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Abstract: This paper describes the stability and Hopf bifurcation analysis of the Brusselator system
with delayed feedback control in the single domain of a reaction–diffusion cell. The Galerkin
analytical technique is used to present a system equation composed of ordinary differential equations.
The condition able to determine the Hopf bifurcation point is found. Full maps of the Hopf bifurcation
regions for the interacting chemical species are shown and discussed, indicating that the time delay,
feedback control, and diffusion parameters can play a significant and important role in the stability
dynamics of the two concentration reactants in the system. As a result, these parameters can be
changed to destabilize the model. The results show that the Hopf bifurcation points for chemical
control increase as the feedback parameters increase, whereas the Hopf bifurcation points decrease
when the diffusion parameters increase. Bifurcation diagrams with examples of periodic oscillation
and phase-plane maps are provided to confirm all the outcomes calculated in the model. The benefits
and accuracy of this work show that there is excellent agreement between the analytical results and
numerical simulation scheme for all the figures and examples that are illustrated.

Keywords: reaction–diffusion system; limit cycle; bifurcation theory; periodic solutions; Brusselator
model; delay feedback control

1. Introduction

Over the last fifty years, many nonlinear chemical applications with diffusion reac-
tions have been explained and studied analytically and numerically via the use of partial
differential equations (PDEs), for instance, the Belousov–Zhabotinsky (BZ) reaction [1], the
Brusselator model [2], the pellet model [3], the reversible Selkov [4], and the Gray and Scott
cubic autocatalytic systems [5,6]. Furthermore, the nonlinear (and quasilinear) diffusive
models are of great interest for a large and increasing number of practical applications in
many applied mathematics fields, for instance see [7,8] and [9]. These models discuss vari-
ous chemical oscillatory phenomena in our daily lives using a continuous-flow stirred-tank
reactor (CSTR) [10]. The CSTR drives a perfect result in both theoretical and experimental
examinations of oscillatory chemical models [2,6,11,12].

One of the most important chemical reaction models was discovered in 1968 [13] and
is called the Brusselator model. The nonlinear diffusive Brusselator system consists of two
species of BZ model. This model has been discussed by many researchers. For example,
ref. [2] examined the analytical results of the Brusselator model in both 1D and 2D domains.
Galerkin’s technique was applied to determine the ordinary differential equations (ODEs)
drawn from the PDEs in the model. As a consequence, perfect solutions were explored
to show the stability of the Hopf bifurcation analysis. Many researchers have referred to
references concerning the Brusselator model with reaction–diffusion, see [14–19] and the
references therein.

The existence of feedback with a delay time term in PDE models is extremely important
as it can strongly affect the stability of the model. It can also change the results of the Hopf
bifurcation analysis [12,20,21]. The authors of [22] considered delayed feedback control for
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the Brusselator system with reaction–diffusion. They determined that the delayed feedback
control caused the formation of extreme events [22,23], where there was a large parameter
value, and that the delayed feedback control caused instability. The authors illustrated
numerical simulation examples to prove their theoretical outcomes.

A dynamic analytical solution to a nonlinear PDE system can be obtained in many
ways. However, some of the models are difficult to examine. Here, I provide an analytical
method that is a reliable technique used widely to drive nonlinear PDEs. The Galerkin ana-
lytical technique [24] has been used to provide an analytical result that presents a compari-
son between the numerical simulation PDE model and the theoretical analysis of the ODE
system. This method provides a comparison with the analytical solution to demonstrate
the accuracy of analytical results. Some examples that use this method include the Selkov–
Schnakenberg reaction–diffusion system [25], the BZ model [1], Nicholson’s blowflies
system [26], neural network systems [27], logistic equations with delays [12,28–30], the
Gray and Scott cubic autocatalytic system [6], viral infection models [11], and the food-
limited equation [31]. In general, all the researchers that have applied this method reported
an extremely agreeable comparison between the theoretical ODE results and the numerical
scheme of the PDE model.

