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Abstract: In this article, a new four-parameter lifetime model called the beta generalized inverse
Rayleigh distribution (BGIRD) is defined and studied. Mixture representation of this model is derived.
Curve’s behavior of probability density function, reliability function, and hazard function are studied.
Next, we derived the quantile function, median, mode, moments, harmonic mean, skewness, and
kurtosis. In addition, the order statistics and the mean deviations about the mean and median are
found. Other important properties including entropy (Rényi and Shannon), which is a measure of the
uncertainty for this distribution, are also investigated. Maximum likelihood estimation is adopted to
the model. A simulation study is conducted to estimate the parameters. Four real-life data sets from
difference fields were applied on this model. In addition, a comparison between the new model and
some competitive models is done via information criteria. Our model shows the best fitting for the
real data.

Keywords: beta generalized inverse Rayleigh distribution; statistical properties; mean deviations;
quantile; Rényi entropy; Shannon entropy; incomplete beta function; Montecarlo Simulation

MSC: Primary 62E10; Secondary 60E05

1. Introduction

Modeling and analysis of lifetime phenomena are important aspects of statistical
work in a wide variety of scientific and technological fields. The field of lifetime data
analysis has grown and expanded rapidly with respect to methodology, theory, and fields
of applications. In the context of modeling the real-life phenomena, continuous probability
distributions and many generalizations or transformation methods have been proposed.
These generalizations, obtained either by adding one or more shape parameters or by
changing the functional form of the distribution, make the models more sufficient for many
applications.

The inverse Rayleigh distribution has many applications in lifetime studies. Sometimes
it could not fit skewed data or near symmetrical data [1]. This paper proposes a solution
by introducing a new two-parameter extension of this distribution through the use of beta
generator distribution. Furthermore, the extended parameters control the skewness of the
proposed model.

The generalized inverse Rayleigh distribution (GIRD) is a very useful life distribution.
The GIRD is an important distribution in statistics and operations research. Ref. [2] estimated
parameters of GIRD based on randomly censored samples. Ref. [3] discussed the inference
of GIRD with real data applications. Moreover, ref. [4] estimated parameters of GIRD based
on progressive type II censoring. In addition, ref. [5] studied the characterizations through
the generalized inverted Rayleigh distribution.
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The probability density function (pdf) of the generalized inverse Rayleigh distribution
is given by

g(x) =
2η

ρ2x3 e−(ρx)−2
[1− e−(ρx)−2

]η−1, x > 0, η, ρ > 0. (1)

and the corresponding cumulative distribution function (cdf) is provided by

G(x) = 1− [1− e−(ρx)−2
]η , x > 0, η, ρ > 0. (2)

where η and ρ are the shape and the scale parameters, respectively.
Recently, attempts have been made to define new families of probability distributions

that extend well-known families of distributions and at the same time provide great
flexibility in modeling data in practice. One such class of distributions is generated from
the beta random variable. This class of generalized distributions has been receiving
considerable attention over the last years. A general class of distribution was introduced
by [6] as:

F(x) = IG(x)(a, b), a > 0, b > 0, (3)

where G(x) is the cdf of a baseline distribution and Iu(a, b) is the incomplete beta function
ratio such that

Iu(a, b) =
β(u; a, b)
β(a, b)

=
1

β(a, b)

∫ u

0
va−1(1−v)b−1dv, a, b > 0, (4)

where β(a, b) =
∫ 1

0 va−1(1−v)b−1dv is the beta function. The skewness of the distribution
is controlled by the two shape parameters a and b.

The pdf of the beta-G distribution has the following form

f (x) =
g(x)

β(a, b)
G(x)a−1 [1− G(x)]b−1, (5)

where g(x) is the pdf of a baseline distribution.
We can obtain the beta generalized inverse Rayleigh distribution (BGIRD) by using

the pdf and cdf of GIRD in (1) and (2) as a baseline distribution for (5) and (3), which is a
generalization of GIRD. The BGIRD is expected to be more flexible in real applications.

Some classes of beta-generated distributions have received considerable attention
in recent years. Ref. [7] studied the beta inverse Rayleigh distribution. They provided
various properties, including the quantile function, moments, mean deviations, Bonferroni
and Lorenz curves, Rényi and Shannon entropies, and order statistics, as well as the
maximum likelihood estimates. In addition, Ref. [8] studied the beta Rayleigh distribution
and discussed some properties of the distribution. Additionally, maximum likelihood
estimation and the information matrix were obtained. Ref. [9] proposed the beta generalized
inverted exponential distribution and derived various statistical properties. They obtained
the maximum likelihood estimators, asymptotic Fisher information matrix, and confidence
interval estimates of the parameters. Moreover, applications on real data sets were provided.

The aim of this study is to introduce a generalization of the generalized inverted
Rayleigh distribution termed the beta generalized inverted Rayleigh distribution. We hope
that this generalization shall attract wide applications. In this study, many important
characteristics of the distribution are studied. As well as estimating the parameters of
the distribution using the maximum likelihood estimation method and Bayes estimation
method under complete samples. A simulation study is adopted to find the estimates of this
distribution according to the methods mentioned above for different sample sizes. Finally,
the distribution was applied to five real data in different fields. As well, the distribution is
compared with other models using information criteria.
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2. The Beta Generalized Inverse Rayleigh Distribution

In this section, we introduce the four parameter beta generalized inverse Rayleigh
distribution. The cdf of the BGIRD could be written using the incomplete beta function
defined in (3) as follows

F(x) = I
1−(1−e−(ρx)−2

)η (ν, τ) =
β(1− (1− e−(ρx)−2

)η ; ν, τ)

β(ν, τ)
(6)

=
1

β(ν, τ)

∫ 1−[1−e−(ρx)−2
]η

0
vν−1(1−v)τ−1dv, x > 0, ν, τ, η and ρ > 0, (7)

where η, ν, and τ are shape parameters and ρ is a scale parameter.

2.1. Probability Density Function of BGIRD

The pdf of the BGIRD takes the form

f (x) =
2η

β(ν, τ)ρ2x3 e−(ρx)−2
(1− e−(ρx)−2

)ητ−1[1− (1− e−(ρx)−2
)η ]ν−1,

x > 0, ν, τ, η and ρ > 0.
(8)

By using the power series expansion, for b > 0 a real non-integer number and |Z| < 1,

(1− Z)b−1 =
∞

∑
i=0

(−1)i
(

b− 1
i

)
Zi, −1 < Z < 1, (9)

we can rewrite the pdf of the BGIRD in (8) as an infinite power series in the following forms

f (x) =
2η

β(ν, τ)ρ2x3 e−(ρx)−2
∞

∑
k=0

(−1)k

νβ(ν− k, k + 1)
[1− e−(ρx)−2

]η(τ+k)−1,

x > 0, ν, τ, η and ρ > 0,

(10)

and

f (x) =
2η

β(ν, τ)ρ2x3

∞

∑
k=0

∞

∑
i=0

(−1)k+i e−(i+1)(ρx)−2

ν(η(τ + k))β(i + 1, η(τ + k)− i)β(ν− k, k + 1)
,

x > 0, ν, τ, η and ρ > 0,

(11)

where ν is a real number.

