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Abstract: A recent paper presents an extension of the skew-normal distribution which is a copula.
Under this model, the standardized marginal distributions are standard normal. The copula itself
depends on the familiar skewing construction based on the normal distribution function. This paper
is concerned with two topics. First, the paper presents a number of extensions of the skew-normal
copula. Notably these include a case in which the standardized marginal distributions are Student’s
t, with different degrees of freedom allowed for each margin. In this case the skewing function need
not be the distribution function for Student’s t, but can depend on certain of the special functions.
Secondly, several multivariate versions of the skew-normal copula model are presented. The paper
contains several illustrative examples.
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1. Introduction

The recent paper by [1] presents an extension of the skew-normal distribution which
has subsequently been referred to as a copula. Under this model, the standardized marginal
distributions are standard normal and some of the conditional distributions are skew-
normal.The skew-normal distribution itself was introduced in two landmark papers [2]
and [3]. These papers have led to a very substantial research effort by numerous authors
over the last thirty five years. The result of these efforts include, but are certainly not
limited to, numerous probability distributions, both univariate and multivariate, which
are loosely referred to in the literature as skew-elliptical distributions. This term does not
completely describe the rich features of these distributions, but for convenience will be
used in this paper. Notable contributions to these developments include papers by [4–9]
among numerous others.

The many multivariate distributions that may be referred to as skew-elliptical offer
coherent probability models that are used in a wide variety of applications. However, they
all share the feature that the factor which perturbs symmetry is applied as a multiplier to
a distribution that is elliptically symmetric. Consequently the marginal distributions are
all prescribed. For example, the multivariate skew-t distribution described in [5] leads to
marginal distributions that are all univariate skew-t distributions with the same degrees of
freedom. While such a restriction may be acceptable or even irrelevant for some purposes,
it is nonetheless the case that some multivariate applications have marginal distributions
that are different. As is very well known, there is a large literature based on copulas
which derives from the original paper of [10]. The purpose of a copula is to separate the
modeling of the dependence structure of set of variables from the analysis of the marginal
distributions. By implication, the marginal distributions need not be the same; that is, they
may differ by more than just scale and location.

In a recent paper concerned primarily with projection pursuit, ref [1] presents a
trivariate distribution based on the skew-normal which is also in a general sense a copula.
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The adjective general is used to refer to the fact that although the distribution does not
satisfy the theoretical requirements laid down in [10] there is nonetheless separation
between the modeling of the dependence structure and the treatment of the marginal
distributions. The skew-normal and skew-Student copulas as they are termed in this
paper are amenable to theoretical study, at least to some extent. Loperfido’s model also
leads naturally to various extensions, which are of theoretical interest and which have the
potential to provide tools for empirical research.

The purpose of this expository paper is to describe some of the properties of these new
distributions and to present a number of extensions. As described below, these distributions
are tractable to some extent, but numerous results of interest must be computed numerically.
It is of particular interest to note that the some of the developments described in the paper
are dependent on Meijer’s G function ([11]) and Fox’s H-function ([12]) and that there
are therefore computational and methodological issues to be resolved. The structure of
the paper is as follows: Section 2 summarizes a basic bivariate skew-normal copula and
presents some of its properties. The bivariate model of this section is used to illustrate
the difference from a bivariate normal copula that does satisfy the conditions of in [10].
Section 3 presents a conditional version of this distribution that has close connections
to the original skew-normal distribution. Section 4 presents an extended version of the
distribution; that is a distribution that is analogous to the extended skew-normal. Section 5
extends the results to an n-variate skew-normal copula and Section 6 to Student versions.
This distribution in particular allows the marginal distributions to have different degrees
of freedom. Section 7 presents results for a different multivariate setup. In this, a vector of
m + n variables may be partitioned into components of length m and n each of which has a
marginal multivariate normal distribution. The properties of this distribution are briefly
discussed, including an outline of a multivariate Student version. Section 8 presents three
numerical examples. As this is an expository paper, several of the sections also contain
brief discussions of technical issues that are outstanding and which could be the subject of
future work. The final section of the paper contains a short summary.

Many of the results in this paper require numerical integration. Example results
are generally computed to four decimal places. The usual notation φ and Φ are used to
denote the standard normal density and distributions functions, respectively. To avoid
proliferation of subscripts the notation f (.) is used indifferently to denote a density function.
Other notation, if not defined explicitly in the text, is that in common use.

2. The Skew-Normal Distribution as a Copula

The skew-normal copula was introduced by [1]. In their paper, the distribution is
presented ariate form. Its principles may be demonstrated by a bivariate form of the
distribution with probability density function

f (x1, x2) = 2φ(x1)φ(x2)Φ(λx1x2). (1)

The scalar parameter λ ∈ R determines the extent of the dependence between X1
and X2. In Section 5, the bivariate distribution is extended to n variables. To accom-
modate this extension it is convenient to employ the notation X ∼ SNCn(λ), where
X = (X1, X2, . . . , Xn)

T . As [1] shows, in the bivariate case the marginal distribution of each
Xi is N(0, 1) and the conditional distribution of X1 given that X2 = x2 is skew-normal with
density function

f (x1|X2 = x2) = 2φ(x1)Φ(λx1x2). (2)

There is an analogous expression for the density function of the conditional distribu-
tions of X2 given that X1 = x1. It may also be noted that X2

2 is distributed independently of
X1 as a χ2

(1) variable, with the analogous result for the distributions of X2 and X2
1 . Hence

the X2
i , i = 1, 2 are independently distributed as χ2

(1).
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To illustrate the difference from the formal definition of a copula, consider the well-
known Gaussian copula. In the bivariate case, dependence between X1 and X2 is described
by the function

Φ2,C

{
Φ−1(U1), Φ−1(U2)

}
,

where Φ2,C{..} denotes the distribution function of a bivariate normal distribution with zero
means and correlation matrix C and the U1,2 are each uniformly distributed on [0, 1]. The
formulation at Equation (2) uses only the standard univariate normal distribution function.

Sketches of the skew-normal density function for λ ∈ {−10.0,−2.6, 0.0, 10.0} are
shown in Figure 1. Sketches of the bivariate density function for λ = 1.0 and −5.0
are shown in Figure 2. The bi-modal nature of the density function when λ = −5.0 is
noteworthy. Indeed it is straight forward to show that the density function is bi-modal if
|λ| >

√
π/2, with the model values being at points ±(X, X) depending on λ. Examples of

modal values are shown in Table 1 for a range of values of λ.

 

The Figure shows plots of the standardized skew-normal density function for  = -10.0, -2.6, 0.0 & 
10. 
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Figure 1. Skew-normal Density Functions; λ = −10.0,−2.6, 0.0, 10.0.

                            

The Figures show plots of the bivariate skew-normal copula density function for - 4.0 <, x, y < 
4.0 for  = 1.0 and  = -5.0. 
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Figure 2. Bivariate Skew-normal Copula Density Functions; λ = 1.0,−5.0.
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Table 1. Modal Values of the Bivariate Skew-normal Copula Distribution.

λ Mode λ Mode

1.254 0.0231 35 0.2564

1.275 0.1296 50 0.2213

3 0.5422 75 0.1865

4 0.5258 103 0.1648

5 0.5029 103 0.0588

15 0.3565 104 0.0200

10 0.4112 105 0.0063

20 0.3299 106 0.0020

2.1. Cross-Moments

The covariance of X1 and X2, which also equals their correlation, is

cov(X1, X2) = 2
∫ ∞

−∞

∫ ∞

−∞
x1x2φ(x1)φ(x2)Φ(λx1x2)dx1dx2, (3)

which is readily shown to be

cov(X1, X2) = 2
(

λ/
√

2π
) ∫ ∞

−∞

(
x2

2/
√

1 + λ2x2
2

)
φ(x2)dx2, (4)

or

cov(X1, X2) =
(

λ
√

2/π
) ∫ ∞

0

(
y/
√

1 + λ2y
)

f (y)dy, (5)

where Y ∼ χ2
(1). There is no reported analytic expression for this integral in general.

However, it equals zero when λ = 0 and tends to ±2/π as λ→ ±∞. Note that the integral
in Equation (5) may also be expressed in terms of a Chi-squared distribution with 3 degrees
of freedom. Table 2 shows values of the correlation for a range of positive values of λ.

Table 2. Correlation of the Bivariate Skew-normal Copula Distribution.

λ Cov(=Cor) λ Cov(=Cor)

0.0010 0.0008 0.5000 0.3129

0.0020 0.0016 1.0000 0.4505

0.0040 0.0032 2.0000 0.5503

0.0100 0.0080 5.0000 0.6116

0.0200 0.0159 10.0000 0.6268

0.0500 0.0397 20.0000 0.6316

0.1000 0.0786 50.0000 0.6331

0.2000 0.1511 100.0000 0.6333

For higher order cross-moments the following results hold. If p and q are positive
integers with p + q odd, then

E
(

Xp
1 Xq

2

)
= 0. (6)
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Note that there is no need to derive this result using integration by parts. Since p or q
must be even, it is a consequence of one of the properties above, as is the result for the case
where p and q are both even

E
(

Xp
1 Xq

2

)
= 2

p+q
2 Γ
(

p + 1
2

)
Γ
(

q + 1
2

)
/π. (7)

For p and q both odd, the expectation satisfies the recursion

E
(

Xp
1 Xq

2

)
= (p− 1)E

(
Xp−2

1 Xq
2

)
+ λ

√
(2/π)

∫ ∞

−∞

{
xq+1/

(
1 + λ2x2

)p/2
}

φ(x)dx, (8)

with

E
(

X1Xq
2

)
= λ

√
(2/π)

∫ ∞

−∞

{
xq+1/

(
1 + λ2x2

)1/2
}

φ(x)dx. (9)

In a recent paper, ref [13] show that cross-moments of this distribution may also be
computed using a new extension of Stein’s lemma, ref [14]. There is no particular advantage
in using the new lemma for the bivariate distribution at Equation (1). The result is however
employed in Section 5 which is concerned with the more general case of n variables. If
p = 2k + 1 and q = 2l + 1, it is straightforward to show that as λ→ ±∞ the limiting value
of E(XpYq) is

limλ→∞E(XpYq) = ±2k+l+1k!l!/π.

The limiting values of a selection of odd order cross moments E
(

Xp
1 Xq

2

)
are shown in

Table 3 and a selection of moments corresponding to λ = 1.0 in Table 4.