The Brusselator system with delayed feedback control in 1D cells was studied in this
work. Research studies are lacking on the effect of a delayed feedback control term in the
diffusive Brusselator model. Furthermore, there is not enough detail explaining the effects
of delayed feedback control on the overall stability and Hopf bifurcation analysis. Hence,
additional research is needed on the effect of these parameters on the PDE model. Thus,
our primary objective was to derive the theoretical ODE results by using the Galerkin
method. This work offers an explanation of how to find the Hopf bifurcation points. In
addition, to construct full map diagrams of the Hopf bifurcation points and the stability
analysis (stable and unstable regions), I use examples of periods in the limit cycle maps
and the 2D phase-plane maps.

This paper is arranged as follows. Section 2 details the nonlinear PDE model with
delayed feedback control under the Dirichlet boundary condition. In Section 3, Galerkin’s
method is described, which helps to find a system for the delay ODE equations. Section 4
presents the methodology and theoretical framework to present how the Hopf bifurcation
maps devolve. Section 5 develops the stability of the concentration cells in the Hopf
bifurcation maps and provides the bifurcation diagrams and limited cycle of stable and
unstable results. This is in addition to the 2D phase-plane graphs for both the theoretical
results of the ODEs and the numerical simulation of the PDE solutions.

2. Mathematical Formulations Model

The diffusive Brusselator model with delayed feedback control is a nonlinear system
of PDEs as follows:

∂X
dt
− D

∂X2

∂x2 = A− (B + 1)X + X2Y + HX(t− τ),

∂Y
dt
− D

∂Y2

∂x2 = BX− X2Y + HY(t− τ), (1)

X(x, t) = Y(x, t) = 0, at x = ±1, X(x, t) = Xs, Y(x, t) = Ys, −τ < t ≤ 0.

where X and Y refer to the activator and inhibitor, respectively, in the dimensionless
concentrations of two reactants (interacting chemical species) at time t; A and B indicate
two control parameter concentrations during the reaction process; D denotes the diffusion
coefficient of two reactants in the system; H refers to the delayed feedback parameter,
which is the strength of the feedback control; and τ describes the time delay in the feedback
term. Note that the approximation that uses the delay value is useful in relation to the
limit where the strength of the delay has both small and large values. In this term, the
chemical feedback concentrations are small enough for their development to be explored
via a single term of delay. This system is open, and the result has a symmetrical pattern
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at the center of the domain x = 0. Furthermore, Xs > 0 and Ys > 0 are the positive initial
concentrations when the time ranges between (−τ, 0). Note that Xs = Ys = 0.5 are used
in all numerical simulations exemplified in this work. A Crank–Nicolson finite-difference
scheme [30,32] is used to obtain the numerical solutions of the PDE model (1). Furthermore,
I consider the Runge–Kutta method [3,33] to show the numerical simulation results of the
ODE semi-analytical system (3). The numerical examples used for spatial and temporal
discretization are ∆x = 0.01 and ∆t = 10−3. Note that these values are appropriate to
obtain numerical convergence (this implicit scheme is unconditionally stable).

3. The Galerkin Technique Methodology

Galerkin’s technique [24] applies orthogonality to the base function collections to
convert PDE into ODE systems. This technique is important and useful. It considers a
temporal–spatial separation and explores a spatial form of profile density [3,6]. Galerkin’s
technique is an analytical method that employs the orthogonality of the rudimentary roles
set to find the ODE system from the PDE model. This method has been widely applied
to solve nonlinear PDEs in many models and applications [26,27,29,30]. The following
equations are trial functions:

X(x, t) = X1(t) cos(ψ1) + X2(t) cos(ψ2),

Y(x, t) = Y1(t) cos(ψ1) + Y2(t) cos(ψ2), (2)

where ψ1 = πx
2 and ψ2 = 3πx

2 . The trial equation function is built as Xi = X1 + X2, and
variable Yi = Y1 + Y2 denotes the middle of the profile concentrations x = 0. The trial
equation expansions (2) meet the boundary conditions in the PDE system in (1). The free
variables of the values in the model are then explored by computing the values of the PDEs
with delay. Next, the PDEs are weighted by two trial function expansions: cos(ψ1) and
cos(ψ2). The resulting system of four ODE equations is presented as follows:

dX1

dt
= −Dπ2

4
X1 +

1
2

X2
2X1 +

1
4

X2
1Y2 +

1
2

X1X2Y1 +
3
4

X2
1Y1 +

4A
π

+ X1X2Y2 − BX1

− X1 + HX1τ ,
dY1

dt
= −Dπ2

4
Y1 −

1
4

X2
1Y2 −

1
2

X2
2Y1 −

3
4

X2
1Y1 −

1
2

X1X2Y1 − X1X2Y2 + BX1 + HY1τ ,

dX2

dt
= −9Dπ2

4
X2 +

1
2

X2
1Y2 +

3
4

X2
2Y2 +

1
4

X2
1Y1 −

4A
3π

+ X1X2Y1 − BX2 − X2 (3)

+ HX2τ ,
dY2

dt
= −9Dπ2

4
Y2 −

1
2

X2
1Y2 −

3
4

X2
2Y2 −

1
4

X2
1Y1 − X1X2Y1 + BX2 + HY2τ .

Xiτ = Xi(x, t− τ) & Yiτ = Yi(x, t− τ) and i = 1, 2.

Note that the equations in (2) have been abbreviated at the two-term expansion point.
This is so that the two-term outcome provides sufficient reliability in terms of accuracy
without an extreme swell in expression. It also provides good results compared with the
numerical scheme of the PDE system. In addition, the system of the one-term equations
can be shown via letting X2 = Y2 = 0 in the first two equations in the ODE system (3).

4. Theoretical Framework for the Existence of Hopf Bifurcation

This section analytically describes the methodologies that explore the existence of
Hopf bifurcation points. There is a curve that divides the region stability into stable and
unstable areas; this curve consists of Hopf bifurcation points. Hopf bifurcation denotes the
periodic limit cycle oscillation occurrence in the neighborhood of the steady state that can
move the solutions from stable to unstable outcomes. As a result, the conjugated pair of
eigenvalues passes into the imaginary axis. For more details, see [20,21,34]. The points of
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the Hopf bifurcation are determined by discovering the evolution of the Taylor series built
for the steady-state parameters. This can be examined as:

Xi = Xis + εζ1e−kt, Yi = Yis + εζ2e−kt, where i = 1, 2 ε� 1. (4)

Therefore, the expressions Xi and Yi as in (4) are replaced in the ODE system (3). Then, the
steady-state parameters are linearized. Next, the Jacobian matrix of eigenvalues considers
a small system perturbation that demonstrates the typical growth value k. This is achieved
by placing k = iω in the single equation of the characteristic. This equation can be
separated into two different equations: real (Real) and imaginary (Imag). Therefore, the
next condition equation can solve the Hopf bifurcation point:

dXi
dt

=
dYi
dt

= Real = Imag = 0. where i = 1, 2. (5)

5. Stability and Hopf Bifurcation Analysis
5.1. Hopf Bifurcation Areas

This section provides the Hopf bifurcation maps for the stable and unstable regions
presented as semi-analytical maps of ODEs (3), comparing the analytical outcomes to
the numerical simulation of the PDE results. Furthermore, I studied the effects of all
free parameters in the system (τ, H, D) on the regions of the Hopf bifurcation during the
reaction process. At the end of this section, I provide a special numerical example to
demonstrate the accuracy and advantage of the analytical method over the numerical
simulation PDE results. Note that the Hopf bifurcation point can be determined by solving
the condition Equation (3); these points compose a curve that divides the stability region
into stable and unstable regions.