2.2. Cumulative Distribution Function of BGIRD

From (10) and (11), the corresponding cdf, respectively, can be written as follows

F(x) =
1

β(ν, τ)

∞

∑
k=0

(−1)k[1− (1− e−(ρx)−2
)η(τ+k)]

ν(τ + k)β(ν− k, k + 1)
, x > 0, ν, τ, η and ρ > 0, (12)

and

F(x) =
η

β(ν, τ)

∞

∑
k=0

∞

∑
i=0

(−1)k+i e−(i+1)(ρx)−2

(i + 1)ν(η(τ + k))β(i + 1, η(τ + k)− i)β(ν− k, k + 1)
,

x > 0, ν, τ, η and ρ > 0.

(13)

Figure 1 shows the curves of the BGIR probability density function.
From Figure 1, we note that the distribution is unimodal and positively skewed.
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Figure 1. The pdf curves of the BGIRD for different values of parameters.

2.3. Mixture Representation

In this section, we derive mixture representations for the pdf and cdf of X in order
to obtain a simple form for the BGIRD pdf. By using Equation (10), the pdf of X can be
written as

f (x) =
∞

∑
k=0

∞

∑
i=0

2(i + 1) υi ρ−2 x−3e−(i+1)(ρx)−2
, (14)

υi =
(−1)k+iη Γ(ν) Γ(η(τ + k))

β(ν, τ) k! Γ(ν− k) (i + 1)! Γ(η(τ + k)− i)
.

Equation (14) can be rewritten as

f (x) =
∞

∑
k=0

∞

∑
i=0

υi hi+1(x), (15)

where hi+1(x) is the inverse Rayleigh (IR) pdf with scale parameter (ρ−2(i + 1)).
Equation (15) reveals that the BGIRD density function can be expressed as a mixture

of IR densities. Therefore, several of its structural properties can be derived from those of
the inverse Rayleigh distribution (IRD).

By integrating (15), we obtain

F(x) =
∞

∑
k=0

∞

∑
i=0

υi Hi+1(x),

where Hi+1(x) is the cdf of the IR model with scale parameter (ρ−2(i + 1)).

2.4. The Reliability Function

Suppose X is a BGIR random variable which represents the lifetime of a unit, and
t represents time, then the probability that a unit X survives beyond time t is called the
reliability at time t. The reliability, R(t), at time t is given as follows:

R(t) = 1− F(t)

= 1− 1
β(ν, τ)

∞

∑
k=0

(−1)k[1− (1− e−(ρt)−2
)η(τ+k)]

ν(τ + k)β(ν− k, k + 1)
, t > 0, ν, τ, η and ρ > 0.
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Figure 2 shows the reliability function of the BGIRD for various parameter choices.

Figure 2. The reliability curves of the BGIRD for different values of parameters.

2.5. The Hazard Function

The rate at which failure of a unit occurs per unit of time relative to the proportion of
the population which has not yet failed, is the hazard function, h(t). The hazard function
of the BGIRD is given as

h(t) =
f (t)

1− F(t)

=

2 η e−(ρt)−2

β(ν,τ) ρ2 x3 ∑∞
k=0

(−1)k

ν β(ν−k,k+1)

[
1− e−(ρt)−2

]η(τ+k)−1

1− 1
β(ν,τ) ∑∞

k=0

(−1)k
[

1−
(

1−e−(ρt)−2)η(τ+k)
]

ν(τ+k)β(ν−k,k+1)

, t > 0, ν, τ, η and ρ > 0.

Figure 3 shows the hazard function of the BGIRD for various parameter choices.

Figure 3. The hazard curves of the BGIRD for different values of parameters.

It is shown from Figure 3 that the hazard function increases and then decreases. That is,
the upside down bathtub hazard function which indicates that the risk of failing decreases
as soon as the item has passed a specific time, during which it may have experienced some
type of stress. Thus, the BGIRD shows good statistical behavior based on this function and
could be a flexible model for fitting data in many fields.

2.6. Special Sup-Models

The BGIRD in Equation (8) represents a generalization of several distributions that
have been considered in the literature.

• In particular, BGIRD becomes GIRD (η, ρ) when ν and τ = 1.
• The beta inverse Rayleigh distribution BIRD (ν, τ, ρ) is clearly a special case of BGIRD

when η = 1.
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• IRD (ρ) can be obtained from (8) by making ν, τ, η = 1.
• In addition, the exponentiated Rayleigh distribution ERD (η, ρ) is a special case of

BGIRD when ν = τ = 1 and the random variable Y = 1/X.
• If ν = τ = 1 and η = 1 in Equation (8), the random variable Y = 1/X has the Rayleigh

distribution (ρ).

3. Statistical Properties
3.1. Quantile Function

The quantile function of the BGIRD corresponding to (6) is

q(u) =

 −1

ρ2 log
[

1− [1− I−1
u (ν, τ)]

1
η

]


1
2

, 0 < u < 1, (16)

where I−1
u (ν, τ) is the inverse of the incomplete beta function defined in (3)

Iu(ν, τ) =
1

β(ν, τ)

∫ u

0
vν−1(1−v)τ−1dv.

3.2. Median

We can derive the median of the BGIRD as the following:
Set F(m) = 1

2 , then by using Equation (12), we have:

1
β(ν, τ)

∞

∑
k=0

(−1)k[1− (1− e−(ρm)−2
)η(τ+k)]

ν(τ + k)β(ν− k, k + 1)
=

1
2

when a is positive and
∣∣∣(1− e−(ρm)−2

)η
∣∣∣ < 1, we can take the first approximation by putting

k = 0 and ν = 1, then we get:

(1− e−(ρm)−2
)ητ =

1
2

After some simplifications, we can write the median of the BGIRD in the form:

m =

 1

−ρ2 log
[

1−
(

1
2

) 1
ητ

]


1
2

. (17)

3.3. Mode

The mode of the BGIRD can be found by solving the following equation with respect
to x:

d f (x)
dx

= 0.

Then, by using (8), we get:

f (x)
[

2
ρ2x3 −

3
x
− 2(ητ − 1)

ρ2x3

[
e(ρx)−2 − 1

]−1
+

2η(ν− 1)
ρ2x3

[
e(ρx)−2 − 1

]−1[
(1− e−(ρx)−2

)− 1
]−1
]
= 0,

since f (x) > 0, the mode is the solution of the following equation:

2
ρ2x3 −

3
x
− 2(ητ − 1)

ρ2x3

[
e(ρx)−2 − 1

]−1
+

2η(ν− 1)
ρ2x3

[
e(ρx)−2 − 1

]−1[
(1− e−(ρx)−2

)− 1
]−1

= 0. (18)
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Equation (18) is a non-linear equation and cannot have an analytic solution in x.
Therefore, it has to be solved numerically. The mode of the BGIRD can be obtained by
solving (18) numerically using the Newton–Raphson method.