Table 3. Cross Moments—Limiting Values.

Order 1 3 5 7 9

1 0.6366 1.2732 5.093 30.5577 244.462

3 2.5481 10.1891 61.1282 489.0004

5 40.7564 244.5129 1956.0016

7 1467.0776 11,736.0093

9 93,888.0744

Table 4. Cross Moments: λ = 1.0.

Order 1 3 5 7 9

1 0.4507 1.0808 4.5040 27.4555 221.5542

3 1.0808 2.4329 9.9094 59.7483 478.9353

5 4.5040 9.9094 40.1754 241.9398 1938.3608

7 27.4555 59.7483 241.9398 1456.7783 11,670.9677

9 221.5542 478.9353 1938.3608 11,670.9677 93,501.497

11 2227.8507 4794.0952 19,397.487 116,791.7771 935,671.459

13 26,837.3188 57,561.2949 232,862.2301 1,402,049.0507 11,232,438.0284

Although not specifically required for the determination of the normalization constant
in Equation (1), the distribution of the product Y = X1X2 for the case where each Xi, i = 1, 2
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is independently distributed as N(0, 1) is of interest. When Xi ∼ N
(
0, σ2

i
)

independently
for i = 1, 2, the distribution of Y has the density function

f (y) = K0(|y|/σ1σ2)/πσ1σ2, (10)

where K0(.) is the modified Bessel function of the second kind. See, for example, ref [15] for
further details of this result and [16] (Chapter 9, Sections 6 to 8) for details of the function
K itself.

3. A New Skew-Normal Type Distribution

As noted above in Section 2, the conditional distribution of X1 given X2 = x2 is
skew-normal with shape parameter λx2. A new univariate distribution may be obtained by
conditioning instead on X2 ≤ y. The resulting distribution of X1 has the density function

f (x) = 2φ(x)
{∫ y

−∞
φ(s)Φ(λxs)ds

}
/Φ(y). (11)

Straight forward integration gives the following results.

Proposition 1. Let X have the distribution with density function given by Equation (11). The
following results hold:

1. An alternative expression for the density function is

f (x) = 2φ(x)Φ(λyx)− 2λxφ(x)
{∫ y

−∞
Φ(s)φ(λxs)ds

}
/Φ(y). (12)

2. A second alternative expression is

f (x) = φ(x)− 2xφ(x)ξ1(y)
∫ λ

0

φ(λxy)
1 + λ2x2 dλ, (13)

where ξ1(x) = φ(x)/Φ(x).
3. X2 is distributed as χ2

(1).

4. Odd order moments may be computed recursively from

E(Xn) = (n− 1)E
(

Xn−2
)
+
√

2/πλ
{

E
(

Zn−1
)

/Φ(y)
} ∫ y

−∞

sφ(s)

(1 + λ2s2)
n/2 ds, (14)

with Z ∼ N(0, 1) and

E(X) =
{√

2/πλ/Φ(y)
} ∫ y

−∞

sφ(s)

(1 + λ2s2)
1/2 ds. (15)

The expression at Equation (13) may be computed using the methods reported in [17].
This distribution possesses two interesting properties as |y| → ∞.

Proposition 2. Let X have the distribution with density function given by Equation (11). The
following results hold:

1. For λ > 0, as y→ −∞ the limiting form of the distribution of X is skew-normal with shape
parameter λy; that is

limy→−∞ f (x) = 2φ(x)Φ(λyx). (16)

2. For λ > 0 as y→ ∞
limy→∞ f (x) = φ(x). (17)
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Part 1 of the proposition may be established using the well-known asymptotic formula
for the standard normal integral ([16], page 932, Equation 26.2.12); that is

Φ(x) ' φ(x)/|x|; x << 0, (18)

and integration by parts. In this case for λ > 0 and y << 0 the second term is negligible.
There are analogous results for λ < 0. Equation (18) and the same assumption are used
again in some of the results below. It is interesting to note that Part 1 of the propsition
results in the same density function as that at Equation (2).

Numerical computations or asymptotic arguments are necessary in order to employ
the distribution at Equation (11); for example to compute moments or critical values.
Nonetheless, it is arguably a more flexible form than the familiar skew-normal shown at
Equation (2). Examples of the density functions from Equations (2) and (11) are shown in
Figure 3. In Table 5, m1 and m3 are the first and third moment about the origin, sk and ku
are skewness and kurtosis, ssk and sku are the corresponding standardized values. The
table shows a selection of moments for λ = 1 and a range of values of y from −10.0 to 10.0.
For positive values of y, skewness and kurtosis rapidly tend to 0 and 3 , respectively. For
y < 0 skewness is negative and there is excess kurtosis. As above, there are analogous
results for λ < 0.

Table 5. Moments of New Skew-normal Type Distribution Function; λ = 1.

≤ y m1 m3 sk ssk ku sku

−10.0 −0.7940 −1.5957 −0.2148 −0.9563 0.5223 3.8241

−7.6 −0.7913 −1.5956 −0.2126 −0.9302 0.5304 3.7942

−5.1 −0.7839 −1.5950 −0.2068 −0.8640 0.5527 3.7198

−2.6 −0.7538 −1.5884 −0.1836 −0.6471 0.6514 3.4929

0.0 −0.4174 −1.0540 0.0528 0.0703 2.1945 3.2182

2.4 −0.0062 −0.0131 0.0054 0.0054 2.9999 3.0001

4.9 0.0000 0.0000 0.0000 0.0000 3.0000 3.0000

7.4 0.0000 0.0000 0.0000 0.0000 3.0000 3.0000

10.0 0.0000 0.0000 0.0000 0.0000 3.0000 3.0000

                           

The density functions in blue show the new skew-normal type distribution function for values 
of y = 0 and 10, respectively. For comparison, the density functions in orange show the 
corresponding skew-normal distributions. 
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4. An Extended Skew-Normal Copula

The skew-normal and skew-Student distributions have extended forms. These arise
naturally when conditional distributions are considered. They also arise as hidden trunca-
tion models. In standardized form, the univariate extended skew-normal distribution has
the density function

f (x) = φ(x)Φ
(

τ
√

1 + λ2 + λx
)

/Φ(τ); τ ∈ R. (19)

The extended skew-normal distribution may be derived by considering a standard-
ized bivariate normal distribution of X and Y with correlation ρ. The distribution at
Equation (19) is the density of X given that Y ≥ −τ, with λ = ρ/

√
1− ρ2. The distribution

may be denoted ESN(λ, τ). A bivariate extended skew-normal copula distribution that is
analogous to that in Section 2 has the density function

f (x1, x2) = φ(x1)φ(x2)Φ
(

τ
√

1 + λ2 + λx1x2

)
/Ω(τ, λ), (20)

where Ω(τ, λ) > 0 is the normalizing constant. Integration with respect to X1 shows that

Ω(τ, λ) =
∫ ∞

−∞
φ(y)Φ

(
τ
√

1 + λ2/
√

1 + λ2y2
)

dy, (21)

which may be evaluated numerically. In addition, the marginal distribution of X is sym-
metric and has the density function.

f (x) = φ(x)Φ
(

τ
√

1 + λ2/
√

1 + λ2x2
)

/Ω(τ, λ). (22)

Values of Ω(τ, λ) computed to four decimal places for a selection of values of τ and λ
are shown in Table 6. Note that for values of τ less than say −5 the values of Ω are small,
implying the need for care with its computation. The shorthand notation X ∼ ESNCn(τ, λ)
which extends that defined in Section 2 will be used. The basic properties of the bivariate
extended skew-normal copula distribution are as follows.

Table 6. Normalising Constant for the ESNC Distribution.

τ/λ 0.5 1 2.5 5 10 25

−15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

−10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

−5 0.0000 0.0002 0.0008 0.001 0.0011 0.0011

−2.5 0.0072 0.0105 0.0155 0.0168 0.0172 0.0173

−1 0.1550 0.1396 0.1108 0.1057 0.1048 0.1045

−0.5 0.3051 0.2898 0.2412 0.2138 0.2069 0.2052

0 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

0.5 0.6949 0.7102 0.7588 0.7862 0.7931 0.7948

1 0.8450 0.8604 0.8892 0.8943 0.8952 0.8955

2.5 0.9928 0.9895 0.9845 0.9832 0.9828 0.9827

5 1.0000 0.9998 0.9992 0.999 0.9989 0.9989

10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Proposition 3. Let (X1, X2)
T ∼ ESNC2(τ, λ), let X denote either variable and define

τ̃x =
τ
√

1 + λ2
√

1 + λ2x2
. (23)

The following properties hold
1. E(X) = 0.

2. var(X) = 1−
{

λ2τ
√

1 + λ2/Ω(τ, λ)
} ∫ ∞
−∞

y2

(1+λ2y2)
3/2 φ

(
τ̃y
)
φ(y)dy.

3. cov(X1, X2) = {λ/Ω(τ, λ)}
∫ ∞
−∞

y2√
1+λ2y2

φ
(
τ̃y
)
φ(y)dy.

4. X1|X2 = y ∼ ESN
(
τ̃y, λy

)
.

Proof of this proposition is in the Appendix A. Table 7 shows standard errors for a
range of values of τ and λ. These were computed using numerical integration. Table 8
shows the correlation coefficients for a range of parameter values. For λ = 1.0 Figure
4 shows (i) an example of the bivariate skew-normal density function for τ = −1.0
and (ii) the marginal density for τ = −2.5 and 0.0. Higher order cross moments may
be computed recursively, but for non-zero values of τ the resulting integrals are two-
dimensional. Depending on the values of λ and τ the extended version of the distribution
is also bi-modal.

       

The left hand figure shows the bivariate ESNC density for  = 1.0 and = -1.0. The right hand 
figure shows the marginal distributions also for = 1.0, but  = -2.5 and 0.0. 
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Figure 4. Extended Skew-normal Copula Density Functions; λ = 1.0.

Table 7. Standard Errors for the ESNC Distribution.

