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Abstract: In this work, we aimed to obtain sufficient and necessary conditions for the oscillatory
or asymptotic behavior of an impulsive differential system. It is easy to notice that most works that
study the oscillation are concerned only with sufficient conditions and without impulses, so our
results extend and complement previous results in the literature. Further, we provide two examples
to illustrate the main results.

Keywords: impulsive differential systems; delay; Lebesgue’s dominated convergence theorem;
oscillation; asymptotic behavior

1. Introduction

Nowadays, impulsive differential equations are attracting a lot of attention. They
appear in the study of several real world problems (see, for instance, [1–3]). In general, it
is well-known that several natural phenomena are driven by differential equations, but
the descriptions of some real world problems subjected to sudden changes in their states
have become very interesting from a mathematical point of view because they should be
described while considering systems of differential equations with impulses. Examples
of the aforementioned phenomena are related to mechanical systems, biological systems,
population dynamics, pharmacokinetics, theoretical physics, biotechnology processes,
chemistry, engineering and control theory.

The literature related to impulsive differential equations is very vast. Here we mention
some recent developments in this field.

In [4], Shen and Wang considered impulsive differential equations with the follow-
ing form: {

u′(ξ) + r(ξ)u(ξ − ν) = 0, ξ 6= χj, ξ ≥ ξ0

u(χ+
j )− u(χ−j ) = Ij(u(χj)), j ∈ N

(1)

where r, Ij ∈ C(R,R) (that is, r, Ij are continuous in (R,R)) for j ∈ N, and established some
sufficient conditions for the oscillatory and the asymptotic behavior of the solutions of the
problem (1).
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In [5], the authors considered the problem{
(u(ξ)− q(ξ)u(ξ − σ))′ + r(ξ)|u(ξ − ν)|λsgn u(ξ − ν) = 0, ξ ≥ ξ0

u(χ+
j ) = bju(χj), j ∈ N

(2)

assuming that q(ξ) ∈ PC([ξ0, ∞),R+) (that is, q(ξ) is piecewise continuous in [ξ0, ∞)), and
established sufficient conditions for the oscillation of (2).

In [6], the authors studied the first order impulsive systems of the form:{
(u(ξ)− q(ξ)u(ξ − σ))′ + r(ξ)u(ξ − ν1)− v(ξ)u(ξ − ν2) = 0, ν1 ≥ ν2 > 0
u(χ+

j ) = Ij(u(χj)), j ∈ N
(3)

and obtained sufficient conditions for the oscillation of (3) when q(ξ) ∈ PC([ξ0, ∞),R+)

and bj ≤
Ij(u)

u ≤ 1.
Karpuz et al. in [7] extended the results contained in [6] by taking the non-homogeneous

counterpart of the system (3) with variable delays.
In [8], Tripathy and Santra considered the the impulsive system{

(u(ξ)− qu(ξ − σ))′′ + ru(ξ − ν) = 0, ξ 6= χj, j ∈ N
∆(u(χj)− qu(χj − σ))′ + r̃u(χj − ν) = 0, j ∈ N

(4)

where
∆u(a) = lim

s→a+
u(s)− lim

s→a−
u(s),

and studied oscillation and non-oscillation properties for (4). In an another paper, Tripathy
and Santra studied the following impulsive systems:{

(p(ξ)(u(ξ) + q(ξ)u(ξ − σ))′)′ + r(ξ)g(u(ξ − ν)), ξ 6= χj, j ∈ N
∆(p(χj)(u(χj) + q(χj)u(χj − σ))′) + r(χj)g(u(χj − ν)) = 0, j ∈ N

. (5)

In [9], in particular, the authors are interested in oscillating systems that, after a
perturbation by instantaneous change of state, remain oscillating.

