G)} is called an orbit of G containing v. A vertex-transitive
graph is a graph with exactly one orbit and an edge-transitive graph is a graph that is
transitive on the set of edges.

The action of group Γ on the set X induces a group homomorphism ϕ from Aut(G)
into the symmetric group SX on X, where g.x = x for all g ∈ Γ and x ∈ X. For a vertex
v ∈ V(G), the set S = {g ∈ Aut(G) : g(v) = v} is called the stabilizer of v. Then, by the
orbit-stabilizer theorem, it holds that |[v]| × | S| = |Aut(G)|.

The vertex orbits, under the action of automorphisms on the set of vertices, constitutes
a partition which captures the symmetry structure of the graph, as can be seen in [13,24–29].
In a complex network, the collections of similar vertices can be used to define communities
with shared attributes, as can be seen in [29].

In this paper, the two symbols Sn and Bn,m denote a star graph on n vertices and a
bi-star graph on m + n vertices, respectively. In addition, the graph Sn,m is a tree which
has a central vertex of degree n adjacent with n vertices of degree m + 1 each of them is
adjacent to m pendant vertices.

3. Methods and Results

The orbits of a graph show vertices with similar properties such as having the same
degree or the same eccentricity. Conversely, if there exists a property that does not hold
for two vertices, then these vertices are not in the same orbit. Thus, creating several kinds
of polynomials on the set of orbits of a graph may facilitate distinguishing vertices with
different properties and thus breaking them up into distinct orbits.

3.1. Orbit Polynomial

Supposing O1, . . . , Ot are all orbits of G. Then, the orbit polynomial and the modified
orbit polynomial [13] are defined as

OG(x) =
t

∑
i=1

x|Oi | and O?
G(x) = 1−OG(x).

From the definition, it is clear that if G is a graph with an identity automorphism
group, then OG(x) = nx or equivalently O?

G(x) = 1 − nx. Additionally, a graph is
only vertex transitive if OG(x) = xn, and only if O?

G(x) = 1− xn. This means that if
G and H are two vertex-transitive graphs of the same order, then they have the same
orbit polynomials OG(x) = OH(x) = xn and thus the orbit polynomial cannot capture
symmetrical information about a vertex-transitive graph, as can be seen in [21].
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In algebraic graph theory, characterizing graphs in terms of polynomials such as a
characteristic polynomial, independence polynomial, and matching polynomial is always
an important problem. Here, we characterize several classes of trees in terms of their
orbit polynomial.

Theorem 1. Ref. [22] Let T be a tree on n vertices. Then:

• T ∼= Sn if and only if OT(x) = x + xn−1.
• T ∼= B n

2 , n
2

if and only if OT(x) = x2 + xn−2.
• T ∼= Sn,m if and only if OT(x) = x + xn + xnm, where n = 2m.

Definition 1. Let E1, . . . Er be all edge orbits of Aut(G). Thenan edge-orbit and the modified
edge-orbit polynomials are defined as

ÕG(x) =
r

∑
i=1

x|Ei | and Õ∗G(x) = 1− ÕG(x).

Theorem 2. Ref. [22] For the edge-orbit polynomial, we obtain ÕT(x) = xn−1 if and only if
T ∼= Sn.

As an application, in [22] it was also proven that the cycle graph Cn can be character-
ized by the edge version of the orbit polynomial.

3.2. Graph Classification with Respect to Orbit Polynomial

Following the methods of [22], in this section we introduce several classes of graphs
that can be characterized by their orbit polynomials. If G is a graph with OG(x) = x,
then clearly G ∼= K1 and, in general, if G has n vertices and OG(x) = nx, then G is has
no non-identity automorphism. This means that G is asymmetric. For a graph with two
vertices, it is clear that G ∼= K2 or G ∼= K̄2 and thus Aut(G) ∼= Z2. Suppose G is a graph
with three vertices. Then OG(x) = 3x or x + x2 or x3. There is no graph of order 3 with
OG(x) = 3x, since the smallest graph in the identity automorphism group has at least six
vertices, as can be seen in [23]. Graphs with OG(x) = x3 are K3 and its complement and
graphs with the orbit polynomial OG(x) = x + x2 are P3 and K1 ∪ K2.