τ/λ 0.5 1 2.5 5 10 25

−15 5.563804 4.654258 4.178148 4.089074 4.065563 4.058883

−10 4.441411 3.816603 3.472084 3.40682 3.38956 3.384654

−5 2.886818 2.724329 2.574579 2.54366 2.535375 2.533012

−2.5 1.610455 1.924303 1.967713 1.966597 1.965964 1.96576

−1 1.113491 1.249359 1.453953 1.498411 1.507775 1.510312

−0.5 1.041259 1.092314 1.208643 1.283663 1.304663 1.309794

0 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

0.5 0.981337 0.95979 0.923856 0.907661 0.903814 0.902917

1 0.977757 0.953395 0.927976 0.923458 0.922466 0.922193

2.5 0.994202 0.985502 0.977147 0.975165 0.974617 0.974459

5 0.999946 0.999327 0.997783 0.997263 0.997109 0.997064

10 1.000000 0.999999 0.999985 0.999976 0.999973 0.999972

15 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
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Table 8. Correlation for the ESNC Distribution.

τ/λ 0.5 1 2.5 5

−15 0.9840 0.9772 0.9718 0.9705

−10 0.9750 0.9662 0.9594 0.9578

−5 0.9419 0.9348 0.9273 0.9256

−2.5 0.8174 0.8745 0.8788 0.8786

−1 0.5440 0.7087 0.7914 0.8007

−0.5 0.4272 0.5909 0.7154 0.7417

0 0.3130 0.4507 0.5721 0.6125

0.5 0.2112 0.3122 0.3892 0.4034

1 0.1294 0.1975 0.2422 0.2492

2.5 0.0156 0.0355 0.0561 0.0611

5 0.0001 0.0015 0.0049 0.0060

10 0.0000 0.0000 0.0000 0.0001

15 0.0000 0.0000 0.0000 0.0000

The extended version of the distribution has a conditional distribution that is similar
to that described in Proposition 2. As above, proof is in the Appendix A.

Proposition 4. Let X1 and X2 have the distribution with density function given by Equation (20).
The following results hold:

1. The normalizing constant Ω(τ, λ) is given by

Ω(τ, λ) = 1/2 + τλ2
√

1 + λ2
∫ ∞

−∞

yΦ(y)φ
(
τ̃y
)

(1 + λ2y2)
3/2 dy. (24)

2. The distribution function of X2 is

Pr(X2 ≤ y) =
∫ y

−∞
φ(s)Φ

(
τ
√

1 + λ2/
√

1 + λ2s2
)

ds/Ω(τ, λ). (25)

3. The density function of X1 given that X2 ≤ y is

f (x1|X2 ≤ y) = φ(x1)

∫ y
−∞ φ(s)Φ

(
τ
√

1 + λ2 + λx1s
)

ds∫ y
−∞ φ(s)Φ

(
τ
√

1 + λ2/
√

1 + λ2s2
)

ds
(26)

4. For λ > 0, as y→ −∞ the limiting form of the distribution of X1 has the density function

limy→−∞ f (x1) = φ(x1)Φ
(

τ̃y

√
1 + λ̃2

y + λ̃yx1

)
/Φ
(
τ̃y
)
, (27)

where τ̃y is as defined in Proposition 3 and λ̃y = λy; that is, X1|X2 ≤ y ∼ ESN
(
τ̃y, λy

)
.

Note that as in Section 3 the distributions in Part 4 of both Propositions 3 and 4 are the same.
There are analogous results for λ < 0 as y→ ∞.
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5. Extension to n Variables

There is a self-evident extension for the distribution of an n-vector X, with i-th element
Xi, which has density function

f (x) = 2Πn
i=1φ(xi)Φ(λΠn

i=1xi), (28)

and shorthand notation X ∼ SNCn(λ). Recall that [1] describes the case n = 3. This
distribution has the following properties:

1. The marginal distribution of each Xi is N(0, 1).
2. The members of any subset of X of size 2, . . . , n− 1 are independently distributed as

N(0, 1).
3. The X2

i ; i = 1, . . . , n are independently distributed at χ2
(1) variables.

4. If X is partitioned into two non-overlapping sets, {Xi}; i = 1, . . . , p and
{

Xj
}

; j =
p + 1, . . . , p + q with p + q ≤ n then (i) the

{
X2

i
}

are independently distributed as
χ2
(1) variables independently of (ii) the

{
Xj
}

, which are themselves independently
distributed as N(0, 1).

5. The distribution of Xi given Xj = xj, j 6= i is skew-normal, with density function

f (xi) = 2φ(xi)Φ(λΠn
i=1xi), (29)

that is, with shape parameter λΠn
j 6=ixj.

6. The distribution of Xj, j 6= i given Xi = xi is a skew-normal copula, with shape
parameter λxi.

Other properties are briefly described in the rest of this section.

5.1. Cross-Moments

The first order cross-moment is

E(Πn
i=1Xi) = λ

√
2/π

∫ ∞

−∞
. . .
∫ ∞

−∞

(
Πn−1

i=1 x2
i φ(xi)/

√
1 + λ2Πn−1

i=1 x2
i

)
Πn−1

i=1 (dxi). (30)

As |λ| increases the limiting value of Equation (30) is ±(2/π)n/2. There are expres-
sions for higher order multivariate moments which are similar to those at
Equations (7) and (8). If the {pi}; i = 1, . . . , n are all even then property (4) implies that

E
(

Πn
i=1Xpi

i

)
= Πn

i=1Γ
(

pi + 1
2

)
/2P/2Γ(1/2)n; P = Σn

i=1 pi. (31)

If any pi is even and any other is odd then the expectation at the left hand side of
Equation (31) is zero. For the general multivariate case with all {pi} odd , higher order
cross-moments may be computed in principle using a version of the extension to Stein’s
lemma reported in [13], as follows:

Proposition 5. Extension to Stein’s lemma ([13])
Let XT = (X1, X2, . . . , Xn) and let g(X) : Rn → R be a function that is differentiable almost

everywhere. Noting that
Πn

i=1φ(xi) = φn(x),

is the density function of the standard multivariate normal distribution evaluated at X = x, the
extension to Stein’s lemma states that

cov{X, g(X)} = E{∇g(X)}+ 2
∫ ∞

−∞
. . .
∫ ∞

−∞
g(x)∇Φ(λΠn

i=1xi)φ(x)dx,

where E denotes expectation taken over the skew-normal copula density function at Equation (28).
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The gradient vector of Φ
(
λΠn

i=1xi
)

is

∇Φ(λΠn
i=1xi) = λ



Πn
j=2Xj

...
Πj 6=iXj

...
Πn−1

j=1 Xj


φ(λΠn

i=1xi). (32)

When
g(X) = X(p1−1)

1 Πn
i=2Xpi

i ; pi ∈ I+, (33)

∇g is given by

∇g(X) =



(p1 − 1)Xp1−2
1 Πn

j=2X
pj
j

...
piX

p1−1
1 Xpi−1

i Πj 6=1,iX
pj
j

...
pnXp1−1

1 Xpn−1
n Πn−1

j=2 X
pj
j


. (34)

The first term of the vector cov{X, g(X)} recovers E
(

Πn
i=1Xpi

i

)
. Use of the lemma in

Proposition 5 shows that

E
(

Πn
i=1Xpi

i

)
= (p1 − 1)E

(
Xp1−2

1 Πn
i=2Xpi

i

)
+

2λ
∫ ∞

−∞
. . .
∫ ∞

−∞
xp1−1

1 Πn
i=2xpi+1

i Πn
i=1{φ(xi)}φ(λΠn

i=1xi)dx.
(35)

Note that the second term is equal to zero if p1 is even. Otherwise it may be reduced
to an integral in n− 1 dimensions√

2
π

λαp1−1

∫ ∞

0
. . .
∫ ∞

0

Πn
i=2y(pi+1)/2

i(
1 + λ2Πn

i=2yi
)p1/2 Πn

i=2 f (yi)dx

with
αp1−1 = Γ(p1/2)2(p1−1)/2/Γ(1/2),

and the variables Yi each independently distributed as χ2
(1).

Note that the second and subsequent elements of cov{X, g(X)} will recover other
cross-moments.

5.2. Skew Distributions Generated by Conditioning

Similar to the results in Section 3 a skewed distribution may be obtained by condition-
ing on X1 ≤ y. The distribution has the density function

f (xi; i = 2, . . . , n|X1 ≤ y) = Πn
i=2φ(xi)

∫ y

−∞
φ(s)Φ(λsΠn

i=2xi)ds/Φ(y). (36)

Using arguments similar to those in Section 3, it then follows that for λ > 0 and as
y→ −∞ the distribution of the n− 1 vector {Xi}; i = 2, . . . , n is also a skew-normal copula
with shape parameter λy. Similarly the distribution of X1 given Xi ≤ xi; i = 2, . . . , n with
Xi → −∞ for at least one value of i is skew-normal with shape parameter λΠn

i=2xi There
are analogous results for λ < 0 and y→ ∞.
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5.3. Distribution Function and Related Computations

Details are omitted, but for all Xi substantially less than zero, an approximation to the
distribution function is

P[∩n
i=1(Xi < xi)] ' 2Πn

i=1Φ(xi)Φ
(
λΠn

i=1xj
)
, (37)

from which VaR denoted X∗ as before may be computed. Similar to the bivariate case
defined at Equation (78), CVaR is defined in general as

E(X|X < X∗1), (38)

where 1 is an n-vector of ones. For a single variable, CVaR defined as

E(Xi|X < X∗1) (39)

is approximately equal to VaR. As before, tail dependence is zero.
Similar to the bivariate case, the distribution of Y = Πn

i=1Xi, when the Xi are indepen-
dently distributed as N

(
0, σ2

i
)

has the density function

f (y) = Gn,0
0,n

(
x2/2nσ|0

)
/(2π)n/2σ; σ = Πn

i=1σi, (40)

where G(.) denotes Meijer’s G-function. As above, see [15] for further details.