In [10], Santra and Tripathy studied a special type first-order impulsive systems of
the form 

(u(ξ)− q(ξ)u(ξ − σ))′ + r(ξ)g(u(ξ − ν)) = 0, ξ 6= χj, ξ ≥ ξ0

u(χ+
j ) = Ij(u(χj)), j ∈ N

u(χ+
j − τ) = Ij(u(χj − τ)), j ∈ N

(6)

for different values of the neutral coefficient q.
We also mention the paper [11] in which Santra and Dix, using the Lebesgue’s domi-

nated convergence theorem, studied the following impulsive system:{
(p(ξ)(w′(ξ))µ)′ + ∑m

j=1 rj(ξ)gj(u(νj(ξ))) = 0, ξ ≥ ξ0, ξ 6= χj, j ∈ N
∆(p(χj)(w′(χj))

µ) + ∑m
j=1 r̃j(χj)gj(u(νj(χj))) = 0,

(7)

where
w(ξ) = u(ξ) + q(ξ)u(σ(ξ)), ∆u(a) = lim

s→a+
u(s)− lim

s→a−
u(s).

In line with the contents of [11], Tripathy and Santra in [12] examined oscillation and
non-oscillation behavior of the following impulsive system:{

(p(ξ)(u(ξ) + q(ξ)u(ξ − σ))′)′ + r(ξ)g(u(ξ − ν)) = f (ξ), ξ 6= χj, j ∈ N
∆(p(χj)(u(χj) + q(χj)u(χj − σ))′) + r̃(χj)g(u(χj − ν)) = f̃ (χj), j ∈ N

(8)
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for different values of q(ξ).
Finally, we mention the recent work [13] in which Tripathy and Santra established

some characterizations for the oscillation and asymptotic behavior of the impulsive differ-
ential system of the form{

(p(ξ)(w′(ξ))µ)′ + ∑m
j=1 rj(ξ)xαj(νj(ξ)) = 0, ξ ≥ ξ0, ξ 6= χj

∆(p(χj)(w′(χj))
µ) + ∑m

j=1 hj(χj)xαj(νj(χj)) = 0, j ∈ N
(9)

where w(ξ) = u(ξ) + q(ξ)u(σ(ξ)) and −1 < q(ξ) ≤ 0.
For further details on neutral impulsive differential equation and for recent results

related to the oscillation theory for ordinary differential equations, we refer the reader to
the papers [14–28] and to the references therein.

Motivated by the aforementioned findings, in this paper we prove necessary and
sufficient conditions for the oscillatory or asymptotic behavior of solutions to a second-
order non-linear impulsive differential system of the form

(E1)


(

a(ξ)
(
w′(ξ)

)µ
)′

+ c(ξ)g
(
u(ϑ(ξ))

)
= 0, ξ ≥ ξ0, ξ 6= χj,

∆
(

a(χj)
(
w′(χj)

)µ
)
+ c̃(χj)g

(
u(ϑ(χj))

)
= 0 , j ∈ N,

where
w(ξ) = u(ξ) + b(ξ)u(σ(ξ)), ∆u(a) = lim

s→a+
u(s)− lim

s→a−
u(s),

and the functions g, b, c, c̃, a, ϑ, σ are continuous such that

(A1) ϑ ∈ C([0, ∞),R), σ ∈ C2([0, ∞),R), (in general Ck means the function has k deriva-
tives and they are all continuous functions) ϑ(ξ) < ξ, σ(ξ) < ξ, limξ→∞ ϑ(ξ) = ∞,
limξ→∞ σ(ξ) = ∞;

(A2) a ∈ C1([0, ∞),R), c, c̃ ∈ C([0, ∞),R); 0 < a(ξ), 0 ≤ c(ξ), 0 ≤ c̃(ξ), ξ ≥ 0;
(A3) g ∈ C(R,R) is non-decreasing and g(u)u > 0 for u 6= 0;

(A4) limξ→∞ A(ξ) = ∞ where A(ξ) =
∫ ξ

ξ1
a−1/µ(s) ds;

(A5) The sequence {χj} satisfying 0 < χ1 < χ2 < · · · < χj < · · · → ∞ as j→ ∞ are fixed
moments of impulsive effects;

(A6) ν is the quotient of two positive odd integers. In particular, the assumption of ν can be
replaced by ν > 0, by using |u|ν sgn(u) instead of uν, but the notation will be much
longer.

2. Main Results

Lemma 1. Assume (A1)–(A6), −1 < −b0 ≤ b(ξ) ≤ 0 for ξ ≥ ξ0, and that u is an eventually
positive solution of (E1). Then only one of the following two cases happens:

(1) limξ→∞ u(ξ) = 0;
(2) There exist ξ1 ≥ ξ0 and δ > 0, such that

0 < w(ξ) ≤ δA(ξ), (10)

A(ξ)Λ1/µ ≤ w(ξ) ≤ u(ξ) , (11)

for ξ ≥ ξ1 and where

Λ =
∫ ∞

ξ
c(ζ)g

(
u(ϑ(ζ))

)
dζ + ∑

χj≥ξ

c̃(χj)g(u(ϑ(χj)).