There are 11 graphs of order 4 as given in Figure 1. Their orbit polynomials are
among the following polynomials: OG(x) = x4 or OG(x) = 2x + x2 or OG(x) = 2x2 or
OG(x) = x + x3. According to the above discussion, there is no graph with OG(x) = 4x. In
addition, there are two graphs with OG(x) = 2x + x2, four graphs with OG(x) = 2x2, two
graphs with OG(x) = x + x3 and three graphs with OG(x) = x4 as given in Figure 1.

For a graph G of order n, there is a one-to-one correspondence between the possible
distinct orbit polynomials and the number of partitions Π(n) of integer n. For example,
if n = 3, then there are three partitions 3 = 3 and 3 = 1 + 2 and 3 = 1 + 1 + 1 for integer
3 and thus three polynomials OG(x) = x + x + x = 3x, OG(x) = x + x2 and OG(x) = x3

that can be arisen as orbit polynomials. Since there is no graph of order 3 with the identity
automorphism group, all graphs of order 3 have either OG(x) = x + x2 or OG(x) = x3 as
an orbit polynomial. This means that for a graph of order n, there are at most Π(n) distinct
orbit polynomials. As a result, there are at most 11 distinct polynomials that can be the orbit
polynomials of a graph of order 6, since Π(6) = 11. The partitions and correspondence
polynomials are reported in Table 1.
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Figure 1. All graphs of order 4.

Table 1. The partitions and orbit polynomials of all graphs of order 6.

Partition OG(x)

6 = 6 x6

6 = 1 + 5 x + x5

6 = 1 + 1 + 4 2x + x4

6 = 2 + 4 x2 + x4

6 = 1 + 1 + 1 + 3 3x + x3

6 = 1 + 2 + 3 x + x2 + x3

3 + 3 2x3

6 = 1 + 1 + 1 + 1 + 2 4x + x2

6 = 1 + 1 + 2 + 2 2x + 2x2

6 = 2 + 2 + 2 3x2

6 = 1 + 1 + 1 + 1 + 1 + 1 6x

Here, we characterize graphs with respect to their orbit polynomials.

Example 1. In Figure 2, all members of the class of graphs on six vertices with the orbit polynomial
OG(x) = x + x2 + x3 are depicted. They are not isomorphic and have different
automorphism groups.

Figure 2. All graphs on six vertices with the orbit polynomial x + x2 + x3.
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In the next theorem, by Kn • re, we mean a graph obtained from the complete graph
Kn by attaching r pendant edges at a common vertex.

Theorem 3. Suppose G is a graph with OG(x) = x + x2 + x3. If G has at least a pendant edge,
then G ∼= K4 • 2e or G ∼= K3 • 3e.

Proof. From the definition of an orbit polynomial, we yield that G has 6 vertices. As it has
exactly one pendant edge, two different singleton orbits, there is a contradiction. Therefore,
we may assume that G has two pendant edges, then two cases hold: the pendant edges
share a common vertex and they necessarily compose an orbit of size 2 and the common
vertex composes a singleton orbit. Hence, the other vertices together with the singleton
vertex lie on a common 4-cycle. Among all cases, only the graph G ∼= K4 • 2e satisfies the
above conditions. Supposing that the pendant edges have no vertex in common. If two
pendant edges can be imaged to each other, since the supported vertices are also in the
same orbit, there are at least two orbits of order 2—which is a contradiction. If there are
three pendant edges, then G is isomorphic with one of the graphs depicted in Figure 3.
Among them, only G ∼= K3 • 3e satisfies the conditions of theorem. This completes the
proof.

Figure 3. All graphs on six vertices that have three pendant edges, with the orbit polynomial
x + x2 + x3.

Example 2. Consider the graph G with n vertices and suppose that a, b and c are three posi-
tive integers that 1 ≤ a, b, c ≤ 3. If the orbit polynomial is OG(x) = ax + bx2 + cx3, then
OG(1) = a + 2b + 3c = n, and thus 6 ≤ n ≤ 18. In Example 1, the problem is solved for n = 6.
If n = 7, then we obtain a = 2 and b = c = 1. Hence, OG(x) = 2x + x2 + x3. Thus, G has two
orbits of size 1, an orbit of size 2 and an orbit of size 3. It can be found that there are 39 graphs for
this property and we depicted some of them in Figure 4.