Figure 1a,b show maps of the two areas of the Hopf bifurcation in τ versus concen-
trations of input reagents A and B, respectively. The positive values that were used are
D = 0.01, H = 0.1, and B = 10 in Figure 1a and A = 2 in Figure 1b. In Figure 1a, there are
two areas provided: the upper part is the stable zone and the lower part is the unstable
zone. It shows that as delay parameter τ increases, the rate of the Hopf bifurcation points
for control A reduce slowly. However, in Figure 1b, two different regions are plotted but
oppositely to Figure 1a. In contrast, this figure shows that the Hopf bifurcation points
for chemical input control B increase steadily as delay parameter τ increases. Therefore,
we find good agreement amongst the analytical outcomes of the two terms with the PDE
numerical simulation with no more than a 4% error for all of the selected parameters in the
domain up to τ = 50.
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Figure 1. (color online) (a,b) The Hopf bifurcation curves in the τ − A and τ − B maps. The line of red crosses refers to the
results of the partial differential equation (PDE) numerical simulation and the black dots are the results of the two terms in
the semi-analytical system. The positive values that were used are D = 0.01, H = 0.1, and B = 10 in (a) and A = 2 in (b).



Symmetry 2021, 13, 725 5 of 13

Figure 2a,b illustrate the Hopf bifurcation curves in the H − B and D− B planes. The
parameters used were D = 0.01, τ = 1, and A = 1 for Figure 2a; and τ = 1, A = 5,
and H = 0.01 for Figure 2b. In both cases, the numerical PDE simulation (line of red
crosses) and the analytical results of the two terms (solid black line) are displayed. As
in the previous figure, there are two areas in each figure: unstable and stable areas. In
Figure 2a, as feedback parameter H increases, the values of the Hopf bifurcation points
of the control parameter concentration B increase considerably. However, in Figure 2b,
the Hopf bifurcation points for control B decrease as diffusion parameter D increases.
Both figures show a good agreement between the analytical outcomes of the two terms
compared with the simulation results of the PDE system in all chosen parameters related
to the domain.
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stable area
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Diffusion coefficient - D 
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(b)

Figure 2. (color online) (a,b) The Hopf bifurcation lines of the H − B and D− H planes. The analytical simulation results
for the two terms (black solid line) and the numerical simulation of the PDEs (line of red crosses) were obtained. The
parameters used were D = 0.01, τ = 1, and A = 1 for (a); and τ = 1, A = 5, and H = 0.01 for (b).

Figure 3a,b displays the Hopf bifurcation points for concentrations of input reagent A
against chemical control B, with different examples of feedback parameter H and diffusion
value D, respectively. The numerical values are τ = 1 and D = 0.01 in Figure 3a, and
H = 0.01 and τ = 1 in Figure 3b. The analytical outcomes of the two-term equations are
used in both figures. There are two areas shown in both cases: the stable and unstable areas.
In both figures, as the control parameter concentration A increases, the value of B increases
dramatically and the solutions move up from left to right. In Figure 3a, four examples
of feedback parameter H are selected: H = 0.05, 0.10, 0.15, and 0.20. In this figure, at any
fixed point selected for chemical control parameter concentration A, the value of control
parameter B increases as feedback control parameter H increases. However, for Figure 3b,
five examples of diffusion coefficient parameter D were chosen: 0.01, 0.03, 0.05, 0.07, and
0.09. From these examples, it can be observed that at any fixed point of A, the parameter
of control B reduces as the diffusion coefficient value D increases. Note that the resulting
behavior displayed in this figure is similar to the case where H = 0, see [24]. Therefore, the
values of feedback parameter H and diffusion term D can significantly impact the control
parameter concentrations during the reaction process.
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Figure 3. (color online) (a,b) The Hopf bifurcation maps in the A− B diagrams versus examples of feedback parameter H
and the diffusion parameter D, respectively. The two-term semi-analytical simulation is plotted. The parameter values
applied here were τ = 1 and D = 0.01 for (a); and τ = 1 and H = 0.01 for (b).

Figure 4a,b demonstrate the Hopf bifurcation regions for the D − H maps and the
D− τ plane, respectively. Two-term analytical results were obtained in both cases. The
parameter values used are τ = 1, A = 1, and B = 10 in Figure 4a; for Figure 4b, the
values used are A = 1, H = 0.01, and B = 10. In Figure 4a, the two areas considered
as the Hopf bifurcation points of the diffusion coefficient D increase linearly as feedback
parameter H increases. In addition, Figure 4b shows that the diffusion parameters grow
slowly in relation to the small range of the D value versus the increase in delay parameter
τ. Therefore, the diffusion coefficient values have more of an impact on feedback control
parameter H than delay variable τ.