3.4. Moments

The rth moment of the BGIRD random variable X is given by:

µ′r =
∫ ∞

0
xr f (x) dx

using the form of the pdf in (14), we have:

µ′r =
∫ ∞

0

∞

∑
i=0

2(i + 1) υi ρ−2 x−3+re−(i+1)(ρx)−2
dx

By setting w = (i + 1)(ρx)−2, we get:

µ′r =
∞

∑
i=0

υi (i + 1)
r
2 ρ−r

∫ ∞

0
e−w w−

r
2 dw

=
∞

∑
i=0

υi (i + 1)
r
2 ρ−rΓ(1− r

2
),

(19)

where Γ(.) is the gamma function, which is defined as Γ(z) =
∫ ∞

0 e−t tz−1dt.
Setting r = 1 in Equation (19), we obtain the mean of X.

µ′1 =
∞

∑
i=0

υi (i + 1)
1
2 ρ−1Γ(

1
2
), Γ(

1
2
) =
√

π. (20)

We noticed that the even moments of (X) do not exist, as the second and fourth moments.
Using the relation between the central and non-central moments, we obtain the nth

central moment of X, say µn, as follows

µn =
n

∑
r=0

∞

∑
i=0

(
n
r

)
(−µ1

′)n−rυi(i + 1)
r
2 ρ−rΓ(1− r

2
).

3.5. Harmonic Mean

The harmonic mean is given by (see [10]):

HM(X) =
1

E(X−1)
=

[∫ ∞

0
x−1 f (x) dx

]−1
.

Using Equation (11), the harmonic mean of the BGIRD can be derived as follows:
Let

I =
∫ ∞

0
x−1 f (x) dx

=
∫ ∞

0

2η

β(ν, τ)ρ2x4

∞

∑
k=0

∞

∑
i=0

(−1)k+i e−(i+1)(ρx)−2

ν(η(τ + k))β(i + 1, η(τ + k)− i)β(ν− k, k + 1)
dx

By setting u = (i + 1)(ρx)−2, we get:
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I =
ρ η

β(ν, τ)

∞

∑
k=0

∞

∑
i=0

(−1)k+i

(i + 1)
3
2 ν(η(τ + k))β(i + 1, η(τ + k)− i)β(ν− k, k + 1)

∫ ∞

0
u

1
2 e−udu

=
ρ η

β(ν, τ)

∞

∑
k=0

∞

∑
i=0

(−1)k+i

(i + 1)
3
2 ν(η(τ + k))β(i + 1, η(τ + k)− i)β(ν− k, k + 1)

A

where

A =
∫ ∞

0
u

1
2 e−udu = Γ(

3
2
) =

1
2

Γ(
1
2
) =

√
π

2

Then

I =
ρηΓ( 3

2 )

β(ν, τ)

∞

∑
k=0

∞

∑
i=0

(−1)k+i

(i + 1)
3
2 ν(η(τ + k))β(i + 1, η(τ + k)− i)β(ν− k, k + 1)

=
ρη
√

π

2β(ν, τ)

∞

∑
k=0

∞

∑
i=0

(−1)k+i

(i + 1)
3
2 ν(η(τ + k))β(i + 1, η(τ + k)− i)β(ν− k, k + 1)

Therefore, the harmonic mean of BGIRD is given by:

HM(X) = [I]−1

=

[
ρ η
√

π

2β(ν, τ)

∞

∑
k=0

∞

∑
i=0

(−1)k+i

(i + 1)
3
2 ν(η(τ + k))β(i + 1, η(τ + k)− i)β(ν− k, k + 1)

]−1

. (21)

3.6. Skewness and Kurtosis

Based on the fact that the second and fourth moments of the BGIRD are non-existent,
usual skewness and kurtosis based on moments could not be found.

However, measures based on quantile, such as Bowley skewness (see [11]) and Moors
kurtosis (see [12]), can quantify asymmetry and the peakedness of a given distribution.
These measures exist even when moments are not available.

Bowley skewness and Moors kurtosis are defined, respectively, by

B =
q(3/4)− 2q(1/2) + q(1/4)

q(3/4)− q(1/4)

and

M =
q(7/8)− q(5/8) + q(3/8)− q(1/8)

q(6/8)− q(2/8)
,

where q(.) is defined in (16).
The Bowley skewness, Moors kurtosis, mean, median, mode, and harmonic mean of

the BGIRD for various values of ν, τ, η, and ρ are shown in Table 1.
Table 1 shows the results of studying BGIRD’s behavior. Kurtosis and skewness values

remain constant for fixed values of ν, τ, and η. We also note that, with increasing ρ, the
mean, median, mode, and harmonic mean are decreasing. As the value of η increases and
the other parameters are fixed, the skewness, kurtosis, mean, median, mode and harmonic
mean decrease. Furthermore, the skewness, kurtosis, mean, mode, and harmonic mean
increase as we increase the value of ν and with the stability of the values of τ, η, and ρ.
Additionally, for different values of τ and fixed values of ν, η, and ρ, the skewness, kurtosis,
mean, median, mode, and harmonic mean decrease as τ increases. Moreover, we found
that our results for ν = τ = 1 are exactly the same as the results in [5]. All graphs and
computations presented were carried out by Mathematica 12.0.
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Table 1. The skewness, kurtosis, mean, median, mode, and harmonic mean of the BGIRD.

ν τ η ρ Skewness Kurtosis Mean Median Mode Harmonic Mean

2 2 2 1.5 0.13731 1.29818 0.637261 0.601615 0.545538 0.592602

2 2 2 2 0.13731 1.29818 0.477946 0.451212 0.409154 0.444451

2 2 0.5 2 0.31697 1.58531 1.42599 0.93221 0.60726 0.862293

2 2 1.5 2 0.162677 1.32328 0.543969 0.50147 0.439831 0.492135

2 2 5 2 0.0792963 1.25709 0.357224 0.349688 0.336093 0.346181

1 2 2 2 0.136143 1.29595 0.392529 0.368785 0.331165 0.360099

3 2 2 2 0.137703 1.29892 0.536444 0.507568 0.462275 0.501744

2 0.75 2 2 0.240794 1.4393 0.770942 0.63456 0.498165 0.616217

2 1 2 2 0.203663 1.37855 0.64575 0.566454 0.470633 0.553656

2 4 2 2 0.0921975 1.26287 0.387276 0.376634 0.35771 0.372261

1 1 1.5 0.5 0.24225 1.43601 2.46538 2.00588 1.53797 1.92415

1 1 1 1.5 0.30686 1.57048 3.54491 0.800748 0.54433 0.75225

3.7. Mean Deviations

The mean deviation is a measure of dispersion derived by computing the mean of the
absolute values of the differences between the observed values of a variable and the mean
or median of the variable. It is called average deviation (see [13]).

The mean deviation about the mean and the mean deviation about the median are,
respectively, defined by:

D(µ) = E(|X− µ|)

and
D(m) = E(|X−m|)

where µ = E(X) and m = q(1/2).
The mean deviation about the mean and the median is given by the following theorems.