Proof. Let u be an eventually positive solution. Then we can find a ξ∗ such that u(ξ) > 0,
u(σ(ξ)) > 0 and u(ϑ(ξ)) > 0 for all ξ ≥ ξ∗. Note that z is continuous and w(ξ) ≤ u(ξ).
From (E1), we obtain



Symmetry 2021, 13, 722 4 of 12

(
a(ξ)

(
w′(ξ)

)µ
)′

= −c(ξ)g
(
u(ϑ(ξ))

)
≤ 0 for ξ 6= χj,

∆
(

a(χj)
(
w′(χj)

)µ
)
= −c̃(χj)g

(
u(ϑ(χj))

)
≤ 0 for j ∈ N.

(12)

From (12), we have a(ξ)
(
w′(ξ)

)µ is non-increasing, including impulses for ξ ≥ ξ∗. By
contradiction we assume that a(ξ)

(
w′(ξ)

)µ ≤ 0 at a certain time ξ ≥ ξ∗. Using that c is
not identically zero on any interval [b, ∞), and that g(ξ) > 0 for ξ > 0, by (12), there exist
ξ1 ≥ ξ∗ such that

a(ξ)
(
w′(ξ)

)µ ≤ a(ξ1)
(
w′(ξ1)

)µ
< 0 for all ξ ≥ ξ1.

Then

w′(ξ) ≤
( a(ξ1)

a(ξ)

)1/µ
w′(ξ1) for ξ ≥ ξ1 .

Integrating from ξ1 to ξ, we have

w(ξ) ≤ w(ξ1) +
(
a(ξ1)

)1/µw′(ξ1)A(ξ) . (13)

Using (A4), we arrive at limξ→∞ w(ξ) = −∞. Since b is bounded and w is unbounded,
u can not be bounded. This allows the existence of a sequence {sj} → ∞ such that
u(sj) = sup{u(s) : s ≤ sj}. Then u(σ(sj)) ≤ u(sj) and

w(sj) = u(sj) + b(sj)u(σ(sj)) ≥ (1 + b(sj))u(sj) ≥ (1− b0)u(sj) ≥ 0 ,

which contradicts limj→∞ w(sj) = −∞. Therefore, a(ξ)
(
w′(ξ)

)µ
> 0 for all ξ ≥ ξ∗. Since

a(ξ) > 0, ultimately w′(ξ) > 0. Then, there is ξ1 ≥ ξ∗ such that only one of the following
two cases happens.

Case 1: w(ξ) < 0 for all ξ ≥ ξ1. Note that by (A1), lim supξ→∞ u(ξ) = lim supξ→∞ u(σ(ξ)).
Then 0 > w(ξ) ≥ u(ξ)− b0u(σ(ξ)) implies

0 ≥ (1− b0) lim sup
ξ→∞

u(ξ) .

Since (1− b0) > 0, it follows that lim supξ→∞ u(ξ) = 0; hence, limξ→∞ u(ξ) = 0.

Case 2: w(ξ) > 0 for all ξ ≥ ξ1. Note that u(ξ) ≥ w(ξ) and w is positive and increasing.
From a(ξ)

(
w′(ξ)

)µ being non-increasing, we have

w′(ξ) ≤
( a(ξ1)

a(ξ)

)1/µ
w′(ξ1) for ξ ≥ ξ1 .

Integrating this inequality from ξ1 to ξ, we get

w(ξ) ≤ w(ξ1) +
(
a(ξ1)

)1/µw′(ξ1)A(ξ) .