 0
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Figure 4. (a,b) The Hopf bifurcation areas for diffusion coefficient value D against the parameters of feedback control H
and delay value τ, respectively. The semi-analytical outcomes of the two-term results are plotted. The parameter values
used were τ = 1, A = 1, and B = 10 for (a); in (b), A = 1, H = 0.01, and B = 10.

Figure 5a compares the Hopf bifurcation map for the A− B diagrams with the two
cases of feedback control parameter H: H = 0, showing no feedback control term (red
dotted curve), and feedback control parameter H = 0.1 (black solid line). The Hopf
bifurcation point decreases (at fixed chemical control B) moving from the non-feedback
control term B = 0 compared with the feedback control rate case H = 0.1. Figure 5b depicts
the control parameter concentration of B versus the frequency of limit cycle ω for the two
cases of H = 0 and H = 0.1. The frequency of the periodic result ω in Figure 5b increases
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as the value of B increases. For both values of feedback control, the difference between the
values showing the frequency of the limit cycle, ω, is extremely small with an error rate of
less than 1% across all the values of control parameter concentration B.

 1
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with feedback 
with no feedback
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B
Frequency ω 

with feedback
 no feedback
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Figure 5. (color online) (a) The Hopf bifurcation map in the B− A plane and (b) the frequency of the periodic results ω

against B. Here, we can see the results for two cases: H = 0, where there is no feedback control term; and the H = 0.1 curve.
The other parameter values are D = 1 and τ = 1.

Comparisons were performed for the special parameters of D = 0.3, H = 0.2, A = 3,
and τ = 15. In this case, the points of the Hopf bifurcation exist at Bc = 1.455 for the one-
term outcome, whereas Bc = 1.469 in the analysis of the two-term result. The numerical
simulation result of the PDE system is Bc = 1.478. All these results predict the incidence
of the Hopf bifurcation analysis shown in this example as reliable and in agreement. The
error rate between the numerical simulation and the theoretical results is less than 1%.

5.2. Bifurcation Diagrams, Periodic Oscillation, and Phase-Plane Map

In this part, I chose control parameter concentration B as the bifurcation parameter.
The steady-state results where τ = 0 (no delay case) are provided. I constructed bifurcation
diagrams and studied the impact of the other free parameters in the diagrams and limit
cycle maps. Furthermore, the maps of the phase plane in the 2D domain are also plotted.
The maps of the bifurcation diagrams were examined at the center of the domain and the
limit cycles are plotted over a long time period for time t.

Figure 6 displays the steady state of the two chemical concentrations of reaction
products X and Y versus control parameter B, where H = A = D = 1 and τ = 0. It
reveals the analytical outcomes for the two- and one-term systems and the numerical
simulation of the presented PDE scheme. There are unique pattern steady-state results
for the concentrations of activator X and inhibitor Y. Figure 6a illustrates that as control
parameter B increases, the dimensionless concentration activator X decreases significantly
before approaching a minimum point at B = 15. The curve of reactant concentration
inhibitor Y increases gradually as control parameter B increases in Figure 6b. When the
concentration B value is large, the reactant concentration of activator X has a small value
(near zero), while reactant concentration Y increases exponentially. There is very good
agreement between the numerical model of the PDE simulations and the analytical results
of the ODE system, with no more than a 1% error rate in the domain of the concentration
of the reactant.
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Figure 6. (color online) The steady-state concentration of the interacting chemical species of X and Y versus control B. The
analytical results for one and two terms are shown as a black solid and a blue dashed curve, respectively. The red dotted
points refer to the numerical simulation of the PDE model. The parameters used were H = A = D = 1 and τ = 0.