5.4. Extended Distributions

Similar to the results in Section 4, the skew-normal copula for n variables has an
extended form. The multivariate extended skew-normal copula distribution has the den-
sity function

f (x) = Πn
i=1φ(xi)Φ

(
τ
√

1 + λ2 + λΠn
i=1xi

)
/Ωn(τ, λ), (41)

where Ωn(τ, λ) is the normalizing constant. Integrating with respect to, say, X1 shows that
Ω is given by

Ωn(τ, λ) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
Πn

i=2φ(xi)Φ(τ̂)Πn
i=2dxi; τ̂ = τ

√
1 + λ2/

√
1 + λ2Πn

i=2x2
i . (42)

In principle this may be reduced to a one-dimensional integral of the form

Ωn(τ, λ) =
∫ ∞

0
f (s)Φ(τ̂s)ds; τ̂s = τ

√
1 + λ2/

√
1 + λ2s, (43)

where the scalar variable S is distributed as the product of n− 1 independent variables
each distributed as χ2

(1). As already noted, the density function of S given by Fox’s
H-function, ref ([12]). The effect of non-zero τ is to induce dependence in the marginal
distributions. The marginal distribution of X̄T =

(
X1, . . . , Xp

)
; p < n has the symmetric

density function

f (x̄) = Πp
i=1φ(xi)

Ωn−p

(
τ∗p , λ∗p

)
Ωn(τ, λ)

; λ∗p = λΠp
i=1xi, τ∗p = τ

√
1 + λ2√
1 + λ∗2p

, (44)

Consequently the conditional distribution of X̂T =
(
Xp+1, . . . , Xn

)
; p < n given X̄ = x̄

is ESNCn−p

(
τ∗p , λ∗p

)
. It is conjectured that, similar to the results in Propositions 2 and 4

that the conditional distribution of X̂T =
(
Xp+1, . . . , Xn

)
; p < n given X̄ << 0 of the

same type.
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6. Skew-Student Copulas

Student’s t distribution and its multivariate counterpart both arise as scale mixtures of
the normal and multivariate normal distributions, respectively, as well as being sampling
distributions in their own right. Similarly, the skew-Student distribution and its extended
counterpart may be derived as scale mixtures. It is therefore natural to inquire whether
there are parallel developments for the skew-normal copula distribution of Section 2 and
subsequent sections. The potential attraction of such a development is the opportunity to
have marginal Student’s t distributions with differing degrees of freedom. In addition to
the skew-Student distribution derived formally in [5], the earlier work in [18] suggests that
more flexible constructions may also be contemplated. The first two sub-sections below
therefore present two such approaches to skew-Student copulas. The third then describes a
distributions that is derived as a scale mixture. In the interests of paper length, results are
presented briefly, with further details available on request.

6.1. Skew-Student Copula—Case I

The first case has a density function given by

f (x) = 2Πn
i=1tνi (xi)Tω(λΠn

i=1xi), (45)

where tν(.) and Tν(.), respectively, denote the density and distribution functions of a
Student’s t variable with ν degrees of freedom. The univariate version of this distribu-
tion is referred to here as the linear skew-t. Allowing ω to increase without limit gives
a distribution in which Tω(.) is replaced by Φ(.). The properties of the distribution,
which is denoted SSCn,I(λ; ˚ , ω), with ˚ T = (ν1, . . . νn) are similar to those described in
Sections 2 and 5, namely

1. The marginal distribution of each Xi is t(νi); that is, Student’s t distribution with νi
degrees of freedom.

2. The members of any subset of X of size 2, . . . , n− 1 are independently distributed
as t(νi).

3. The X2
i ; i = 1, . . . , n are independently distributed at F(1, ν(i)) variables.

4. If X is partitioned into two non-overlapping sets, {Xi}; i = 1, . . . , p and
{

Xj
}

; j =
p + 1, . . . , p + q with p + q ≤ n then (i) the

{
X2

i
}

are independently distributed as
F(1, ν(i)) variables independently of (ii) the

{
Xj
}

, which are themselves indepen-
dently distributed as tνi .

5. The distribution of Xi given Xj = xj, j 6= i has the density function

f (xi) = 2tνi (xi)Tω

(
λxiΠn

j 6=ixj

)
, (46)

that is, a linear skew-t. There is a similar result for the conditional distribution of
Xj, j 6= i given Xi = xi.

A conditional distribution is obtained in the same manner as that at Equation (11),
namely by conditioning on X1 ≤ y. The resulting density function is

f (x) = 2Πn
i=2tνi (xi)

∫ y

−∞
tν1(s)Tω(λsΠn

i=2xi)ds/Tν1(y). (47)

Cross-moments may be computed using recursions similar in principle to those in
Section 2.1. Similar to the results in Section 3, for λ > 0 and y << 0 it may be shown that
conditional on X1 ≤ y << 0 the remaining variables have an asymptotic skew-Student
copula distribution of the same type as that at Equation (45), with shape parameter λy.
Similarly the distribution of X1 given Xi ≤ xi; i = 2, . . . , n with xi << 0 for at least one
value of i is linear skew-Student with shape parameter λΠn

i=2xi. There are analogous
results for λ < 0 and y >> 0.
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The distribution defined at Equation (45) does not lead easily to an extended version.
Although there are analytic expressions for the distribution of the difference of two in-
dependent Student’s t variates, the expressions are complicated—see for example [19,20].
This remains a topic for future research.

6.2. Skew-Student Copula—Case II

A second skew-Student copula distribution, denoted SSCn,I I(λ; ˚ , ω), has the den-
sity function

f (x) = 2Πn
i=1tνi (xi)Tω+1

√ω + 1λΠn
i=1

xi√
νi + x2

i

 (48)

When n = 1 and ω = ν1 this is the skew-t distribution due originally to [5]. To
distinguish it from the linear form above this is referred to as the Azzalini skew-t. The
properties of the distribution at Equation (48) are essentially the same as those listed
in Section 6.1. The asymptotic conditional distribution of Xj; j = 2, . . . , n given that
X1 ≤ x1 << 0 is SSCn−1,I I

(
λ̂; Ñ, ω

)
with

ÑT
= (ν2, . . . , νn); λ̂ =

λx1√
ν + x2

1

.

There is a similar result for the conditional distribution of X1 given that Xj ≤ xj <<
0; j = 2, . . . , n.

6.3. Skew-Student Copula—Case III

In the third case, which is arguably a more realistic representation, conditional on n
mixing variables Si = si, collectively S = s, the joint density function of the variables Xi is

f (x|S = s) = 2Πn
i=1s1/2

i Πn
i=1φ(xi

√
si)Φ

(
λΠn

i=1s1/2
i Πn

i=1xi

)
, (49)

with each Si independently distributed as χ2
(νi)

/νi. For this case the distribution of X has
density function

f (x) = 2Πn
i=1tνi (xi)Mn,N

λΠn
i=1

xi
√

νi + 1√
νi + x2

i

, (50)

where Mn,N(x) denotes the distribution function, evaluated at x, of the variable V = Z/W
where Z ∼ N(0, 1) independently of W = Πn

i=1U1/2
i with Ui independently distributed as

χ2
(νi+1). The density function corresponding to M(.) is given by Fox’s H-function, see [12].

It is interesting to note that the form of Equation (50) implies that the function M is the
distribution of the variable V that is symmetric. The scale mixture also does not add
great additional complications to the expressions for cross-moments, although, as above,
numerical computation is required. The distribution shares properties 1 to 4 of the case I
distribution reported in Section 6.1. This distribution does not appear in the literature and
derivation of the distribution and density functions are future research tasks.

7. Multivariate Distributions

When X and Y are both n-vectors, a basic multivariate version of the SN-copula
distribution has the density function

f (x, y) = 2φn(x)φn(y)Φ
(

xTy
)

, (51)
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where φn(.) denotes the density function of the Nn(0, I) distribution. The marginal dis-
tributions of X and Y are each standard multivariate normal Nn(0, I). The conditional
distribution of X given that Y = y is multivariate skew-normal with density function

f (x) = 2φn(x)Φ
(

xTy
)

. (52)

This section of the paper briefly describes the basic properties of the distribution at
Equation (51) and extensions thereof. Details of more advanced developments, such as
conditional distributions similar in concept to those described in earlier sections are left as
topics for future development. In private correspondence Loperfido, ref [21], has proposed
an extension of the distribution at Equation (51). In this extension the scale matrices of X
and Y are not restricted to be unit matrices and the location parameters are not restricted to
be zero vectors. Using their notation, the joint distribution of the random vectors X and Y
has the density function

f (x, y; µ, υ, Σ, Ω, λ) = 2φ̃n(x; µ, Σ)φ̃n(y; υ, Ω)Φ

{
n

∑
i=1

λi(xi − µi)(yi − υi)

}
, (53)

where φ̃n(x; µ, Σ) and φ̃n(y; υ, Ω) are the density functions of vectors X and Y distributed,
respectively, as Nn(µ, Σ) and Nn(υ, Ω) and where Φ(·) is as defined above. In related
correspondence, ref [22] notes that an alternative argument for Φ in Equation (51) is xT Ay,
where A is an n×m matrix and y is an m-vector. Setting µ and υ to 0, a vector of zeros of
appropriate length, this leads to the density function

f (x, y; 0, 0, Σ, Ω, λ) = 2φ̃n(x; Σ)φ̃m(y; Ω)Φ
(

λxT Ay
)

. (54)

In the same correspondence [21] considers a generalization of this multivariate distri-
bution with density function

f (x, y) = 2hn(x− µ)km(y− υ)π
{
(y− υ)T A(x− µ)

}
, (55)

where hn(·) and km(·) are the density functions of n and m dimensional elliptically sym-
metric distributions. The function π(·) satisfies 0 ≤ π(−a) = 1− π(a) ≤ 1 for all a ∈ R.
The distribution at Equation (55) is an extension of the generalized skew-normal described
in [7,23].

7.1. Marginal and Conditional Distributions—A Basic Example

To illustrate the properties of the marginal and conditional distributions consider the
basic bivariate case. Let the density function of the four random variables X1, X2, Y1 and
Y2 be

f (x1, x2, y1, y2) = 2φ(x1)φ(x2)φ(y1)φ(y2)Φ(λ1x1y1 + λ2x2y2), (56)

Integration with respect to X2 gives

f (x1, y1, y2) = 2φ(x1)φ(y1)φ(y2)Φ

 λ1x1y1√
1 + λ2

2y2
2

. (57)

Integration of Equation (57) with respect to X1 gives the joint density of Yi; i = 1, 2

f (y1, y2) = φ(y1)φ(y2), (58)

as expected. Similarly, integration of Equation (57) with respect to Y1 gives the marginal
density joint density of X1 and Y2

f (x1, y2) = φ(x1)φ(y2). (59)



Symmetry 2021, 13, 815 17 of 32

However, the marginal density joint density of X1 and Y1 is given by

f (x1, y1) = 2φ(x1)φ(y1)
∫ ∞

−∞
φ(y2)Φ

 λ1x1y1√
1 + λ2

2y2
2

dy2. (60)

To the best of my knowledge there is no closed form expression for the integral at
Equation (60). The conditional distribution of X1 given that Y1 = y1 has the PDF

f (x1|Y1 = y1) = 2φ(x1)
∫ ∞

−∞
φ(y2)Φ

 λ1x1y1√
1 + λ2

2y2
2

dy2. (61)

Example densities for λ1 = λ2 = 1 and Y1 = −10, −5 and 0 are shown in Figure 5.
There is a corresponding expression for the PDF of Y1 given that X1 = x1.