3.7.1. The Mean Deviation about the Mean

Theorem 1. If X follows BGIRD, then the mean deviation about the mean is in the form

D(µ) =
2η

β(ν, τ)

∞

∑
k=0

∞

∑
i=0

(−1)k+i
[
µe−(i+1)(ρµ)−2 − ( i+1

ρ2 )
1
2 Γ( 1

2 , i+1
ρ2µ2 )

]
(i + 1)ν(η(τ + k))β(i + 1, η(τ + k)− i)β(ν− k, k + 1)

.

Proof. The mean deviation about the mean can be written as

D(µ) = E(|X− µ|) =
∫ ∞

0
|x− µ| f (x) dx

=
∫ µ

0
(µ− x) f (x) dx +

∫ ∞

µ
(x− µ) f (x) dx

= 2
∫ µ

0
(µ− x) f (x) dx

= 2µ F(µ)− 2
∫ µ

0
x f (x) dx

= 2µ F(µ)− 2
∫ µ

0
x dF(x)

= 2
∫ µ

0
F(x) dx

(22)



Symmetry 2021, 13, 711 10 of 22

by using Equation (13), the mean deviation of the BGIRD can be derived as:

D(µ) = 2
∫ µ

0

η

β(ν, τ)

∞

∑
k=0

∞

∑
i=0

(−1)k+i e−(i+1)(ρx)−2

(i + 1)ν(η(τ + k))β(i + 1, η(τ + k)− i)β(ν− k, k + 1)
dx

=
2η

β(ν, τ)

∞

∑
k=0

∞

∑
i=0

(−1)k+i

(i + 1)ν(η(τ + k))β(i + 1, η(τ + k)− i)β(ν− k, k + 1)

×
∫ µ

0
e−(i+1)(ρx)−2

dx

=
2η

β(ν, τ)

∞

∑
k=0

∞

∑
i=0

(−1)k+i

(i + 1)ν(η(τ + k))β(i + 1, η(τ + k)− i)β(ν− k, k + 1)
B,

where
B =

∫ µ

0
e−(i+1)(ρx)−2

dx

= µe−(i+1)(ρµ)−2 − (
i + 1

ρ2 )
1
2 Γ(

1
2

,
i + 1
ρ2µ2 )

then, we get the mean deviation about the mean of the BGIRD as:

D(µ) =
2η

β(ν, τ)

∞

∑
k=0

∞

∑
i=0

(−1)k+i
[
µe−(i+1)(ρµ)−2 − ( i+1

ρ2 )
1
2 Γ( 1

2 , i+1
ρ2µ2 )

]
(i + 1)ν(η(τ + k))β(i + 1, η(τ + k)− i)β(ν− k, k + 1)

. (23)

3.7.2. The Mean Deviation about the Median

Theorem 2. If X follows BGIRD, then the mean deviation about the median is in the form

D(m) = µ−m +
2η

β(ν, τ)

∞

∑
k=0

∞

∑
i=0

(−1)k+i
[
me−(i+1)(ρm)−2 − ( i+1

ρ2 )
1
2 Γ( 1

2 , i+1
ρ2m2 )

]
(i + 1)ν(η(τ + k))β(i + 1, η(τ + k)− i)β(ν− k, k + 1)

.

Proof. The mean deviation about the median can be written as

D(m) = E(|X−m|) =
∫ ∞

0
|x−m| f (x) dx

= 2
∫ m

0
(m− x) f (x) dx +

∫ ∞

0
(x−m) f (x) dx

= 2mF(m)− 2
∫ m

0
x f (x) dx + E(X−m)

= 2mF(m)− 2
∫ m

0
x f (x) dx + µ−m

= µ−m + 2
∫ m

0
F(x) dx

(24)

The third term in Equation (24) is the same as Equation (22) where the upper limit of the
integration is m instead of µ. Hence, by substituting the result of (23) in (24), we get:

D(m) = µ−m +
2η

β(ν, τ)

∞

∑
k=0

∞

∑
i=0

(−1)k+i
[
me−(i+1)(ρm)−2 − ( i+1

ρ2 )
1
2 Γ( 1

2 , i+1
ρ2m2 )

]
(i + 1)ν(η(τ + k))β(i + 1, η(τ + k)− i)β(ν− k, k + 1)

. (25)

3.8. Rényi and Shannon Entropies

There are two important entropy measures: the Shannon entropy and its generalization,
which is known as the Rényi entropy. The entropy of a random variable quantifies its
associated uncertainty (see [14]).
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The Rényi and Shannon entropies are defined, respectively, by:

Rθ(X) =
1

1− θ
log[J(θ)],

where J(θ) =
∫ ∞

0 f θ(x) dx, θ > 0 and θ 6= 1.

W(X) = −E[log( f (x))].

Now, the Shannon entropy can be obtained by taking the limit of the Rényi entropy
when θ → 1, as follows:

W(X) = lim
θ→1

(Rθ(X)) = lim
θ→1

1
1− θ

log(
∫ ∞

0
f θ(x) dx).

The following theorems presented the forms of Rényi and Shannon entropies for
the BGIRD.

3.8.1. The Rényi Entropy for the BGIRD

Theorem 3. If X follows BGIRD, then the Rényi entropy is in the form

Rθ(X) =
θlog η

1− θ
− log(2ρ)− θlogβ(ν, τ)

1− θ
+

1
1− θ

log

×
[

Γ(
3θ − 1

2
)

∞

∑
k=0

∞

∑
i=0

(−1)k+i
(

θ(ν− 1)
k

)(
ηk + θ(ητ − 1)

i

)
(θ + i)−(

3θ−1
2 )

]
.

Proof. By using Equation (8), the Rényi entropy can be written as

J(θ) =
∫ ∞

0
(

2η

β(ν, τ)ρ2x3 )
θ e−θ(ρx)−2

(1− e−(ρx)−2
)θ(ητ−1)[1− (1− e−(ρx)−2

)η ]θ(ν−1)dx

= (
2η

β(ν, τ)ρ2 )
θ
∫ ∞

0
x−3θ e−θ(ρx)−2

(1− e−(ρx)−2
)θ(ητ−1)[1− (1− e−(ρx)−2

)η ]θ(ν−1)dx

By setting u = (ρx)−2, we get:

J(θ) = (
2 η ρ

β(ν, τ)
)θ (2ρ)−1

∫ ∞

0
u

3
2 (θ−1) e−θu (1− e−u)θ(ητ−1) [1− (1− e−u)η ]θ(ν−1) du,

by applying the series defined in Equation (9), we get:

J(θ) = (
2 η ρ

β(ν, τ)
)θ (2ρ)−1

∫ ∞

0
u

3
2 (θ−1) e−θu

∞

∑
k=0

(−1)k
(

θ(ν− 1)
k

)
(1− e−u)ηk+θ(ητ−1) du

= (
2 η ρ

β(ν, τ)
)θ (2ρ)−1

∫ ∞

0
u

3
2 (θ−1)

∞

∑
k=0

∞

∑
i=0

(−1)k+i
(

θ(ν− 1)
k

)(
ηk + θ(ητ − 1)

i

)
× e−u(θ+i) du

J(θ) = (
2 η ρ

β(ν, τ)
)θ (2ρ)−1

∞

∑
k=0

∞

∑
i=0

(−1)k+i
(

θ(ν− 1)
k

)(
ηk + θ(ητ − 1)

i

)
×
∫ ∞

0
u

3
2 (θ−1) e−u(θ+i) du

= (
2 η ρ

β(ν, τ)
)θ (2ρ)−1

∞

∑
k=0

∞

∑
i=0

(−1)k+i
(

θ(ν− 1)
k

)(
ηk + θ(ητ − 1)

i

)
Γ( 3θ

2 −
1
2 )

(θ + i)(
3θ−1

2 )
.