Figure 7 depicts the bifurcation diagram of the dimensionless chemical concentrations
of reactants X and Y versus control parameter concentration B. In this illustration, the PDE
numerical simulation and the analytical outcomes of both one and two terms are presented
and are shown as being closely related. The positive parameters applied in these figures
are A = τ = 1, H = 0.1, and D = 0.01. This example shows the importance of the existence
of a time delay in the model with a feedback control term, which can make a positive
steady state unstable and thus induce instability. In both cases, the periodic solutions have
a supercritical Hopf bifurcation from which the reactant concentrations of X and Y are
derived. Thus, the Hopf bifurcation points for the analytical outcomes for both one and
two terms are Bc = 2.560 and 2.428, respectively. The Hopf bifurcation of the numerical
simulation result of the PDE is Bc = 2.459. It can be seen that as the value of the chemical
control parameter B increases, so does the maximum amplitude of the oscillations. The
minimum amplitude is still low, and therefore, the predictions concerning the analytical
outcomes of the two terms agree with the numerical simulation of the PDE predictions.
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Figure 7. (color online) (a,b) The bifurcation map of reactant concentrations X and Y versus control parameter concentration
B. The analytical results for one and two terms are indicated by black solid and blue dashed curves, respectively. The PDE
numerical simulation (dotted red curve) is also shown. The parameters used were A = 1, τ = 1, H = 0.1, and D = 0.01.

Figure 8 illustrates the bifurcation plane of the chemical concentrations of two chemical
species X and Y versus control parameter concentration B with three examples of the
delayed feedback control parameter H: H = 0.05 (blue dashed), H = 0.10 (black solid), and
H = 0.15 (red dotted). The analysis of the two-term outcomes is provided for each instance
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with positive parameters of τ = A = 1 and D = 0.01. The supercritical Hopf bifurcation
points in the reactant concentrations X and Y were found to be at Bc ' 2.17, 2.43, and
2.99 for the cases of delayed feedback parameter H = 0.05, 0.10, and 0.15, respectively. It
is clear that increasing the delayed feedback parameter stabilizes the system and causes
control parameter concentration B to move back when there is an increase in the strength
of the delay (feedback parameter H). The results shown in this figure confirm the outcomes
in Figure 2a. The point of the Hopf bifurcation related to the control chemical B moves
forward with the increase in diffusion coefficient D through the concentrations of the two
reactants X and Y.

 0
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Figure 8. (color online) (a,b) The bifurcation diagram of chemical concentrations X and Y against control concentration B
for three different cases of feedback control parameter H: H = 0.05, 0.10, and 0.15. The analytical results of the two terms are
plotted. The values of the parameters were τ = 1, A = 1, and D = 0.01.

Figure 9a,b both show the reactant concentrations of the two interacting chemical
species X and Y against time in the center of the domain. The parameters used were B = 2,
D = 0.01, τ = 1, H = 0.1, and A = 1 (Figure 7). The analytical outcomes of one and two
terms with the numerical simulation of the PDEs are shown. The results show a steady
state at X(0, t) ' 1.25 and Y(0, t) ' 1.46 with an increase in time after a few periodic
oscillations. The agreement between the two-term analytical and numerical simulation
PDE results is excellent, with an error rate less than 2% in the steady state over a long
time t.

Figure 10 shows a limited cycle curve for chemical concentrations X and Y versus
time t. The parameters in these figures are the same as in Figure 10, where B = 3. This
point forms the unstable region in Figure 7. The periodic solution is shown over a long
time. The length of the numerical simulation of the period of the limit cycle for the reactant
concentrations is 5.96 and the amplitudes of oscillation are 3.81 and 4.17 for the chemical
concentrations of the two reaction products X and Y, respectively. The analytical two-
term results in the limit cycle period and amplitude were approached according to the
PDE simulation scheme. The period is 5.89 and the amplitudes are 3.87 and 4.04 for the
concentrations of the two reactants of X and Y, respectively, with less than a 1.5% error
rate between them.
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Figure 9. (a,b) The reactant concentrations of the two interacting chemical species X and Y against time. The one-term
analysis is shown as a blue dashed line; the black solid line indicates the analytical results of the two-term analysis. The
numerical simulation of the PDE system (red dotted line) is plotted. The parameters used were B = 2, D = 0.01, τ = 1,
H = 0.1, and A = 1 (color available online).
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Figure 10. (color online) (a,b) The limit cycle maps for the reactant concentrations X and Y over time. The analytical results
for one and two terms are shown as black solid and blue dashed curves, respectively, and the PDE numerical scheme (dotted
red curve) is also presented. The parameters used were B = 3, D = 0.01, τ = 1, H = 0.1, and A = 1.