If n = 8, then the orbit polynomial of G is either OG(x) = 3x + x2 + x3 or
OG(x) = x + 2x2 + x3. Both cases are possible, as can be seen in Figure 5.

In general, for a graph with OG(x) = ax + x2 + x3, where a = 1, 2, the orbit-stabilizer
theorem yields that 6 = 2.3 | |Aut(G)|. On the other hand, since OG(x) 6= x6, G has no
permutation of order 6. Similarly, G has no permutation of order 4 or 5 and so Aut(G)
is a {2, 3}-group. This yields that |Aut(G)| = 2α.3β. It holds that |Aut(G)| = 6 or 12
and thus Aut(G) ∼= Z6 or S3 or Z2 × S3. Since G has not orbit of size 6, we conclude the
following theorem.

Theorem 4. Let G be a graph of order n with the orbit polynomial OG(x) = ax+ bx2 + cx3, where
a, b, and c are three positive integers such that 1 ≤ a, b, c ≤ 3. Then, Aut(G) is a {2, 3}-group.

For the automorphism g ∈ Aut(G), the the support of g is defined as
supp(g) = {g(u) : u ∈ V(G)}. Two permutations f and g are said to be disjoint if
supp( f ) ∩ supp(g) = φ.
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Figure 4. Examples of graphs of order 7 with the orbit polynomial 2x + x2 + x3.

Figure 5. Graphs of order 8 and different orbit sizes.

Theorem 5. Ref. [29] Let S be a set of generators of Aut(G), 1 6∈ S and S = S1 ∪ . . . ∪ Sm. Then

Aut(G) ∼= 〈S1〉 × 〈S2〉 × . . .× 〈Sm〉.

A network G which satisfies Theorem 5 is called locally symmetric. In other words,
the network G is locally symmetric if Aut(G) can be factorized into a large number of
geometric factors.

For a graph Γ, let S ⊆ Γ be a subset of generators of Γ, then supp(S) = ∪s∈Ssupp(s).

Corollary 1. Let S be a set of generators of Aut(G), 1 6∈ S and S = S1 ∪ . . . ∪ Sm. Then

OG(x) = tx +
m

∑
i=1

x|supp(si)| and O?
G(x) = 1− tx−

m

∑
i=1

x|supp(si)|,

where t is the number of singleton sets.

Proof. The structure of the group Aut(G) shows that the elements of each supp(si),
1 ≤ i ≤ m can be permuted to itself. Hence, the image of elements in Si’s are orbits
of Aut(G).

Suppose A and B are finite groups and B acts on the set X . The wreath product of
groups A and B is a group with the underline set:

A o B = {( f ; b)| f : X → A is a f unction, b ∈ B}.

The group operation can be defined as ( f1; b1)( f2; b2) = (g; b1b2), where for any i ∈ X,
g(i) = f1(i) f2(ib1). For the description of the symmetry of networks, we used the wreath
product. For example, supposeH is a network constructed from the union of r copies of a
graphM. Then, Aut(H) ∼= Sr o Aut(M).
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Consider the graph G as depicted in Figure 6. It presents a typical arrangement of
symmetric subgraphs found in many real-world networks. The structure of the network
automorphism group is completely related to the automorphism group of subgraphs
induced by its orbits. In [29], the authors determined the structure of the automorphism
group of G, which is:

Aut(G) ∼= Z2
2 × S3 × S4 × (Z2 oZ2).

Hence, OG(x) = 12x + 5x2 + x3 + 2x4 and O?
G(x) = 1−

(
11x + 6x2 + x3 + 2x4).

Figure 6. Vertices with the same colors are in the same orbit and singleton orbits are shown by
white colors.