 

The figure shows conditional density functions that resemble the skew-normal for conditioning values 
equal to -10 and -5 for 1 = 2 =1. Conditioning on 0 gives the standard normal density. 
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Figure 5. Example Conditional Density Functions; λ1,2 = 1, Y1 = −10,−5, 0.

7.2. Marginal and Conditional Distributions—General Results

For the distribution at Equation (54) suppose that X is partitioned into two components
of length n1 and n2 = n− n1 and that A and Σ are partitioned similarly. Thus

yT Ax = yT A1x1 + yT A2x2, (62)

and write φ̃n(x; Σ) as

φ̃n(x; Σ) = φ̃n1(x1; Σ11)φ̃n2

(
x2 − Bx1; Σ2|1

)
, (63)

with B = Σ21Σ−1
11 and Σ2|1 = Σ22 − Σ21Σ−1

11 Σ12. The argument of Φ(.) may be written as

yT Ax = yT(A1 + A2B)x1 + yT A2(x2 − Bx1) (64)

Integration over x2 yields the density of the joint distribution of X1 and Y

f (x1, y) = 2φ̃n1(x1; Σ11)φ̃m(y; Ω)Φ

 yT(A1 + A2B)x1√
1 + yT A2Σ2|1 AT

2 y

. (65)
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Integration over X1[Y ] recovers the normal distribution of Y [X1] as expected. The
conditional distribution of X1 given Y = y is skew-normal with shape parameter

(A1 + A2B)Ty√
1 + yT A2Σ2|1 AT

2 y
.

There is no closed form expression for the joint (marginal) density of X1 and Yi; i = 1
or = 2, except in the very obscure special case for which A2Σ2|1 AT

2 = 0.

7.3. Extended Version

Following the approach used in Sections 4 and 5.4, an extended version of the distri-
bution at Equation (54) has the density function

f (x, y) = 2φ̃n(x; Σ)φ̃m(y; Ω)Φ
(

τ
√

1 + λ2 + λxT Ay
)

/Ψ(τ, λ), (66)

where Ψ(τ, λ) is the normalizing constant. Integration with respect to x or y shows that
this is given by the n-dimensional integral

Ψ(τ, λ) =
∫ ∞

−∞
φ̃n(x; Σ)Φ

(
τ
√

1 + λ2
√

1 + λ2xT AΩATx

)
dx,

or alternatively by the m-dimensional integral

Ψ(τ, λ) =
∫ ∞

−∞
φ̃m(y; Ω)Φ

(
τ
√

1 + λ2√
1 + λ2yT ATΣAy

)
dy.

7.4. Student Version

In the usual way, consider the distribution of X and Y conditional on Si = si; i = 1, 2
where the Si are independently distributed as χ2

(νi)
/νi. The conditional density function is

f (x, y|Si = si; i = 1, 2) = 2φ̃n(x; Σ/
√

s1)φ̃m(y; Ω/
√

s2)Φ
(

λyT Ax
√

s1s2

)
(67)

Standard manipulations give the following expression for the density function of X
and Y

f (x, y) = 2t̃ν1,n(x, Σ)t̃ν2,m(y, Ω)ES∗

[
Φ

{
λxT Ay

√
s1s2(ν1 + 1)(ν1 + 1)√

ν2 + xTΣ−1x
√

ν2 + yTΩ−1y

}]
, (68)

where ES∗ denotes expectation over the distribution of the variables Si; i = 1, 2 which are
independently distributed as χ2

(νi+1)/(νi + 1) variables and t̃ν,n(x, Σ) denotes the density
function of an n-variate multivariate Student distribution with ν degrees of freedom ,
location parameter vector 0 and scale matrix Σ. Note that integration over, say, S1 reduces
the right hand side of Equation (68) to

2t̃ν1,n(x, Σ)t̃ν2,m(y, Ω)ES2

{
Tν1+1(R)

}
, R =

λxT Ay
√

s2(ν1 + 1)(ν1 + 1)√
ν2 + xTΣ−1x

√
ν2 + yTΩ−1y

, (69)

which may be computed numerically for given values of x and y. An extended version
of the distribution may be developed in the same way as in Section 7.3. The expression
at (69) becomes

t̃ν1,n(x, Σ)t̃ν2,m(y, Ω)ES2

[
Tν1+1

{
τ
√

1 + λ2 + R
}]

/Ψ(τ, λ), (70)
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Given the need for numerical computation indicated at Equations (68) and (69), an
alternative skew-Student copula may be obtained by extending the distribution described
in Section 6.1. The density function is

f (x, y) = 2t̃ν1,n(x, Σ)t̃ν2,m(y, Ω)Tω

(
λxT Ay

)
.

An alternative version is

f (x, y) = 2t̃ν1,n(x, Σ)t̃ν2,m(y, Ω)Tω(Q); Q =
λxT Ay

√
(ν1 + 1)(ν1 + 1)√

ν2 + xTΣ−1x
√

ν2 + yTΩ−1y
.

Neither of these distributions, however, lead to easily tractable extended versions.

7.5. Stein’s Lemma

This lemma is useful in Portfolio theory and for the computation of moments and
cross moments. The treatment in this sub-section follows that in [13].

Let g(X, Y) be a scalar valued function of X and Y subject to the usual regularity
conditions and consider

E{Xg(X, Y)} = 2
∫

y

∫
x

xg(x, y)φn(x; Σ)φm(y; Ω)Φ
(

λxT Ay
)

dxdy. (71)

The right hand side of Equation (71) is

2EY

[
ΣEX

{
∇xg(x, y)Φ

(
λxT Ay

)
+ g(x, y)λAyφ

(
λxT Ay

)}]
. (72)

This is

Σ
[

E{∇xg(x, y)}+ 2EY

{
λATy

∫
x

g(x, y)φn(x; Σ)φ
(

xT Ay
)

dx
}]

. (73)

The second term is√
2
π

EY

[
Ay√

1 + yT ATΣ−1 Ay

∫
x

g(x, y)φn

{
x;
(

Σ−1 + AyyT AT
)−1

}
dx

]
(74)

with a similar expression for E{Yg(.)}.

Example 1. Bivariate case
Let n = m = 1, Σ = Ω = 1, A = 1 and g(X, Y) = Y. Then

E{Xg(X, Y)} = E(XY) = cov(X, Y).

On using the lemma, ∇xg(x) = 0 and the second term above is√
2
π

EY

[
λy√

1 + y2λ2

∫ ∞

−∞
yφ1

{
x;
(

1 + λ2y2
)}

dx

]
=

√
2
π

EY

[
λy2√

1 + y2λ2

]
,

which agrees with Equation (4).

Example 2. General Case
For the general case, g(x, y) = yi for i = 1, . . . , m. As above, ∇xg(x) = 0 and the second

term in the lemma is

Σ

√
2
π

EY

[
ATyyi√

1 + yT ATΣ−1 Ay

]
.
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Hence, the cross covariance matrix is

E
(

XYT
)
= ΣAT

√
2
π

EY

[
yyT√

1 + yT ATΣ−1 Ay

]
.

This expression must be computed numerically and it must equal√
2
π

EX

[
xxT

√
1 + xT ATΩ−1 Ax

]
AΩ.

Note also that higher order cross moments, that is, E
(

Xp
i Yq

j

)
, may also be computed using

Stein’s lemma, albeit with numerical integration.

Example 3. Portfolio Selection
For portfolio selection assume that X denotes asset returns and that Y denotes sources of

skewness in the conditional distribution of X given that Y = y. This model reflects an empirical
feature of some markets, namely that skewness may be time varying. The return on a portfolio
with weights w is wTX. If the utility function is U

(
wTX

)
the first order conditions for portfolio

selection conditional on Y = y contain the term

EX

{
XU′

(
wTX

)}
Hence g(X) = U′

(
wTX

)
and ∇gX(X) = wU′′

(
wTX

)
. Stein’s lemma yields

ΣwE
{

U′′
(

wTX
)}

+ 2ΣEY

{
λAY

∫
x

U′
(

wTx
)

φn(x; Σ)φ
(

λxT Ay
)

dx
}

.

Assuming that the order of integration may be changed the second term is proportional to{
A
∫

y
yφm(y; Ω)φ

(
xT Ay

)
dy
}

.

which equals zero. Thus, portfolio selection results in a portfolio on the efficient frontier, as expected.
Note that if expectations are taken over the conditional distribution of X given Y = y the result is
the same as in [24] with appropriate changes of notation.

8. Three Examples

This section of the paper contains three numerical examples, the purpose of which is
to illustrate some aspects of the skew-normal copula and related distributions in action.
The first presents results for the distribution function of the bivariate skew-normal copula
of Section 2, focusing on asymptotic results for tail probability computations. Example two
presents specimen estimation results for the bivariate skew-Student copula of Section 6.1.
The final illustration has results for the multivariate skew-normal copula that is described
in Section 7, specifically the distribution at Equation (53).

8.1. Bivariate Skew-Normal Copula Distribution Function and Related Computations

The distribution function corresponding to the density function at Equation (1) is

P(X1 ≤ x1, X2 ≤ x2) = 2
∫ x2

−∞

∫ x1

−∞
φ(s)φ(t)Φ(λst)dsdt. (75)

There is no analytic expression for this integral. For specified values of x1,2 it may be
computed numerically. For some applications, for example in finance, there is a requirement
to compute the distribution function when both X1,2 are substantially less than zero. For



Symmetry 2021, 13, 815 21 of 32

λ > 0, x1,2 << 0 and ignoring power of 1/|x1,2| greater than 2, the resulting asymptotic
expression is

2Φ(x1)Φ(x2)Φ(λx1x2) + 2λ
φ(x1)φ(x2)φ(λx1x2)

x2
1x2

2
(
1 + x2

1λ2
)(

1 + x2
2λ2
)(x2

1 + x2
2 + λ2x2

1x2
2

)
. (76)

Figure 6 shows an example of the exact and approximate distribution function cor-
responding to λ = 1. The quantity tabulated is

√
P(X1 ≤ X∗, X2 ≤ X∗) for values of X∗

between −5.0 and −0.1. Similar results may be computed for λ < 0. It may be noted that
there are combinations of values of λ, x1 and x2 under which the second term is negligible
and Φ(λx1x2) ' 1; that is

P(X1 ≤ x1, X2 ≤ x2) ' 2φ(x1)φ(x2).