Then
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log[J(θ)] = (θ − 1)log(2ρ) + θ log η − θ log β(ν, τ)

+

[
Γ(

3θ − 1
2

)
∞

∑
k=0

∞

∑
i=0

(−1)k+i
(

θ(ν− 1)
k

)(
ηk + θ(ητ − 1)

i

)
(θ + i)−(

3θ−1
2 )

]
.

Hence,

Rθ(X) =
θlog η

1− θ
− log(2ρ)− θlogβ(ν, τ)

1− θ
+

1
1− θ

log

×
[

Γ(
3θ − 1

2
)

∞

∑
k=0

∞

∑
i=0

(−1)k+i
(

θ(ν− 1)
k

)(
ηk + θ(ητ − 1)

i

)
(θ + i)−(

3θ−1
2 )

]
. (26)

Figure 4 shows the curve of the BGIR Rényi entropy.

Figure 4. The Rényi entropy for the BGIRD.

3.8.2. The Shannon Entropy for the BGIRD

Theorem 4. If X follows BGIRD, then the Shannon entropy is in the form

W(X) = −log(
2η

β(ν, τ)ρ2 ) +
1

β(ν, τ)

∞

∑
k=0

(−1)k

ν(η(τ + k))β(ν− k, k + 1)

×
(3η

2

∞

∑
i=0

(−1)i[log( i+1
ρ2 )]

(i + 1)β(i + 1, η(τ + k)− i)

+ η
∞

∑
i=0

(−1)i

(i + 1)2β(i + 1, η(τ + k)− i)

+ η(ητ − 1)
∞

∑
i=0

∞

∑
j=1

(−1)i

j(i + j + 1)β(i + 1, η(τ + k)− i)

+ (ν− 1)
∞

∑
j=1

∞

∑
l=0

(−1)l(η(τ + k))
(j + τ + k)jβ(l + 1, η(j + τ + k)− l)(l + 1)

)
.

The proof is presented in Appendix A.

4. Order Statistics

Order statistics deal with the properties and applications of ordered random variables
and their functions. In the study of many natural problems related to flood, longevity,
breaking strength, atmospheric temperature, atmospheric pressure, wind, etc., the future



Symmetry 2021, 13, 711 13 of 22

possibilities in the recurrence of extreme situations are of much importance and accordingly
the problem of interest in these cases reduces to that of the extreme observations.

Let X1, X2, ...., Xn be a random sample from the BGIRD with pdf and cdf as in (14)
and (6), respectively, and let X1:n ≤ X2:n ≤ .... ≤ Xn:n denote the order statistics obtained
from this sample. The pdf of the rth order statistic Xr:n is given by (see [15]).

fXr:n(x) =
1

β(r, n− r + 1)
(F(x))r−1(1− F(x))n−r f (x).

Here, we present an explicit expression for the density function fXr:n(x) of the rth
order statistic Xr:n in a random sample of size n from the BGIRD.

Using (6), the pdf of Xr:n for the BGIRD is given by

fXr:n(x) =
1

β(r, n− r + 1)
f (x)

(
β(1− (1− e−(ρx)−2

)η ; ν, τ)

β(ν, τ)

)r−1

×
(

1− β(1− (1− e−(ρx)−2
)η ; ν, τ)

β(ν, τ)

)n−r

by applying the series defined in Equation (9), we get:

fXr:n(x) =
f (x)

β(r, n− r + 1)

n−r

∑
j=0

(−1)j
(

n− r
j

)(
β(1− (1− e−(ρx)−2

)η ; ν, τ)

β(ν, τ)

)r−1+j

Using the series expression for the incomplete beta function:

Ix(a, b) =
β(x; a, b)
β(a, b)

=
a+b−1

∑
k=a

(
a + b− 1

k

)
xk(1− x)a+b−1−k,

the pdf of Xr:n can be written as

fXr:n(x) =
f (x)

β(r, n− r + 1)

n−r

∑
j=0

(−1)j
(

n− r
j

)

×
{

ν+τ−1

∑
k=ν

(
ν + τ − 1

k

)
(1− (1− e−(ρx)−2

)η)k(1− e−(ρx)−2
)η(ν+τ−1−k)

}r−1+j

.

5. Maximum Likelihood Estimation Method

In this section, we determine the maximum likelihood estimates (MLEs) of the
parameters of the BGIRD from complete samples. Let X1, X2, . . . , Xn be a random sample
of size n from the BGIRD θ= (ν, τ, η, ρ).

The likelihood function in this case can be written as:

L(θ, x) =
n

∏
i=1

f (xi) (27)

The likelihood function for the BGIRD is given by:

L(θ, x) =
(

2η

β(ν, τ) ρ2

)n n

∏
i=1

(xi)
−3 e−∑n

i=1(ρ xi)
−2 n

∏
i=1

(1− e−(ρ xi)
−2
)ητ−1

×
n

∏
i=1

[
1−

(
1− e−(ρ xi)

−2
)η]ν−1

(28)

and the log-likelihood function is obtained as:
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` = log L(θ, x) =
n

∑
i=1

log f (xi). (29)

For the BGIRD, we have

log L(θ, x) = n log(η) + nlog(2)− nlog(β(ν, τ))− 2n log(ρ)− 3
n

∑
i=1

log(xi)−
n

∑
i=1

(ρ xi)
−2

+ (η τ − 1)
n

∑
i=1

log(1− e−(ρ xi)
−2
) + (ν− 1)

n

∑
i=1

log[1− (1− e−(ρ xi)
−2
)η ].

(30)

The first derivatives of the log-likelihood function with respect to the components of θ
are given by

∂ logL
∂ ν

=
−n

β(ν, τ)
φ1 +

n

∑
i=1

log
[
1−

(
1− e−(ρ xi)

−2
)η]

,

φ1 =
∂β(ν, τ)

∂ ν
=

Γ(τ)
[
Γ(ν + τ)Γ′(ν)− Γν

∂Γ(ν+τ)
∂ν

]
[Γ(ν + τ)]2

= β(ν, τ)[ψ(ν)− ψ(ν + τ)],

where ψ(x) = d [ln Γ(x)]
dx = Γ′(x)

Γ(x) is called the Psi (Digamma) Function [16].

∂ logL
∂ ν

= −n[ψ(ν)− ψ(ν + τ)] +
n

∑
i=1

log
[
1−

(
1− e−(ρ xi)

−2
)η]

.