4. Integer Polynomials

The polynomial f (x) = a0 + a1x + · · ·+ anxn is called an integer polynomial of degree
n, if its coefficients are non-negative integer numbers. The caterpillar tree C(n1, n2, . . . , nr)
is a graph constructed from the path Pr graph by adding ni leafs to the ith vertex of Pr. Con-
sider the caterpillar graph G = C(2, 3, . . . , n) depicted in Figure 7. Then
OG(x) = (n + 4)x + x2 + · · ·+ xn.

Figure 7. The caterpillar graph G = C(0, 0, 2, 3, . . . , n, 0, 0).

It is clear that the orbit polynomial is always a polynomial with integer coefficients,
and thus it is an integer polynomial. The aim of this section is to answer the question of
whether, supposing p(x) = a0x + a1xn−1 + . . . + akxnk is an integer polynomial, where
p(0) = 0, there is any graph whose orbit polynomial is p(x).

Example 3. For the caterpillar graph G = C(0, 0,
a1︷ ︸︸ ︷

n1, · · · , n1, . . . ,
ak︷ ︸︸ ︷

nk, · · · , nk, 0, 0), where ni ≥ 2,
we obtain:

rx + a1xn1 + · · ·+ akxnk ,

where r = 4 + ∑k
i=1 aini = 4 + k.

Here, we determine some classes of graphs with the orbit polynomial OG(x) =

∑r
i=1 cixni , where r = 1, 2 and 1 ≤ ci ≤ n. If r = 1, then OG(x) = c1xn1 and thus all orbits

of G have the same order, namely c1n1 = n and so OG(x) = c1x
n
c1 . If OG(x) = nx, then G

is the asymmetric graph. For 1 < c < n, let r = n/c, then, the graphH = Kr[rPc] obtained
from the complete graph Kr by attaching the path graph Pc to each vertex of Kr (as can be
seen in Figure 8), is a graph with the orbit polynomial OG(x) = cxr.
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Figure 8. The graphH = Kc[nPr].

In general, we have the following theorem.

Theorem 6. Let G be a vertex-transitive graph on n vertices. Then, the orbit polynomial of graph
K = G[nPk] is OK(x) = kxn.

Proof. It is clear that all vertices of G are in the same orbit. Moreover, the corresponding
vertices of each copy of Pk compose k− 1 orbits of length n.

Theorem 7. Let G be a graph with two orbits X and Y. Attach to each vertex of X the path graph
Pk and to each vertex of Y, the path Pl , as can be seen in Figure 9. Then, the resulting graph
M = G[Pk, Pl ] has the orbit polynomial OM(x) = kx|X| + lx|Y|.

Proof. The proof is straightforward.

Figure 9. The graphM = G(a1n1, · · · , aknk).

Finally, ni (ni’s are greater than or equal to zero and at least one of them is not zero)
pendent vertices are attached to the ith vertex of Ck. The resulting graph was denoted by

C = Ck(

a1︷ ︸︸ ︷
n1, · · · , n1, · · · ,

ak︷ ︸︸ ︷
nk, · · · , nk), as can be seen in Figure 10. It is not difficult to see that

OC(x) = kx + a1xn1 + · · ·+ akxnk , where |V| = k + n1 + · · ·+ nk.
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Figure 10. The graph C.

Thus far, we provided examples of graphs with both polynomials OG(x) = rx +
a1xn1 + · · · + aknk (r = k + 4) and OH(x) = kx + a1xn1 + · · · + aknk. Thus, for a given
integer polynomial f (x) = a1xn1 + · · ·+ akxnk (ni ≥ 2), two polynomials OG(x) = (k +
4)x+ f (x) and OG(x) = (k)x+ f (x) are the orbit polynomials of a graph and we conjecture
that there is a graph with the orbit polynomial f (x).

5. Summary and Conclusions

In this paper, we investigated the orbit polynomial for several graph/network classes.
In addition, we inferred some well-known results about the orbit polynomial. Then, we
constructed graphs with a given integer polynomial as its orbit polynomial. The method
was applied to investigate the symmetry structure of some real-world networks. Finally,
we investigated graphs whose orbit polynomials were integer and we showed that there
was a one-to-one correspondence with the number of partitions of an integer n and the
number of distinct orbit polynomials of a graph of order n.
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