Since limξ→∞ A(ξ) = ∞, there is a constant δ > 0 such that (10) holds.
Since a(ξ)

(
w′(ξ)

)µ
> 0 and is non-increasing, limξ→∞ a(ξ)

(
w′(ξ)

)µ exists and is
non-negative. Integrating (E1) from ξ to a, we have

a(a)
(
w′(a)

)µ − a(ξ)
(
w′(ξ)

)µ
=
∫ a

ξ

(
a(s)

(
w′(s)

)µ
)′

ds + ∑
ξ≤χj<a

∆
(
a(χj)w′(χj)

)µ .
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Computing the limit as a→ ∞,

a(ξ)
(
w′(ξ)

)µ ≥
∫ ∞

ξ
c(s)g

(
u(ϑ(s))

)
ds + ∑

χj≥ξ

c̃(χj)g
(
u(ϑ(χj))

)
. (14)

Then

w′(ξ) ≥
[ 1

a(ξ)

[ ∫ ∞

ξ
c(s)g

(
u(ϑ(s))

)
ds + ∑

ξ≤χj

c̃(χj)g
(
u(ϑ(χj))

)]]1/µ
.

Since w(ξ1) > 0, we integrate the above inequality from ξ1 to ξ, and so

w(ξ) ≥
∫ ξ

ξ1

[ 1
a(s)

[ ∫ ∞

s
c(ζ)g

(
u(ϑ(ζ))

)
dζ + ∑

s≤χj

c̃(χj)g
(
u(ϑ(χj))

)]]1/µ
ds

≥ A(ξ)
[ ∫ ∞

ξ
c(ζ)g

(
u(ϑ(ζ))

)
dζ + ∑

ξ≤χj

c̃(χj)g
(
u(ϑ(χj))

)]1/µ
,

which yields (11).

For the next theorem, we suppose that there is a constant α, which is a ratio of two
positive odd integers, with α < µ, such that

g(u)
uα

is non-increasing for 0 < u . (15)

For example g(u) = |u|β sgn(u), with 0 < β < α satisfies this condition.

Theorem 1. Assume (A1)–(A6), (15), and that −1 < −b0 ≤ b(ξ) ≤ 0 holds for all ξ ≥ ξ0.
Then, each solution of (E1) is oscillatory or tends to zero, if and only if

∫ ∞

ξ2

c(s)g(δA(ϑ(s))) ds +
∞

∑
k=1

c̃(χj)g(δA(ϑ(χj))) = ∞ ∀δ 6= 0 . (16)

Proof. Assume the contrary and suppose that (E1) has a non-oscillatory solution u which is
positive and does not converge to zero. Then, case 1 in Lemma 1 leads to limξ→∞ u(ξ) = 0,
which a contradiction.

Case 2 of Lemma 1 also leads to a contradiction. In case 2 there exists ξ1 such that

u(ξ) ≥ w(ξ) ≥ A(ξ)Λ1/µ(ξ) ≥ 0 ∀ξ ≥ ξ1 . (17)

Now, we see that w is left continuous at χj,

Λ′(ξ) = −c(ξ)g
(
u(ϑ(ξ))

)
for ξ 6= χj,

∆Λ(χj) = −c̃(χj)g
(
u(ϑ(χj))

)
≤ 0 .

It is clear that Λ(ξ) > 0 for ξ ≥ ξ1. Computing the derivative,(
Λ1−α/µ(ξ)

)′
=
(

1− α

µ

)
Λ−α/µ(ξ)Λ′(ξ) for ξ 6= χj . (18)

To estimate the discontinuities of Λ1−α/µ we use a first order Taylor polynomial for
the function h(u) = u1−α/µ, with 0 < α < µ, about u = e:

d1−α/µ − e1−α/µ ≤
(
1− α

µ

)
d−α/µ(e− d) .



Symmetry 2021, 13, 722 6 of 12

Then ∆Λ1−α/µ(χj) ≤
(
1− α

µ

)
Λ−α/µ(χj)∆Λ(χj). Integrating (18) from ξ2 to ξ, and us-

ing that Λ > 0, we have

Λ1−α/µ(ξ2) ≥
(
1− α

µ

)[
−
∫ ξ

ξ2

Λ−α/µ(s)Λ′(s) ds− ∑
ξ2≤χj<ξ

Λ−α/µ(χj)∆Λ(χj)
]

=
(
1− α

µ

)[ ∫ ξ

ξ2

Λ−α/µ(s)
(

c(s)g
(
u(ϑ(s))

))
ds + ∑

ξ2≤χj<ξ

Λ−α/µ(χj)c̃(χj)g
(
u(ϑ(χj))

)]
. (19)

Since w ≤ u, by (A3), (15), (10), and (17), we have

g(u(ξ)) ≥ g
(
w(ξ))

)wα(ξ)

wα(ξ)
≥

g
(
δA(ξ)

)
(δA(ξ))α

wα(ξ)

≥
g
(
δA(ξ)

)
(δA(ξ))α

(
A(ξ)Λ1/µ(ξ)

)α
=

g
(
δA(ξ)

)
δα

Λα/µ(ξ) for ξ ≥ ξ2 .