∂ logL
∂ τ

=
−n

β(ν, τ)
φ2 + η

n

∑
i=1

log
(

1− e−(ρ xi)
−2)

,
(31)

where

φ2 =
∂β(ν, τ)

∂τ
=

Γ(ν)
[
Γ(ν + τ)Γ′(τ)− Γτ

∂Γ(ν+τ)
∂τ

]
[Γ(ν + τ)]2

= β(ν, τ)[ψ(τ)− ψ(ν + τ)],

∂ logL
∂ τ

= −n[ψ(τ)− ψ(ν + τ)] + η
n

∑
i=1

log
(

1− e−(ρ xi)
−2
)

. (32)

∂ logL
∂ η

=
n
η
+

n

∑
i=1

log(1− e−(ρ xi)
−2
)

{
τ − (ν− 1)

[
(1− e−(ρ xi)

−2
)−η − 1

]−1
}

. (33)

∂logL
∂ρ

=
−2n

ρ
+

2 ∑n
i=1(xi)

−2

ρ3 − 2 ∑n
i=1(xi)

−2

ρ3

[
e(ρ xi)

−2 − 1
]−1

×
{
(η τ − 1)− η(ν− 1)

[(
1− e−(ρ xi)

−2)−η
]−1

}
. (34)

Setting the four non-linear Equations (31)–(34) to zero and solving the resulting
system of non-linear equations, we obtain the maximum likelihood estimators of the
unknown parameters η, ρ, ν, and τ of BGIRD. These equations are in implicit form, so
they may be solved using numerical iteration, such as the Newton–Raphson method via
Mathematica 12.0.

6. Simulation Study

In this part, a Monte Carlo simulation is investigated for estimating unknown
parameters and the reliability function and hazard rate function of BGIRD. The simulation
is conducted by using Mathematica 12.0, 1000 random samples of BGIRD were generated
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with values of n = (10, 20, 30, and 50) while choosing (η, ρ, ν, τ) = (0.5, 2, 2, 2). Average of
the absolute relative bias (ARBias) and mean square error (MSE), where

ARBias(θ̂) =

∣∣∣∣∣ θ̂ − θ

θ

∣∣∣∣∣
MSE(θ̂) = E(θ̂ − θ)2

The results are summarized and tabulated in Table 2 which contain the values of the
ARBias and MSEs for estimating the parameters and the reliability function and hazard
rate function of BGIRD.

Results of ML estimates for the four parameters, R(t0) and h(t0):

• From Table 2, we note that the MSEs of the ML estimates for BGIR(ν, τ, η, ρ),
R(t0), and h(t0) decrease as the sample size increases which show consistency of
the estimated parameters.

• According to the simulation results given in Table 2, as the sample size n increases, the
ARBias is close to zero, the mean estimates tend to be closer to the true parameter values.

Table 2. Maximum likelihood estimates, ARBias, and MSE of the parameters θ = (ν, τ, η, ρ) = (2, 2,
0.5, 2) and R(t0) = 0.1519, h(t0) = 0.8740 at t0 = 2.

n ν̂ τ̂ η̂ ρ̂ R̂(t0) ĥ(t0)

10

MLEs 1.8771 2.1164 0.5575 1.9080 0.1219 1.0487

ARBias 0.0614 0.0582 0.1149 0.0460 0.1977 0.1999

MSE 0.1384 0.1120 0.0204 0.0963 0.0056 0.1160

20

MLEs 1.9092 2.0567 0.5353 1.9394 0.1348 0.9684

ARBias 0.0454 0.0283 0.0706 0.0303 0.1130 0.1080

MSE 0.1217 0.0846 0.0133 0.0812 0.0032 0.0576

30

MLEs 1.9511 2.0456 0.5190 1.9713 0.1412 0.9281

ARBias 0.0244 0.0228 0.0381 0.0143 0.0708 0.0619

MSE 0.1191 0.0830 0.0064 0.0761 0.0019 0.0283

50

MLEs 1.9430 2.0373 0.5131 1.9681 0.1447 0.9104

ARBias 0.0285 0.0187 0.0261 0.0159 0.0477 0.0417

MSE 0.1160 0.0771 0.0057 0.0730 0.0014 0.0182

100

MLEs 1.9714 2.0082 0.5049 1.9879 0.1490 0.8857

ARBias 0.0143 0.0041 0.0098 0.0060 0.0191 0.0135

MSE 0.0373 0.0245 0.0019 0.0247 0.0005 0.0052

7. Application

In this section, we provide four real data sets to illustrate the importance and flexibility
of the BGIRD. The data sets that we applied on our model have been analyzed by [17] to
assess the exbility of exponential, Lindley, and Akash distributions.

We shall compare the fit of the proposed BGIRD (and its sub-model namely: BIRD)
with several other competitive models namely: the beta generalized inverse Weibull
distribution (BGIWD) [18], and exponential, Lindley, and Akash distributions [17] with
corresponding cumulative distribution functions (for x > 0) as follows

BGIWD : F(x) =
1

β(ν, τ)

∫ e−θ(
ρ
x )η

0
Zν−1(1− Z)τ−1 dZ, ν, τ, ρ, θ and η > 0.

exponential : F(x) = 1− e−ρt
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Lindley : F(x) = 1− ρ + 1 + ρx
ρ + 1

e−ρx

Akash : F(x) = 1−
[

1 +
ρx(ρx + 2)

ρ2 + 2

]
e−ρt

The previous models are chosen to compare fitting the selected data sets with the
BGIRD. These models are distinguished by two distinct groups: beta-G distributions
(BIRD and BGIWD) and one parameter distributions (exponential, Lindley, and Akash).
Theoretically, our model has complex derivations but in the lifetime context it has a flexible
failure rate function which has an upside down bathtub shape. On the other hand the
exponential distribution has a constant failure rate function. Therefore, our model is better
than the exponential distribution at this point.

In order to compare the models, we consider some goodness-of-fit measures including
−2̂̀, Akaike information criterion (AIC), and Bayesian information criterion (BIC),

AIC = 2 k− 2̂̀
and

BIC = k Log(n)− 2̂̀
where ̂̀ is the maximized log-likelihood, k is the number of parameters, and n is the sample
size. For more discussion on these criteria, see [19]. In general, the model with minimum
values for these statistics could be chosen as the best model to fit the data. The required
numerical evaluations are carried out using Mathematica 12.0.

Data Set 1: This data represents the survival times of a group of patients suffering
from Head and Neck cancer disease and treated using a combination of radiotherapy and
chemotherapy. These data are: 12.2, 23.56, 23.74, 25.87, 31.98, 37, 41.35, 47.38, 55.46, 58.36,
63.47, 68.46, 78.26, 74.47, 81.43, 84, 92, 94, 110, 112, 119, 127, 130, 133, 140, 146, 155, 159, 173,
179, 194, 195, 209, 249, 281, 319, 339, 432, 469, 519, 633, 725, 817, 1776.