 

The distribution function in blue is the square root of the probability that X and Y are both less 
than or equal to X*, for values of X* in the range [-5, -0.1], computed numerically. For 
comparison, the distribution function in orange shows the approximation given in Equation (11).  
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Figure 6. Exact and Approximate Left-hand Quadrant Probabilities; λ = 1.0.

The bivariate skew-normal copula distribution is not specifically suited for financial
applications, but it may be used to compute Value at Risk, VaR henceforth. As the variables
are standardized, VaR is a critical value in the left hand tail of the distribution X∗ such that

P(X1 < x∗, X2 < x∗) ' 2Φ(x∗)2Φ
(

λx∗2
)
= α, (77)

for a specified value of α that is small. Conditional Value at Risk, CVaR henceforth, is a
related measure. For a single variable X, CVaR is defined as the expected value of X given
that it is less than the VaR. For this distribution the properties listed above means that
CVaR is the same as that based on the standard normal distribution. A bivariate version of
CVaR is defined as

E(X1, X2|X1 ≤ x∗, X2 ≤ x∗). (78)

For X1 alone this is

E(X1|X1 ≤ x∗, X2 ≤ x∗) = α−12
∫ x∗

−∞

∫ x∗

−∞
x1φ(x1)φ(x2)Φ(λx1x2)dx1dx2. (79)

For λ > 0 and x∗ << 0, similar arguments to those above lead to

E(X1|X1 < x∗, X2 < x∗) ' −α−2φ(x∗)

{
P(X2 ≤ x∗|x∗) +

2λφ(x∗)φ
(
λx∗2

)
|x∗|(1 + x∗2λ2)

2

}
, (80)
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where P(X2 ≤ x∗|x∗) denotes the distribution function of a standardized skew-normal
distribution with shape parameter equal to λx∗. Using Equation (76) shows that tail
dependence equals zero for the skew-normal copula distribution. A Selection of values of
CVaR when λ = 1 is shown in Table 9 for critical values ranging from −9.5 to −0.5. The
values shown in the second column were computed using numerical inegration. Those in
the third column were computed using the asymptotic formula shown at Equation (80). It
is suggested that the asymptotic formula leads to values that would be sufficiently accurate
for practical purposes.

Table 9. Exact and Asymptotic Values of CVaR; λ = 1.

VaR Computed Asymptotic
(CV) Value Value

−9.5 −9.5597 −9.6031

−9 −9.0664 −9.1085

−8.5 −8.5722 −8.6146

−8 −8.0787 −8.1214

−7.5 −7.5859 −7.6290

−7 −7.0942 −7.1375

−6.5 −6.6037 −6.6473

−6 −6.1146 −6.1585

−5.5 −5.6273 −5.6714

−5 −5.1423 −5.1865

−4.5 −4.6600 −4.7043

−4 −4.1813 −4.2256

−3.5 −3.7072 −3.7514

−3 −3.2392 −3.2831

−2.5 −2.7793 −2.8227

−2 −2.3307 −2.3732

−1.5 −1.8981 −1.9276

−1 −1.4976 −1.2545

−0.5 −1.1536 −0.2418

8.2. Bivariate Student t Copula

This example is based on the bivariate version of the skew-Student copula of Section 6.1
with Tω(.) replaced by Φ(.). The density function at Equation (45) becomes

f (x1, x2) = 2tν1(x1)tν2(x2)Φ(λx1x2). (81)

First, note that for specified ranges of the shape parameter λ this distribution is
bimodal. As in Section 2, bimodality requires that |λ| >

√
π/2. For the Student case the

modal value of X and λ > 0) depends on the degrees of freedom and satisfies

λ
√

ν1ν2
(
1 + x2/ν1

)√
(ν1 + 1)(ν2 + 1)∆

ξ1

(
λ
√

ν2(ν1 + 1)x2√
ν1(ν2 + 1)∆

)
= 1; ∆ = 1 +

(ν2 − ν1)x2

ν1(ν2 + 1)
.

Sets of computed values are shown in Table 10. The first column of the table shows
values of λ. Panel 1 of the table shows the modal value for a set of cases in which the
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degrees of freedom are equal. Panel 2 shows corresponding values when ν1 = 3. For
comparison purposes, column 2 of panel 2 shows the corresponding modal values for the
bivariate skew-normal case.

As in Section 2 the correlation between the two variables is computed numerically.
A selection of values is shown in Table 11. The first column of the table shows a range
of values of λ. Panel 1 shows the computed correlation for a selection of cases for which
ν1 = ν2. The last column shows the corresponding values for the skew-normal copula
for comparison. The second panel shows a range of values when ν1 = 3. The results in
the table indicate that the relationship between the shape parameter λ and the degrees
of freedom is non-linear. Generally, however, correlation is reduced when the degrees of
freedom are finite: a noteworthy difference from the bivariate Student distribution.

Table 10. Modal values under the bivariate Student copula.

Panel 1: Equal degrees of freedom

(3-3) (5-5) (7-7) (10-10) (20-20) (50-50)
1.254 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

3 0.4827 0.5067 0.5169 0.5245 0.5333 0.5387
4 0.4857 0.5013 0.5082 0.5134 0.5195 0.5233
5 0.4714 0.4835 0.4889 0.4929 0.4979 0.5009

15 0.3442 0.3488 0.3509 0.3525 0.3545 0.3557
10 0.3943 0.4007 0.4035 0.4058 0.4085 0.4101
20 0.3101 0.3138 0.3155 0.3168 0.3183 0.3193
35 0.2498 0.2523 0.2534 0.2543 0.2553 0.2559
50 0.2162 0.2181 0.2190 0.2197 0.2205 0.2210
75 0.1826 0.1841 0.1847 0.1853 0.1859 0.1863
100 0.1616 0.1628 0.1633 0.1638 0.1643 0.1646

Panel 2: Unequal degrees of freedom

SNC (3-5) (3-7) (3-10) (3-20) (3-50)
1.254 0.0231 0.0000 0.0000 0.0000 0.0000 0.0000

3 0.5422 0.4894 0.4922 0.4943 0.4966 0.498
4 0.5258 0.4865 0.4868 0.487 0.4871 0.4872
5 0.5029 0.4698 0.4689 0.4683 0.4675 0.4669

15 0.3565 0.3389 0.3365 0.3345 0.3323 0.3308
10 0.4112 0.3894 0.3871 0.3853 0.3832 0.3819
20 0.3200 0.3048 0.3024 0.3005 0.2982 0.2968
35 0.2564 0.2450 0.2428 0.2411 0.2390 0.2377
50 0.2213 0.2118 0.2098 0.2083 0.2064 0.2052
75 0.1865 0.1787 0.1770 0.1757 0.1740 0.1729
100 0.1648 0.1581 0.1565 0.1553 0.1538 0.1529
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Table 11. Correlation under the Bivarate Student Copula.

Panel 1: Equal Degrees of Freedom

(3,3) (7,7) (10,10) (20,20) (50,50) Normal
0.01 0.0211 0.0112 0.0100 0.0089 0.0083 0.0080
0.1 0.1369 0.1054 0.0962 0.0867 0.0817 0.0786
1 0.3484 0.4480 0.4527 0.4536 0.4523 0.4505
2 0.3799 0.5185 0.5322 0.5434 0.5482 0.5503
5 0.3972 0.5603 0.5798 0.5980 0.6071 0.6116
10 0.4009 0.5710 0.5919 0.6120 0.6223 0.6268

Panel 2: Unequal Degrees of Freedom

(3,3) (3,5) (3,7) (3,10) (3,20) (3,50)
0.01 0.0211 0.0170 0.0157 0.0148 0.0140 0.0136
0.1 0.1369 0.1301 0.1250 0.1211 0.1167 0.1142
1 0.3484 0.3904 0.3980 0.4015 0.4040 0.4048
2 0.3799 0.4334 0.4452 0.4517 0.4573 0.4600
5 0.3972 0.4579 0.4724 0.4807 0.4885 0.4924
10 0.4009 0.4636 0.4787 0.4876 0.4959 0.5001

To illustrate parameter estimation, the inclusion of scale and location results in the
density function

f (x1, x2) = 2tν1{z1/σ1}tν2{z2/σ2}Φ(λz1z2)/σ1σ2; zi = (xi − µi); i = 1, 2. (82)

Note that this parameterization means that (i) estimators of scale and degrees of
freedom are given by the analogous results for a univariate Student’s t distribution, (ii) the
estimator of shape depends only on the skewing function Φ and its argument and that (iii)
only the estimators of location are complicated by the skewing function. Consequently,
in the Fisher information [FI] matrix the non-zero off diagonal elements are in the cells
corresponding to µ1,2 and λ and σ2

i and νi; i = 1, 2. Specifically, the FI matrix is

FI =



lµ1µ1 lµ1µ2 0 0 lµ1λ 0 0
lµ2µ1 lµ2µ2 0 0 lµ2λ 0 0

0 0 lσ2
1 σ2

1
0 0 lσ2

1 ν1
0

0 0 0 lσ2
2 σ2

2
0 0 lσ2

2 ν2

lλµ1 lλµ2 0 0 lλλ 0 0
0 0 lν1σ2

1
0 0 lν1ν1 0

0 0 0 lν2σ2
2

0 0 lν2ν2


,

where lθθ denotes the expected value of the second derivative of the log-likelihood function
with respect to a parameter θ. The non-zero elements of FI to be computed numerically
using the distribution at Equation (82) are

lµiµi = −(νi + 1)/σ2
i (νi + 3) + σ2

j λ2E
{

z2
j ξ2
(
λzizj

)}
; (i, j) = (1, 2), (2, 1).

lµiµj = λE
{

ξ1
(
λzizj

)}
+ σiσjλ

2E
{

zizjξ2
(
λzizj

)}
,

lµiλ = −E
{

zjξ1
(
λzizj

)}
+ λE

{
ziz2

j ξ2
(
λzizj

)}
,

where ξ1(x) is as defined in Proposition 1 and ξ2(x) = −ξ1(x){x + ξ1(x)}. The remaining
elements corresponding to scale and degrees of freedom are the same as those for the FI
matrix for Student’s t, namely

lσ2
i σ2

i
= −νi/2σ4

i (νi + 3); lσ2
i νi

= 1/σ2
i (νi + 1)(νi + 3),
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and
lνiνi =

[
Ψ
′{(νi + 1)/2} −Ψ

′{νi/2}
]
/4− (νi + 5)/2νi(νi + 1)(νi + 3),

where Ψ
′
(ν) = d2logΓ(ν)/dν2. These are standard results, but may be found in [25]. The

distributions described in this paper all possess the property that the shape parameter may
take a value on the boundary of the parameter space. Nonetheless, the FI matrix is inverted
and used in the usual way to provide an estimate of the variability of the estimated model
parameters. ML estimators of the parameters may be computed using a Newton–Raphson
type scheme.