Since α/µ > 0 and ϑ(s) < s, we have

g
(
u(ϑ(s))

)
≥

g
(
δA(ϑ(s))

)
δα

Λα/µ(ϑ(s)) ≥
g
(
δA(ϑ(s))

)
δα

Λα/µ(s) . (20)

Going back to (19), we have

Λ1−α/µ(ξ2) ≥
(
1− α

µ

)
δα

[ ∫ ξ

ξ2

c(s)g(δA(ϑ(s))) ds + ∑
ξ2≤χj<ξ

c̃(χj)g
(
δA(ϑ(χj))

)]
, (21)

which contradicts (16). This completes the proof of sufficient part of the theorem when the
solution is a eventually positive.

For an eventually negative solution u, we will define a new variable v = −u and
g(ξ) = −g(ξ). Then v is an eventually positive solution of (E1) with f instead of g. We find
that f satisfies (A3) and (15). Therefore, the above method can be applied to the v solution.

Next, by a contrapositive argument, we show the necessity part—that is, if (16) is not
true then there is a non-oscillatory solution. Let (16) be untrue for some δ > 0; then for
each ε > 0 there exists ξ1 ≥ ξ0 such that∫ ∞

s
c(ζ)g

(
δA(ϑ(ζ))

)
dζ + ∑

χj≥s
c̃(χj)g

(
δA(ϑ(χj))

)
≤ ε, (22)

for all s ≥ ξ1. In particular we use a positive ε such that

(2ε)1/µ = (1− b0)δ , (23)

so that 0 < ε1/µ ≤ (1− b0)δ/21/µ < δ. Note that ξ1 depends on δ. We define

S = {u ∈ C([0, ∞)) : ε1/µ A(ξ) ≤ u(ξ) ≤ δA(ξ), ξ ≥ ξ1} .

Then we can define an operator Φ on S as follows:

(Φu)(ξ) =


0 if ξ ≤ ξ1

−b(ξ)u(σ(ξ)) +
∫ ξ

ξ1

[
1

a(s)

[
ε +

∫ ∞
s c(ζ)g

(
u(ϑ(ζ))

)
dζ

+∑χj≥s c̃(χj)g
(
u(ϑ(χj))

)]]1/µ
ds if ξ > ξ1 .

Now we are going to show that u is a fixed point of Φ in S, that is, Φu = u; u is an
eventually positive solution: of (E1).
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For u ∈ S, we have 0 ≤ ε1/µ A(ξ) ≤ u(ξ). By (A3), we have 0 ≤ g
(
u(ϑ(s))

)
and by

(A2) we have

(Φu)(ξ) ≥ 0 +
∫ ξ

ξ1

[ 1
a(s)

[ε + 0 + 0]
]1/µ ds = ε1/µ A(ξ) .

For u in S, by (A2) and (A3), we have g
(
u(ϑ(ζ))

)
≤ g

(
δa(ϑ(ζ))

)
. Then by (22)

and (23),

(Φx)(ξ) ≤ b0δ
(

A(σ(ξ)
)
+
∫ ξ

ξ1

[ 1
a(s)

[
ε +

∫ ∞

s
c(ζ)g(δa(ϑ(ζ))) dζ + ∑

χj≥s
c̃(χj)g(δa(ϑ(χj)))

]]1/µ
ds

≤ b0δA(ξ) + (2ε)1/µ A(ξ) = δA(ξ) .

Therefore, Φ maps S to S. In the next section, we search a fixed point for Φ in S. Let
us define a recurrence relation

v0(ξ) = 0 for ξ ≥ ξ0,

v1(ξ) = (Φv0)(ξ) =

{
0 if ξ < ξ1

ε1/µ A(ξ)
)

if ξ ≥ ξ1
,

vn+1(ξ) = (Φvn)(ξ) for n ≥ 1, ξ ≥ ξ1 .