Data Set 2: The data set represents the failure times of the air conditioning system of
an airplane. It has 30 observations as follows: 23, 261, 87, 7, 120, 14, 62, 47, 225, 71, 246, 21,
42, 20, 5, 12, 120, 11, 3, 14, 71, 11, 14, 11, 16, 90, 1, 16, 52, 95.

Data Set 3: The data set represents the lifetime data relating to relief times (in minutes)
of patients receiving an analgesic. The data set consists of 20 observations and it is as
follows: 1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2, 1.4, 3.0, 1.7, 2.3, 1.6, 2.0.

Data Set 4: These data are the strengths of 1.5 cm glass fibers, measured at the National
Physical Laboratory, England. The data set is: 0.55, 0.93, 1.25, 1.36, 1.49, 1.52, 1.58, 1.61, 1.64,
1.68, 1.73, 1.81, 2, 0.74, 1.04, 1.27, 1.39, 1.49, 1.53, 1.59, 1.61, 1.66, 1.68, 1.76, 1.82, 2.01, 0.77,
1.11, 1.28, 1.42, 1.5, 1.54, 1.6, 1.62, 1.66, 1.69, 1.76, 1.84, 2.24, 0.81, 1.13, 1.29, 1.48, 1.5, 1.55,
1.61, 1.62, 1.66, 1.7, 1.77, 1.84, 0.84, 1.24, 1.3, 1.48, 1.51, 1.55, 1.61, 1.63, 1.67, 1.7, 1.78, 1.89.

Data Set 5: These data arose in testing on the cycle at which the Yarn failed. The data
are the number of cycles until failure of the yarn and they are: 86, 146, 251, 653, 98, 249, 400,
292, 131, 169, 175, 176, 76, 264, 15, 364, 195, 262, 88, 264, 157, 220, 42, 321, 180, 198, 38, 20, 61,
121, 282, 224, 149, 180, 325, 250, 196, 90, 229, 166, 38, 337, 65, 151, 341, 40, 40, 135, 597, 246,
211, 180, 93, 315, 353, 571, 124, 279, 81, 186, 497, 182, 423, 185, 229, 400, 338, 290, 398, 71, 246,
185, 188, 568, 55, 55, 61, 244,20, 284, 393, 396, 203, 829, 239, 236, 286, 194, 277, 143, 198, 264,
105, 203, 124, 137, 135, 350, 193, 188.

The applicability of the BGIRD was demonstrated with four real lifetime data sets. The
data sets were also fitted to other distributions, Table 3. The method of maximum likelihood
estimation was used to estimate the parameters of the distributions. It is evident from
Data Sets 3 and 4, the BGIRD has the lowest AIC, BIC, and −2 logL values among all fitted
models. Hence, this new distribution can be chosen as the best model for fitting these data
sets. From Data Set 1, there is a strong competition between BGIRD and the exponential
distribution. Exponential distribution is the best according to BIC but when compared to
AIC value and −2 logL value BGIRD is the best. In addition, as for the second data set, the
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exponential distribution gives better fit and the next distribution is BGIRD. As for the fifth
and final data set, the most appropriate distribution was the Lindley distribution and our
model is considered the third competitor distribution for fitting these data.

Table 3. Parameter estimates, goodness-of-fit measures of the fitted distributions of Data Sets 1–4.

Data Model
MLEs Statistics

ρ̂ ν̂ τ̂ η̂ θ̂ AIC BIC −2 logL

Data 1

BGIRD 14.0184 74.0009 8.71669 0.15366 563.039 570.175 555.039

BIRD 6899.62 4900.34 0.0543026 715.539 720.892 709.539

BGIWD 4938.59 0.001181 0.0862678 0.750759 39.904 576.569 585.49 566.569

Exponential 0.004475 566.02 567.80 564.02

Lindley 0.00891 581.16 582.95 579.16

Akash 0.013423 611.93 613.71 609.93

Data 2

BGIRD 5.0833 14.4244 2.9408 0.1921 316.199 321.80 308.199

BIRD 0.5395 9.6731 0.2074 330.41 333.21 326.41

BGIWD 4227.66 0.0013 0.0586 0.534319 40.7341 326.17 333.18 316.17

Exponential 0.016779 307.26 308.66 305.26

Lindley 0.033021 325.2 326.6 323.2

Akash 0.050293 356.88 358.2 354.8

Data 3

BGIRD 17.5039 58.042 6.3644 0.3428 51.067 55.05 43.067

BIRD 7569.7 5201.94 0.098989 133.896 136.883 127.896

BGIWD 2464.11 0.0015 0.0396 0.4256 29.545 109.587 114.566 99.5871

Exponential 0.526316 67.67 68.67 65.67

Lindley 0.816118 60.50 62.50 63.49

Akash 1.156923 61.52 62.51 59.52

Data 4

BGIRD 21.0277 69.3754 9.45318 0.3144 102.438 111.01 94.4377

BIRD 0.65579 0.808613 1.00416 115.251 121.681 109.251

BGIWD 37.7781 0.0052 0.174197 1.28585 2.63091 164.39 175.106 154.39

Exponential 0.663647 179.66 181.80 177.66

Lindley 0.996116 164.56 166.70 162.56

Akash 1.355445 165.73 169.93 163.73

Data 5

BGIRD 12.0129 155.906 7.49802 0.205185 1285.79 1296.21 1277.79

BIRD 19758 33641.7 0.0520308 1690.43 1698.24 1684.43

BGIWD 5.54157 1.93615 3.77834 0.629758 9.71891 1289.55 1302.57 1279.55

Exponential 0.004505 1282.52 1285.12 1280.52

Lindley 0.00897 1253.34 1255.95 1251.34

Akash 0.013514 1257.83 1260.43 1255.83

Figure 5 shows the curves of the empirical cdf of the data sets and the fitted cdfs.
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Figure 5. Empirical cdf of the data sets and the fitted cdfs.

8. Conclusions

We studied the beta generalized inverse Rayleigh distribution (BGIRD). This new
unimodal distribution has a positively skewed curve for all values of the parameters.
A comprehensive study of the statistical properties of the proposed distribution has been
provided. The quantile function, median, mode, moments, harmonic mean, skewness,
kurtosis, and the mean deviation from the mean and from the median have been obtained.
Moreover, we have derived the Rényi and Shannon entropies. In addition, we have
obtained the order statistics. We hope that the proposed model may be interesting for
a wider range of statistical research. All results in this article generalize the generalized
inverted Rayleigh distribution (GIRD) discussed by [5]. Maximum likelihood estimators
of the BGIRD parameters are obtained. Simulation studies of Monte Carlo are conducted
under various sample sizes to study the theoretical performance of the MLE of the
parameters. Four real data sets are analyzed and a good fit for the data sets has been
provided by the BGIRD.
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Appendix A

Theorem A1. The Shannon entropy for the BGIRD.