The data set used consists of the weekly returns on 30 stocks that are constituents of
the United States S&P500 index. As the example in this subsection and in the following are
solely for purposes of illustration, the stocks are numbered. The example in this subsection
presents results for 14 pairs of securities, namely stock 1 successively paired with stocks
2 through 15. The computations shown in Table 12 through Table 13 and 14 are based
on 100 observations.A standard set of descriptive statistics for the 15 stocks is shown in
Table 12.

Table 12. Descriptive Statistics, N = 100.

Stock Mean St.dev Min Max Skewness Kurtosis

1 −0.0025 0.0417 −0.1633 0.1125 −0.4161 4.6963

2 −0.0108 0.0968 −0.4700 0.2095 −1.1852 7.9222

3 −0.0010 0.0608 −0.2572 0.2010 −0.5750 8.0273

4 0.0073 0.0428 −0.1168 0.1468 −0.3540 4.3228

5 −0.0008 0.0349 −0.1456 0.0812 −0.9588 5.6347

6 −0.0020 0.0551 −0.2250 0.1707 −0.4596 5.9019

7 −0.0073 0.1030 −0.6183 0.4433 −1.8121 18.8279

8 −0.0003 0.0570 −0.2353 0.1347 −1.1859 7.2066

9 −0.0033 0.0640 −0.4110 0.2298 −1.8642 20.9143

10 0.0004 0.0332 −0.1520 0.1269 −1.2688 9.8876

11 −0.0059 0.0609 −0.1861 0.1891 0.2182 4.6922

12 −0.0066 0.0519 −0.2371 0.1556 −1.1826 9.3188

13 −0.0067 0.0781 −0.2880 0.1402 −0.6467 4.0701

14 −0.0031 0.0659 −0.3898 0.2074 −2.0377 15.2042

15 −0.0018 0.0428 −0.1304 0.127 −0.0926 4.6006

Table 13 shows estimated parameters for the 14 specified pairs of stocks, computed
using the method of maximum likelihood [ML]. Panel 1 shows the estimated parameters.
Note that the estimates of the degrees of freedom are shown truncated. Panel 2 shows
estimates of parameter precision computed by inverting the FI matrix. The estimated
values of the shape parameter λ are all positive, consistent with the stylized fact that stock
returns are generally positively correlated. There are four other points to note. First, the
estimate of the location parameter for stock 1 depends on the choice of the second stock;
that is, it is affected by the presence of the skewing factor and the non-zero values of λ.
Secondly, the magnitude of each estimated λ in panel 1 is less than the corresponding
estimate of parameter precision in panel 2. This suggests that a test of the null hypothesis
H0 : λ = 0 would not be rejected against either a one- or two sided alternative. This
suggestion, however, is not supported by corresponding likelihood ratio tests reported in
Table 15, all of which would lead to rejection of H0. Thirdly, the estimated values of λ are
all less in magnitude than that required for the distribution to be bi-modal. Finally, it is of
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interest to inquire if the small estimated values λ have much effect on critical values [CVs].
For each of the fourteen pairs of stocks columns 2, 3 and 4 of Table 14 show computed
critical values at probabilities of 0.002, 0.01 and 0.05. Columns 5 through 7 show a measure
of the effect of the non-zero value of λ. This is computed as follows. When the degrees of
freedom are equal, the CV is computed for Student’s t distribution with the same degrees
of freedom. The column entries show the percentage difference. For example, for stock pair
1–3 the Student’s t CV corresponding to a probability of 0.001 is −7.1732. The CV under
the model is −7.5351, a difference of abut 5%. When the degrees of freedom for a stock pair
are different, the average is taken to compute the Student quantiles. For some applications
the differences in the CVs might be regarded as negligible. For other applications they
would not.

Table 13. Parameter Estimates under the Bivarate Student Copula.

Panel 1: Parameters

µ1 µ2 σ2
1 σ2

2 λ νx νy
1-2 −0.0039 −0.0097 0.0011 0.0043 0.0285 4 6
1-3 −0.0018 0.0032 0.0011 0.0009 0.0074 4 4
1-4 −0.0016 0.0111 0.0011 0.0010 0.0161 4 4
1-5 −0.0017 0.0015 0.0011 0.0007 0.0211 4 4
1-6 −0.0006 0.0013 0.0011 0.0014 0.0313 4 6
1-7 −0.0022 −0.0005 0.0011 0.0023 0.0067 4 4
1-8 −0.0011 0.0031 0.0011 0.0017 0.0608 4 4
1-9 −0.0035 −0.0006 0.0011 0.0008 0.0077 4 5

1-10 −0.0010 0.0044 0.0011 0.0004 0.0134 4 4
1-11 −0.0020 −0.0086 0.0011 0.0021 0.0325 4 5
1-12 −0.0057 −0.0053 0.0012 0.0010 0.0205 4 5
1-13 −0.0013 −0.0009 0.0011 0.0036 0.0081 4 4
1-14 −0.0034 0.0027 0.0011 0.0014 0.0189 4 4
1-15 −0.0006 −0.0008 0.0011 0.0011 0.0220 4 5

Panel 2: Estimated standard errors

µ1 µ2 σ2
1 σ2

2 λ νx νy
1-2 0.0040 0.0074 0.0003 0.0010 0.0747 1.66 3.45
1-3 0.0040 0.0036 0.0003 0.0002 0.0664 1.66 1.66
1-4 0.0040 0.0037 0.0003 0.0002 0.0664 1.66 1.66
1-5 0.0040 0.0032 0.0003 0.0002 0.0664 1.66 1.66
1-6 0.0040 0.0043 0.0003 0.0003 0.0747 1.66 3.45
1-7 0.0040 0.0057 0.0003 0.0006 0.0664 1.66 1.66
1-8 0.0040 0.0048 0.0003 0.0004 0.0664 1.66 1.66
1-9 0.0040 0.0032 0.0003 0.0002 0.0713 1.66 2.47

1-10 0.0040 0.0024 0.0003 0.0001 0.0664 1.66 1.66
1-11 0.0040 0.0052 0.0003 0.0005 0.0713 1.66 2.47
1-12 0.0040 0.0036 0.0003 0.0002 0.0713 1.66 2.47
1-13 0.0040 0.0071 0.0003 0.0009 0.0664 1.66 1.66
1-14 0.0040 0.0045 0.0003 0.0004 0.0664 1.66 1.66
1-15 0.0040 0.0038 0.0003 0.0003 0.0713 1.66 2.47
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Table 14. Critical Values under the bivarate Student copula.

Pair p = 0.001 p = 0.01 p = 0.05 %err (0.001) %err (0.01) %err (0.05)

1-2 −6.3921 −3.5784 −2.1139 8.4613 6.3429 4.9061

1-3 −7.5351 −3.8412 −2.1651 5.0453 2.5150 1.5594

1-4 −7.7466 −3.9225 −2.1976 7.9944 4.6864 3.086

1-5 −7.7792 −3.9714 −2.2139 8.4481 5.9893 3.8494

1-6 −6.4085 −3.5948 −2.1139 8.7405 6.8319 4.9061

1-7 −7.5025 −3.8249 −2.1651 4.5916 2.0807 1.5594

1-8 −7.8117 −4.1341 −2.3115 8.9018 10.3322 8.4292

1-9 −6.7250 −3.6073 −2.0977 4.7312 2.2758 1.5543

1-10 −7.6978 −3.9063 −2.1814 7.3139 4.2521 2.3227

1-11 −6.9876 −3.7714 −2.1633 8.8199 6.9281 4.7320

1-12 −6.9384 −3.7058 −2.1305 8.0533 5.0672 3.1431

1-13 −7.5676 −3.8412 −2.1651 5.499 2.5150 1.5594

1-14 −7.7629 −3.9551 −2.1976 8.2213 5.5550 3.0860

1-15 −6.9384 −3.7222 −2.1469 8.0533 5.5324 3.9376

Table 15. Likelihood ratio tests under the bivarate Student copula.

Pair loglN loglSTC lrtest p-Value

1-2 268.3707 413.2626 289.7838 0.0000

1-3 314.8326 467.2746 304.8840 0.0000

1-4 349.8942 484.8219 269.8555 0.0000

1-5 370.2326 509.2042 277.9432 0.0000

1-6 324.6268 469.9988 290.7438 0.0000

1-7 262.1842 425.7775 327.1865 0.0000

1-8 321.3790 474.2957 305.8335 0.000

1-9 309.7183 481.3121 343.1876 0.0000

1-10 375.4270 524.3659 297.8779 0.0000

1-11 314.6729 455.9635 282.5812 0.0000

1-12 330.7399 483.9776 306.4756 0.0000

1-13 289.8306 416.5648 253.4685 0.0000

1-14 306.8000 464.5356 315.4711 0.0000

1-15 350.0291 489.5017 278.9452 0.0000

8.3. Multivariate Skew-Normal Copula

The final illustration uses the multivariate skew-normal copula. The parameterization
of the distribution at Equation (53) facilitates estimation. The ML estimators of Σ and Ω

depend only on the sets of observations {x} and {y}, respectively. The ML estimator of
λ depends on ξ1(.). As above, ML parameter estimation requires only a simple Newton–
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Raphson scheme. The FI matrix has a block structure. The 3n× 3n matrix corresponding
to µ, ν and λ is

FI =

 lµµT lµνT lµλT

lνµT lννT lνλT

lλµT lλνT lλλT

. (83)

With the following definitions

z1 = x− µ, z2 = y− ν, Λ = diag(λ1, . . . , λn), Q = z1Λz1,

the sub-matrices in the FI matrix are

lµµT = −Σ−1 + ΛE
{

z2zT
2 ξ2(Q)

}
, lννT = −Ω−1 + ΛE

{
z1zT

1 ξ2(Q)
}

,

lµνT = ΛE{ξ1(Q)}+ ΛE
{

z2zT
1 ξ2(Q)

}
, lλλT = E

[{(
z1zT

1

)
�
(

z2zT
2

)}
ξ2(Q)

]
,

lλµT = E
[{(

λzT
1

)
�
(

z2zT
1

)}
ξ2(Q)

]
, lλµT = E

[{(
λzT

2

)
�
(

z1zT
2

)}
ξ2(Q)

]
,

with all expectations being computed numerically.
For this illustration, a set of 30 US S&P500 stocks are divided into 2 groups each of

15 stocks. Returns are weekly as before and the data set has 500 observations. The standard
set of descriptive statistics is shown in Table 16.