Figure 11a shows the phase plane of the 2D maps for chemical concentration X against
Y (activator and inhibitor), where B = 3, D = 0.01, H = 0.1, τ = 1, and A = 1. The scheme
of the numerical PDE simulation and one- and two-term analytical output was determined.
The numerical simulation of the PDE outcomes approaches the analytical two-term results.
Figure 11b presents the phase plane of the 2D maps showing the analytical results of the
two terms with four different examples of chemical control concentration B: B = 3, 3.5, 4,
and 4.5. It is evident that as control concentration rate B increases, the limit cycle increases
regularly. This result indicates that there is no doubling or chaos in the limit cycle in this
system [26].



Symmetry 2021, 13, 725 11 of 13

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  0.5  1  1.5  2  2.5  3  3.5  4

Y

X
(a)

 0

 2

 4

 6

 8

 10

 0  2  4  6  8  10

Y

X

B=3.5
B=3.5
B=4.0
B=4.5

(b)

Figure 11. (color online) (a) The phase planes in a 2D map for the concentration of reactant X against Y. The analytical
results of the two-term (red dotted line) and one-term (blue dashed line) results are plotted, where the black solid line
represents the numerical simulation scheme of the PDE results, with B = 3, D = 0.01, H = 0.1 τ = 1, and A = 1. (b) 2D
phase-plane maps for the two-term analytical outcomes with four different examples of B: B = 3 (solid black), B = 3.5
(dotted red), B = 4 (dotted blue), and B = B = 4.5 (dotted black).

Figure 12a shows the phase space of the two chemical concentrations of the reaction
products X against Y for three various examples of the feedback parameters of H (in the
left plane) and diffusion coefficient D (in the right map). The analysis of the two-term
outcome is given for both cases. The parameter values used were A = 1, B = 3, and τ = 1
with D = 0.01 for Figure 12a, and H = 0.1 in Figure 12b. The three examples of D are 0.05,
0.03, and 0.01; H = 0.15 and 0.10; and D = 0.05. In both figures, the limit cycle (oscillation
amplitude) decreases as diffusion coefficient D and feedback parameter H increase. In
Figure 12a, when H < 0.15, the solution will be stable; in Figure 12b, the result can move
from unstable to stable outcomes after point D ' 0.7.
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Figure 12. (color online) Limit cycle map for the two-term analytical results: A = 1, B = 3, and τ = 1 for three different
examples of H and D, with D = 0.01 for (a), and H = 0.1 for (b).

6. Conclusions

In this study, I constructed a lower-order analytical system of delayed feedback control
for the Brusselator model in the 1D domain. A system of delay ODEs was derived from
Galerkin’s technique. Hopf bifurcation analysis was determined both theoretically and
numerically. The Hopf bifurcation points consisted of a curve that divided each graph
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into two different areas of stability (stable and unstable). Hopf bifurcation diagrams for
the two concentrations of the respective control parameters were plotted. In addition,
the effects of the time delay, feedback control, and diffusion parameters were studied in
detail. These parameters have a strong impact on the instability and are significant for the
two concentration reactants (interacting chemical species) in the system. The solutions in
this work were developed as shown by the various examples of stable and unstable limit
cycles and the phase plane in the 2D maps. The comparison of the analytical two-term
outcome against the PDE scheme for the numerical simulation results facilitated the use
of the semi-analytical technique. It is worth using this method as it is a very effective and
precise analytical method in relation to a PDE system. In future work, I plan to apply this
method to another chemical reaction cell with two different delays in the feedback control.
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