Proof. By using Equation (8), the Shannon entropy of the BGIRD can be derived as follows:

W(X) = −E[log( f (X))] = −
∫ ∞

0
f (x) log( f (x)) dx

= −
∫ ∞

0
f (x) log[

2η

β(ν, τ)ρ2x3 e−(ρx)−2
(1− e−(ρx)−2

)ητ−1[1− (1− e−(ρx)−2
)η ]ν−1] dx

= I1 + 3I2 +
1
ρ2 I3 − (ητ − 1)I4 − (ν− 1)I5 (A1)

where

I1 = −
∫ ∞

0
log(

2η

β(ν, τ)ρ2 ) f (x)dx,

I2 =
∫ ∞

0
log(x) f (x) dx,

I3 =
∫ ∞

0

1
x2 f (x) dx,

I4 =
∫ ∞

0
log(1− e−(ρx)−2

) f (x) dx,

I5 =
∫ ∞

0
log[1− (1− e−(ρx)−2

)η ] f (x) dx.

Each integral can be calculated as follows:

I1 = −log(
2η

β(ν, τ)ρ2 )
∫ ∞

0
f (x)dx = −log(

2η

β(ν, τ)ρ2 ). (A2)

I2 =
∫ ∞

0
log(x)

2η

β(ν, τ)ρ2x3

∞

∑
k=0

∞

∑
i=0

(−1)k+i e−(i+1)(ρx)−2

ν(η(τ + k))β(i + 1, η(τ + k)− i)β(ν− k, k + 1)
dx

=
2η

β(ν, τ)ρ2

∞

∑
k=0

∞

∑
i=0

(−1)k+i I6

ν(η(τ + k))β(i + 1, η(τ + k)− i)β(ν− k, k + 1)
,

where

I6 =
∫ ∞

0

log(x)
x3 e−(i+1)(ρx)−2

dx

Let u = (ρx)−2, then

I6 =
ρ2

4(i + 1)

∫ ∞

0
log(

i + 1
ρ2u

) e−udu

=
ρ2

4(i + 1)

[∫ ∞

0
log(

i + 1
ρ2 ) e−udu−

∫ ∞

0
log(u)e−udu

]
=

ρ2

4(i + 1)
[log(

i + 1
ρ2 ) + γ],
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where γ = −
∫ ∞

0 e−x log(x) dx and it is known as Euler–Mascheroni constant. Therefore,
we get:

I2 =
η

2β(ν, τ)

∞

∑
k=0

∞

∑
i=0

(−1)k+i [log( i+1
ρ2 ) + γ]

(i + 1)ν(η(τ + k))β(i + 1, η(τ + k)− i)β(ν− k, k + 1)
. (A3)

Next,

I3 =
∫ ∞

0

2η

β(ν, τ)ρ2x5

∞

∑
k=0

∞

∑
i=0

(−1)k+i e−(i+1)(ρx)−2

ν(η(τ + k))β(i + 1, η(τ + k)− i)β(ν− k, k + 1)
dx

=
2η

β(ν, τ)ρ2

∞

∑
k=0

∞

∑
i=0

(−1)k+i I7

ν(η(τ + k))β(i + 1, η(τ + k)− i)β(ν− k, k + 1)
,

where

I7 =
∫ ∞

0

1
x5 e−(i+1)(ρx)−2

dx.

Let u = (ρx)−2, then

I7 =
ρ4

2(i + 1)2

∫ ∞

0
u eudu

=
ρ4

2(i + 1)2 .

Therefore, we get:

I3 =
ηρ2

β(ν, τ)

∞

∑
k=0

∞

∑
i=0

(−1)k+i

(i + 1)2ν(η(τ + k))β(i + 1, η(τ + k)− i)β(ν− k, k + 1)
. (A4)

Next,

I4 =
∫ ∞

0
log(1− e−(ρx)−2

)
2η

β(ν, τ)ρ2x3

∞

∑
k=0

∞

∑
i=0

(−1)k+i e−(i+1)(ρx)−2

ν(η(τ + k))β(i + 1, η(τ + k)− i)

× 1
β(ν− k, k + 1)

dx

By setting u = (ρx)−2, we get:

I4 =
η

β(ν, τ)

∞

∑
k=0

∞

∑
i=0

(−1)k+i

ν(η(τ + k))β(i + 1, η(τ + k)− i)β(ν− k, k + 1)

×
∫ ∞

0
log(1− e−u) e−(i+1)u du

By using the following Maclaurin series expansion (see [16]):

log(1− z) = −z− z2

2
− z3

3
− . . . ,−1 ≤ z < 1. (A5)
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I4 =
η

β(ν, τ)

∞

∑
k=0

∞

∑
i=0

(−1)k+i

ν(η(τ + k))β(i + 1, η(τ + k)− i)β(ν− k, k + 1)

×
∫ ∞

0

∞

∑
j=1

−e−ju

j
e−(i+1)u du

=
−η

β(ν, τ)

∞

∑
k=0

∞

∑
i=0

∞

∑
j=1

(−1)k+i

jν(η(τ + k))β(i + 1, η(τ + k)− i)β(ν− k, k + 1)

∫ ∞

0
e−(i+j+1)u du

=
−η

β(ν, τ)

∞

∑
k=0

∞

∑
i=0

∞

∑
j=1

(−1)k+i

j(i + j + 1)ν(η(τ + k))β(i + 1, η(τ + k)− i)β(ν− k, k + 1)
.

(A6)

Next,

I5 =
∫ ∞

0
log[1− (1− e−(ρx)−2

)η ]
2η

β(ν, τ)ρ2x3 e−(ρx)−2
∞

∑
k=0

(−1)k

νβ(ν− k, k + 1)

× [1− e−(ρx)−2
]η(τ+k)−1 dx

By setting u = (ρx)−2, we get:

I5 =
η

β(ν, τ)

∞

∑
k=0

(−1)k

νβ(ν− k, k + 1)

∫ ∞

0
log[1− (1− e−u)η ] e−u[1− e−u]η(τ+k)−1 du

applying the expansion series in Equation (A5), we get:

I5 =
η

β(ν, τ)

∞

∑
k=0

(−1)k

νβ(ν− k, k + 1)

∫ ∞

0

∞

∑
j=1

−(1− e−u)jη

j
e−u[1− e−u]η(τ+k)−1 du

=
−η

β(ν, τ)

∞

∑
k=0

∞

∑
j=1

(−1)k

jνβ(ν− k, k + 1)

∫ ∞

0
e−u[1− e−u]jη+ητ+ηk−1 du

applying the expansion series in Equation (9), we get:

I5 =
−η

β(ν, τ)

∞

∑
k=0

∞

∑
j=1

∞

∑
l=0

(−1)k+l

jνβ(ν− k, k + 1)(η(τ + k + j))β(l + 1, η(τ + k + j)− l)

×
∫ ∞

0
e−u(l+1) du

=
−1

β(ν, τ)

∞

∑
k=0

∞

∑
j=1

∞

∑
l=0

(−1)k+l

(l + 1)jνβ(ν− k, k + 1)(τ + k + j)β(l + 1, η(τ + k + j)− l)
.

(A7)

Substituting Equations (A2)–(A4) and Equations (A6) and (A7) in Equation (A1), we
obtain Shannon entropy of the BGIRD. Hence, the theorem is proved.
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