Note that for each fixed v, we have v1(ξ) ≥ v0(ξ). Using the mathematical induction
and the fact that g is non-decreasing, one can prove vn+1(ξ) ≥ vn(ξ). Therefore, u is a fixed
point of Φ in S; that is, Φu = u by using the lebesgue dominated convergence theorem.
Thus, we have a eventually positive solution. This completes the proof.

Remark 1. If all the conditions stated in Theorem 1 hold, then every unbounded solution of (E1) is
oscillatory if and only if (16) holds.

In the next theorem, we assume that ϑ0 is a differentiable function, such that

0 < ϑ0(ξ) ≤ ϑ(ξ), ∃β > 0 : β ≤ ϑ′0(ξ) for ξ ≥ ξ0. (24)

Additionally, we assume that there exists a constant α, with µ < α, such that

g(u)
uα

is non-decreasing for 0 < u (25)

where α is a ratio of two positive odd integers.
For example, g(u) = |u|β sgn(u), with α < β, satisfies this condition.

Theorem 2. Assume (A1)–(A6), (24), (25), a(ξ) is non-decreasing and −1 < −b0 ≤ b(ξ) ≤ 0
for all ξ ≥ ξ0. Every solution of (E1) is oscillatory or tends to zero, if and only if∫ ∞

ξ1

[ 1
a(s)

[ ∫ ∞

s
c(ζ) dζ + ∑

χj≥s
c̃(χj)

]]1/µ
ds = ∞ . (26)

Proof. We prove sufficiency part by contradiction. Suppose that u is an eventually positive
solution that does not tends to zero. Using the same argument as in Lemma 1, there
exists ξ1 ≥ ξ0 such that: u(ϑ(ξ)) > 0, u(σ(ξ)) > 0, and a(ξ)

(
w′(ξ)

)µ is positive and non-
increasing. Case 1 of Lemma 1 leads to limξ→∞ u(ξ) = 0, which contradicts the assumption
that u does not tend to zero.
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Case 2 of Lemma 1 also leads to a contradiction. In case 2, w(ξ) is positive and
increasing for ξ ≤ ξ1. Since −1 < −b0 ≤ b(ξ) ≤ 0, it follows that w(ξ) = u(ξ) +
b(ξ)u(σ(ξ)) ≤ u(ξ). From (A3), w(ξ) ≥ w(ξ1) and (25), we have

g(u(ξ)) ≥ g(w(ξ))

zα(ξ)
zα(ξ) ≥ g(w(ξ1))

zα(ξ1)
zα(ξ) .

By (A1) there exists a ξ2 ≥ ξ1 such that ϑ(ξ) ≥ ξ1 for ξ ≥ ξ2. Then

g
(
u(ϑ(ξ))

)
≥ g(w(ξ1))

zα(ξ1)
zα(ϑ(ξ)) ∀ξ ≥ ξ2 . (27)

Using this inequality, (14), that ϑ(ξ) ≥ ϑ0(ξ) which is an increasing function and that
z is increasing, we have

a(ξ)
(
w′(ξ)

)µ ≥ zα(ϑ0(ξ))

zα(ξ1)

[ ∫ ∞

ξ
c(s)g

(
w(ξ1)

)
ds + ∑

χj≥ξ

c̃(χj)g
(
w(ξ1)

)]

for ξ ≥ ξ2. From a(ξ)
(
w′(ξ)

)µ being non-increasing and ϑ0(ξ) ≤ ξ, we have

a(ϑ0(ξ))
(
w′(ϑ0(ξ))

)µ ≥ a(ξ)
(
w′(ξ)

)µ.