The ML estimators of location and shape are computed using a Newton–Raphson
scheme, with the resulting estimates shown in Table 17. As in the previous section, the FI
matrix is inverted to provide estimates of precision. Unlike the bivariate example, several
of the shape parameters exhibit estimates that are more than twice the precision in absolute
value, the estimate for the stock pair 1 and 16 being an example.

Table 16. Multivariate Skew-normal Copula—Descriptive Statistics, N = 500, p = 15.

Stock Avg (1) Vol (2) Min (10) Max (11) Skew.s (7) Kurt.s (8)

1 0.0013 0.0281 −0.1633 0.1125 −0.6504 7.0302

2 −0.0015 0.0645 −0.4700 0.2260 −0.9124 10.2368

3 0.0016 0.0377 −0.2572 0.2010 −0.8089 12.5767

4 0.0047 0.0346 −0.1179 0.1468 −0.3044 4.2946

5 0.0001 0.0252 −0.1456 0.0874 −0.7086 6.5132

6 0.0016 0.0469 −0.3430 0.1707 −0.8131 10.2547

7 0.0019 0.0537 −0.6183 0.4433 −2.9290 52.964

8 0.0009 0.0409 −0.2353 0.1347 −0.6603 7.1881

9 0.0001 0.0383 −0.4110 0.2298 −1.9705 34.2342

10 0.0008 0.0223 −0.152 0.1269 −1.0284 11.6669

11 0.0004 0.0428 −0.1861 0.1891 −0.2347 6.0851

12 −0.0011 0.0319 −0.2371 0.1556 −1.4995 15.5992

13 −0.0018 0.0436 −0.2880 0.1402 −1.0084 9.5305

14 0.0003 0.0492 −0.3898 0.2074 −1.2720 12.9359

15 −0.0003 0.0297 −0.1304 0.1270 −0.3297 6.0096

16 0.0016 0.0367 −0.2390 0.1358 −0.6832 7.7613
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Table 16. Cont.

Stock Avg (1) Vol (2) Min (10) Max (11) Skew.s (7) Kurt.s (8)

17 0.0018 0.0219 −0.1421 0.1063 −0.7507 10.0922

18 0.0019 0.0264 −0.3156 0.1715 −2.9183 47.872

19 0.0018 0.0270 −0.1209 0.1007 −0.3455 5.7724

20 0.0042 0.0301 −0.1118 0.1342 −0.3669 5.6791

21 0.0032 0.0310 −0.2107 0.1495 −0.7606 8.9065

22 0.0017 0.0258 −0.1235 0.0909 −0.3944 5.3920

23 0.0016 0.0216 −0.1517 0.0888 −0.9443 9.9823

24 0.0044 0.0317 −0.3133 0.1586 −1.8778 25.3881

25 0.0014 0.0303 −0.3209 0.1208 −2.6446 30.2787

26 0.0012 0.024 −0.0841 0.0987 0.1249 4.4550

27 0.0018 0.0238 −0.1138 0.1098 −0.2549 6.8268

28 0.0025 0.0318 −0.1724 0.1529 −0.4396 9.2548

29 0.0019 0.0356 −0.2223 0.1114 −0.8660 7.3263

30 0.0004 0.0349 −0.3031 0.1918 −2.1926 22.9448

Table 17. Multivariate Skew-normal Copula—Location and Shape Parameter Estimates.

Pair Locn-X St.err-X Locn-Y St.err-Y Shape St.err

1-16 0.0013 0.0013 0.0016 0.0017 0.3870 0.1227

2-17 −0.0015 0.0029 0.0018 0.0010 −0.2022 0.1227

3-18 0.0016 0.0017 0.0020 0.0012 0.2279 0.1295

4-19 0.0047 0.0016 0.0018 0.0012 −0.0076 0.0815

5-20 0.0001 0.0011 0.0042 0.0014 0.1610 0.0811

6-21 0.0016 0.0021 0.0032 0.0014 0.4757 0.1431

7-22 0.0019 0.0024 0.0017 0.0012 0.1762 0.1378

8-23 0.0009 0.0018 0.0016 0.0010 −0.0085 0.0982

9-24 0.0001 0.0018 0.0044 0.0015 0.6524 0.1785

10-25 0.0008 0.0010 0.0015 0.0014 0.3382 0.1333

11-26 0.0004 0.0019 0.0012 0.0011 0.1169 0.0993

12-27 −0.0011 0.0015 0.0018 0.0011 0.1943 0.1192

13-28 −0.0018 0.0020 0.0025 0.0014 0.0699 0.1125

14-29 0.0003 0.0022 0.0019 0.0016 0.5011 0.1303

15-30 −0.0003 0.0014 0.0005 0.0016 0.7160 0.1488

A standard likelihood ratio test has a value of 259.3 and thus leads to rejection of the
null hypothesis that all shape parameters equal zero.

9. Concluding Remarks

This paper paper reports the results of an investigation into the properties of a copula-
like version of the skew-normal and skew-Student distributions. The distributions studied
in the paper allow the marginal distributions to be either normal or Student’s t with
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differing degrees of freedom. There are several conditional distributions that resemble
the skew-normal or are closely related to it. Many of the required computations require
numerical integration. The properties of some of the distributions studied depend on
certain of the special functions, in particular the G and H functions. There are no explicit
expressions available for the moment generating or characteristic functions, although
moments and cross moments may be computed when they exist. The examples contained
in the paper suggest that parameter estimation is straight forward.

The results show that study of marginal distributions may conceal the nature of a
dependence structure and that furthermore there may be different such structures. For
future research, there are a number of technical issues concerned with integration. There
is also scope for more general results based on unified or generalized skew-elliptical
distributions.
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Appendix A

Appendix A.1. Proof of Proposition 3

The marginal distribution of X is symmetric and has the density function at
Equation (22)

f (x) = φ(x)Φ(τ̃x)/Ω(τ, λ); τ̃x = τ
√

1 + λ2/
√

1 + λ2x2.

1. E(X) = 0 by symmetry.
2. var(X) is computed using integration by parts, as follows, omitting the denomina-

tor Ω(.)

var(X) ∝ [−xφ(x)Φ(τ̃x)]
∞
−∞ +

∫ ∞

−∞
φ(x)

d
dx
{xΦ(τ̃x)}dx.

The first term is zero. The second term is∫ ∞

−∞
φ(x)Φ(τ̃x)dx−

{
λ2τ

√
1 + λ2

} ∫ ∞

−∞

x2

(1 + λ2x2)
3/2 φ(τ̃x)φ(x)dx.

On division by Ω(τ, λ) the first term is equal to unity.
3. cov(X, Y) is also computed using integration by parts. Omitting Ω(.) and integrating

with respect to y gives

xφ(x)
{[
−φ(y)Φ

(
τ
√

1 + λ2 + λxy
)]∞

−∞
+
∫ ∞

−∞
λxφ(y)φ

(
τ
√

1 + λ2 + λxy
)

dy
}

.

The term in []s equals zero. On integration with respect to y the second term is

λxφ(τ̃x)/
√

1 + λ2x2.

Integration with respect to x gives the result.
4. The conditional distribution at Point 4 follows from dividing Equation (20) by (22).
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Appendix A.2. Proof of Proposition 4

1. Ω(τ, λ) is given by Equation (21)

Ω(τ, λ) =
∫ ∞

−∞
φ(y)Φ

(
τ
√

1 + λ2/
√

1 + λ2y2
)

dy,

Integration by parts and noting tht[
Φ(y)Φ

(
τ
√

1 + λ2/
√

1 + λ2y2
)]∞

−∞
= 1/2,

gives the result.
2. Follows directly from Equation (22).
3. Follows directly by dividing the joint density function at Equation (20) by

Equation (22) and using standard methods.
4. The proof employs the asymptotic formula for the standard normal integral in [16]

(page 932, Equation 26.2.12); that is

Φ(x) ' φ(x)/|x|; x << 0,

and assumes that higher order terms may be neglected as may integrals of the form∫ x

−∞

φ(s)
sp ds ' φ(x)/(−1)p|x|p+1; x << 0,

In Equation (26) the denominator is.

TD =
∫ y

−∞
φ(s)Φ

(
τ
√

1 + λ2/
√

1 + λ2s2
)

ds.

Integrating by parts and using the definition at Equation (23) gives

TD = Φ(y)Φ
(
τ̃y
)
− τλ

√
1 + λ2

∫ y

−∞

φ(s)Φ(τ̃s)

(1 + λ2s2)
3/2 ds ' Φ(y)Φ

(
τ̃y
)
.

The numerator in (26) is

TN = φ(x1)
∫ y

−∞
φ(s)Φ

(
τ
√

1 + λ2 + λx1s
)

ds

Integrating by parts again with τ
′
= τ
√

1 + λ2 gives

TN = φ(x1)φ(y)Φ
(

τ
′
+ λx1y

)
− λx1φ(x1)

∫ y

−∞
Φ(s)φ

(
τ
′
+ λx1s

)
ds.

In the second term in TN , s ≤ y << 0, in which case the integrand

Φ(s)φ
(

τ
′
+ λx1s

)
'

φ(s)φ
(

τ
′
+ λx1s

)
|s| ,

may be neglected. Noting that

τ
′
= τ̃y

√
1 + λ2y2,

completes the proof.
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