By then dividing by a(ϑ0(ξ)) > 0, taking 1/µ on the power of both sides and dividing
by zα/µ(ϑ0(ξ)) > 0, we have

w′(ϑ0((ξ))

zα/µ(ϑ0(ξ))
≥
[ 1

a(ϑ0(ξ))zα(ξ1)

[ ∫ ∞

ξ
c(s)g(w(ξ1)) ds + ∑

χj≥ξ

c̃(χj)g(w(ξ1))
]]1/µ

for ξ ≥ ξ2. On the left-hand side we multiply by ϑ′0(ξ)/β ≥ 1, and then integrate over ξ1
to ξ:

1
β

∫ ξ

ξ1

w′(ϑ0(s))ϑ′0(s)
zα/µ(ϑ0(s))

ds ≥ 1
zα/µ(ξ1)

∫ ξ

ξ1

[ 1
a(ϑ0(s))

[ ∫ ∞

s
c(ζ)g(w(ξ1)) dζ

+ ∑
s≤χj

c̃(χj)g
(
w(ξ1)

)]]1/µ
ds ∀ξ ≥ ξ2 . (28)

We know µ < α, and by integrating the left-hand side of (28) from ξ2 to ξ, we obtain

1
β(1− α/µ)

[
z1−α/µ(ϑ0(s))

]ξ

s=ξ2
≤ 1

β(α/µ− 1)
z1−α/µ(ϑ0(ξ2)) . (29)

Using g(w(ξ1)) > 0 and a(ϑ0(s)) ≤ a(s), and combining (28) and (29), we are getting
a contradiction to (26). This completes the proof of sufficient part for the eventually
positive solution.

For eventually negative solutions, we will use the same variables that were defined in
Theorem 1, and follow the same method used in Theorem 1.

For the necessary part, we suppose that (26) does not suffice, and obtain an eventually
positive solution that does not converge to zero. Let (26) not hold; then for each ε > 0 there
exists ξ1 ≥ ξ0 such that∫ ∞

ξ1

[ 1
a(s)

[ ∫ ∞

s
c(ζ) dζ + ∑

χj≥s
c̃(χj)

]]1/µ
ds < ε ∀ξ ≥ ξ1 . (30)
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In particular we use ε =
(

g(2/(1− b0)
)−1/µ

> 0. Let us consider

S =
{

u ∈ C([0, ∞)) : 1 ≤ u(ξ) ≤ 2
1− b0

for ξ ≥ ξ1

}
the set of continuous functions. Then we define the operator

(Φu)(ξ) =



1
1+b(ξ1)

if σ(ξ1) = ξ1, ξ ≤ ξ1,
u−σ(ξ1)
ξ1−σ(ξ1)

if σ(ξ1) < ξ1, ξ ≤ ξ1,

1− b(ξ)u(σ(ξ)) +
∫ ξ

ξ1

[
1

a(s)

[ ∫ ∞
s c(ζ)g

(
u(ϑ(ζ))

)
dζ

+∑χj≥s c̃(χj)g
(
u(ϑ(χj))

)]]1/µ
ds if ξ > ξ1 ,

Note that if u is continuous, Φu is also continuous at ξ = ξ1. This follows by taking
the right and left limits in the three possible cases in the the definition of Φ. Additionally, if
Φu = u, then u is solution of (E1).

Let u ∈ S. Then 1 ≤ u, and by (A3), we have (Φu)(ξ) ≥ 1 + 0 + 0, on [ξ1, ∞).
Let u ∈ S. Then u ≤ 2/(1− b0) and

(Φu)(ξ) ≤ 1− b(ξ)
2

1− b0
+
∫ ξ

ξ1

[ 1
a(s)

[ ∫ ∞

s
c(ζ)g

( 2
1− b0

)
dζ + ∑

χj≥s
c̃(χj)g

( 2
1− b0

)]]1/µ
ds.

≤ 1 +
2b0

1− b0
+
(

g(2/(1− b0)
)1/µ

ε = 1 +
2b0

1− b0
+ 1 =

2
1− b0

.

Therefore, Φ maps S to S.
We need to prove there is a fixed point of Φ in S so we are going to define a sequence

as follows

v0(ξ) = 0 for ξ ≥ ξ0,

v1(ξ) = (Φv0)(ξ) = 1 for ξ ≥ ξ1,

vn+1(ξ) = (Φvn)(ξ) for n ≥ 1, ξ ≥ ξ1 .

The rest of necessary part follows from Theorem 1.

The next theorem does not require neither (15) nor (25), but considers only bounded
solutions.

Theorem 3. Assume (A1)–(A6) and −1 < −b0 ≤ b(ξ) ≤ 0 for all ξ ≥ ξ0. Then every bounded
solution of (E1) is oscillatory or converges to zero, if and only if (26) holds.

Proof. We prove sufficiency by contradiction. Suppose u is an eventually positive solution
that does not converge to zero. Then we proceed as in Lemma 1 up to Equation (13). u
and b are bounded, so w is bounded. Then the left-hand side of (13) is bounded, and the
right-hand side approaches −∞ as ξ → ∞. This contradiction implies that w′(ξ) > 0 for
ξ ≥ ξ1. As in Lemma 1, we find two possible cases.

Case 1: w(ξ) < 0 for all ξ ≥ ξ1. This leads to a contradiction. As in case 1 of Lemma 1, we
have limξ→∞ u(ξ) = 0, which contradicts the assumption that u does not converge to zero.

Case 2: w(ξ) > 0 for all ξ ≥ ξ1. This also leads to a contradiction. Since z is positive and
increasing, w(ξ) ≥ w(ξ1) for ξ ≥ ξ1. Recall that u(ξ) ≥ w(ξ), so u cannot converge to zero.
By (A2), there is a ξ2 ≥ ξ1 such that ϑ(ξ) ≥ ξ1 and u(ϑ(ξ)) ≥ w(ξ1) for ξ ≥ ξ2. From (A4),
g
(
u(ϑ(ξ))

)
≥ g(w(ξ1)) > 0. Then, integrating as we did for (14), we have

lim
ξ→∞

w(ξ)− w(ξ2) ≥
∫ ∞

ξ2

[ 1
a(s)

[ ∫ ∞

s
c(ζ)g(w(ξ1)) dζ + ∑

s≤χj

c̃(χj)g(w(ξ1)
]]1/µ

ds .



Symmetry 2021, 13, 722 10 of 12

By (26), the right-hand side approaches +∞, which contradicts w being bounded.
For eventually negative solutions, we proceed as above to obtain also a contradiction.

Therefore, every bounded and solution must be oscillatory or converge to zero.
The proof of the necessity part is the same as that in Theorem 2, taking into account

that if u ∈ S, then w(ξ1) ≤ u(ξ1) ≤ 2/(1− p).

3. Example

In this section, we are giving one example to show the effectiveness and feasibility of
our main results.

Example 1. Consider the delay differential equation
d

dξ

((
d

dξ

(
u(ξ)− βu(ξ − 3)

)))
+ 3
(

βe3 − α3

αe2

)3(
u(ξ − 2)

)3
= 0, ξ 6= j

∆
(((

u(j)− βu(j− 3)
)′))

+ (α3 − 1)
(

α3 − βe3

α4e2

)3(
u(j− 2)

)3
= 0, ξ = j.

where we have a(ξ) ≡ 1, χj = j, µ = 1, b(ξ) ≡ β, c(ξ) ≡ 3
(

βα3e3 − 8
2α2e2

)3

, c̃k := (α3 −

1)
(

α3 − βe3

α4e2

)3

, σ(ξ) = ξ − 3, ϑ(ξ) = ξ − 2, g(u) = u3. With 0 < α < 1 and
(

α
e
)3

< β < 1

all the conditions of Theorem 2 are satisfied. Further, a solution of the equation is u(ξ) :=(
∏−3≤j<ξ α

)
e−ξ = αbξc+3e−ξ > 0, which tends to zero as ξ → ∞. Indeed, we have

d
dξ

((
d

dξ

(
αbξc+3e−ξ − βαbξce−(ξ−3)︸ ︷︷ ︸

(α3−βe3)αbξce−ξ

)))
+ 3
(

βe3 − α3

αe2

)3(
αbξc+1e−(ξ−2))3

= 0, ξ 6= j

∆
(((

(α3 − βe3)αj−3e−j)′))+ (α3 − 1)
(

α3 − βe3

α4e2

)3(
αj+1e−(j−2))3

= 0, ξ = j.

4. Conclusions and an Open Problem

In this work, we established sufficient and necessary conditions for the oscillatory or
asymptotic behavior of a second-order neutral delay impulsive system of the form (E1)
when the neutral coefficient b ∈ (−1, 0]. Based on this work and [9–13,27], we can frame
the following open problem.

Q. Can we find the necessary and sufficient conditions for the oscillation of solutions
to the impulsive differential system (E1) for other ranges of the neutral coefficient,
i.e., for b > 1 and −∞ < b(ξ) < −1?
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